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Abstract—We present a simple model of inactivation decoding
for LT codes which can be used to estimate the decoding
complexity as a function of the LT code degree distribution.The
model is shown to be accurate in variety of settings of practical
importance. The proposed method allows to perform a numerical
optimization on the degree distribution of a LT code aiming at
minimizing the number of inactivations required for decoding.

I. I NTRODUCTION

Fountain codes [1] are a class of erasure correcting codes
which can generate an endless number of encoded symbols.
This feature makes them very useful when the erasure rate of
the communication channel is not known. Fountain codes are
also a very efficient solution for reliable multicast/broadcast
transmissions in which a transmitter wants to deliver an object
(file) to a set of receivers. Reliable multicasting is of special
interest in wireless systems due to the broadcast nature of
the transmission medium. For example, in our case we are
interested in delivering a file via satellite to a set of shipson
high seas.

The first class of practical fountain codes, Luby Transform
(LT) codes, were introduced in [2] together with an efficient
(iterative) belief propagation (BP) erasure decoding algorithm
exploiting a sparse graph representation of the codes. Raptor
codes [3] were introduced as an extension of LT codes which
consists of a serial concatenation which uses a LT code as an
inner code and an outer code which is normally chosen to be
a high rate erasure correcting code. BP decoding of LT codes
is very efficient for long block lengths. However, the perfor-
mance of BP degrades for moderate and short block lengths.
In [4] inactivation decoding for LT codes was introduced as an
efficient ML decoding algorithm having manageable complex-
ity for moderate/small block lengths. Inactivation decoding is
widely used in practice (an exemplary case is the standard
in [5]). However, most of the analyses of LT and Raptor
codes focus on BP decoding (see e.g. [6], [7]). An exception
is the work in [8], where the authors derived analytically
some degree distributions optimized for inactivation decoding.
In this work we study inactivation decoding for LT codes.
First we present a novel method which is able to accurately
estimate the expected number of inactivations required by
inactivation decoding for a given LT code. This method is
then embedded into a numerical optimization algorithm which
searches for output degree distributions which minimize the
number of inactivations. In contrast to the work in [8] our

algorithm allows to freely set the average output degree of the
distribution as well as to introduce arbitrary constraintson the
code design.

The paper is organized as follows. In Section II we present
how inactivation decoding works. In Section III we introduce
the method to predict the complexity of inactivation decoding
of LT codes. Section IV describes the numerical optimization
algorithm and provides examples of LT code design. Finally
we present the conclusions to our work in Section V.

II. I NACTIVATION DECODING OFLT CODES

We consider a binary LT code withk input symbolsu =
(u1, u2, . . . , uk). The output degree distribution which defines
the LT code will be denoted asΩ = {Ω1,Ω2,Ω3, . . .Ωdmax}
where for the maximum degree we havedmax ≤ k. As-
sume the receiver has collectedm output symbolsc =
(c1, c2, . . . , cm). The relative receiver overhead is denoted by
ǫ = 1 − m/k. The decoder will have to solve the system of
equations

c = uG
T (1)

with G being them × k binary matrix defining the relation
between the input and the output symbols. For LT codes,
the matrixG is sparse. Efficient maximum likelihood (ML)
decoding can be performed by exploiting the sparse nature of
G through the following steps:

1) Triangularization. G is put in an approximate lower
triangular form. At the end of this process we are left
with lower triangular matrixA and matricesB, C, and
D which are sparse as shown in Fig. II. This process
consists of column and row permutations.

2) Zero matrix procedure. The matrixA is put in a diagonal
form and matrixB is zeroed out through row sums. As
a consequence matricesC andD may become dense.
The structure ofG at the end of this procedure is shown
in Fig. II.

3) Gaussian elimination (GE). GE is applied to solve
the systems of equations̃c = ũC

T , where ũ =
(ũ1, ũ2, ..., ũlx) are calledreference variables (associ-
ated with the rightmost columns of the matrix in Fig. II)
and c̃ = (c̃1, c̃2, . . . , c̃m−lr) are m − lr known terms
associated with the lastm − lr of the matrix in Fig. II
which depend only on the reference variables.
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(b) Structure ofG̃ after the zero
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Fig. 1. Triangulization and zero matrix procedure steps of inactivation
decoding.

4) Back-substitution. Once the values of the reference
variables ũ1, ũ2, ..., ũlx has been determined, back-
substitution is applied to compute the values of the
remaining variables inu.
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Fig. 2. Structure ofG at decoding stepq = lr + lx.

Note that decoding is successful only if the rank of the
sub-matrixC equals the number of reference variables,lx. In
order to characterize inactivation decoding it is useful tomove
to a bipartite graph representation. In this representation output
symbols will be denoted by squares nodes and input symbols
by circles. As a consequence, each output symbol node will
correspond to a row of the matrixG and each input symbol
node will correspond to a column of the matrixG. An output
symbol node of degreed will be connected with an edge to
thed input symbol nodes whose linear combination generates
the output symbol. At the beginning of the decoding all input
and output symbol nodes are marked asactive. During the
triangularization procedure, at each step the decoder marks
an active input symbol node as eitherresolvable or inactive.
An output symbol node is active as long as it has one or
more active neighbours. The resolvable input symbol nodes
correspond to the columns of matrixA, whereas the inactive
input symbol nodes correspond to the columns ofD. We
further define the active degree of an input or output node
as the number of active neighbors of the node. Let us assume
the decoder is at stepj = lr+ lx, beinglr the number of input
symbol nodes marked as resolvable andlx the number of input
symbol nodes marked as inactive (see Fig. 2). We have that

la = k − lr − lx is the number of active input symbol nodes.
At this stage the decoder operates as follows:

• The decoder tries to find an output symbol node (row)c̃
with only one active neighbor.

– If such an output symbol exists, this symbol its only
neighborux are marked as resolvable. This decreases
the active degree of the output symbols which have
ux as neighbor.

– If such an output symbol does not exist, an inacti-
vation takes place, i.e. the decoder marks one of the
la active input symbol nodes as inactive.

• The decoder moves to stepj + 1.
After k steps all input symbols are either inactive or resolvable.
After the zero out procedure, GE is used to solve the systems
of equationsc̃ = ũC

T . This step drives the complexity
of decoding since GE on an × n matrix requiresO(n3)
operations. Therefore, the complexity of inactivation decoding
is dominated by the number of reference variables,lx. In
the following, a way to compute the average number of
inactivations needed at the decoder will be derived, which will
depend on the degree distributionΩ.

For the inactivation step, different strategies can be applied
to select the symbol to be inactivated (see e.g. [9], [4]).
We consider two different inactivation techniques. The first
strategy, random inactivation consists simply of selecting
uniformly at random the input symbol node to be inactivated.
In the second strategy,maximum active degree inactivation,
the input symbol with maximum active degree is inactivated.

III. A M ODEL FORRANDOM INACTIVATION DECODING

In this section we present a model to predict the average
number of inactivations needed to decode as a function of the
degree distributionΩ, the input block sizek and the overheadǫ
under random inactivation. We will denote asi-th output ripple
at stepj of the algorithm,R(j)

i , the set of output symbol nodes
of active degreei when k − j input symbols are still active
(see Fig. 3).R(j)

i shall denote the cardinality ofR(j)
i .We shall

assume that an output symbol chooses its neighbors without
replacement, in other words, we do not allow output symbols
to throw more than one edge to the same input symbol.

The algorithm is based on the assumption thatR
(j)
i fol-

lows a binomial distribution with parametersm(j) and p
(j)
i ,

B(m(j), p
(j)
i ), where m(j) represents the number of active

output symbols at stepj and p
(j)
i represents the probability

that one of the output symbols at stepj belongs to thei-th
ripple. The assumption showed to be very accurate through
extensive Monte Carlo simulations. According to the assump-
tion, we have thatR(0)

i initially follows a binomial distribution
B(m,Ωi), i.e.

Pr(R0
i = q) =

(

m

q

)

Ωi
q(1− Ωi)

m−q.

Let us consider an output symbolcl which belongs toR(j)
i ,

i > 1. In other words, at stepj cl hasi neighbors among the
k− j unresolved symbols (see Fig. 3). The probability thatcl
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Fig. 3. Output symbol belonging toR(j)
i

. At step j, k − j input symbols
are still active. The symbol hasi edges going to active input symbols.

leaves thei−th ripple at stepj+1, χj+1
i , is the probability that

one of thesei neighbors stops being active and becomes either
resolvable or inactive. Under the no replacement assumption
this probability takes the value

χj+1
i =

i

k − j
.

Recalling our assumption thatR(j)
i ∼ B

(

m(j), p
(j)
i

)

, the
expected number of symbols leaving thei-th ripple, i > 1,
at stepj + 1 will be

N j+1
i = E

[

R
(j)
i χj+1

i

]

= χj+1
i E

[

R
(j)
i

]

= χj+1
i m(j)p

(j)
i .

For the casei = 1 the number of symbols leaving the first
ripple will be

N
(j+1)
1 = E

[

1 + (Rj
1 − 1)

1

k − j

]

when no inactivation takes place, and

N
(j+1)
1 = 0

when an inactivation is performed. Since an inactivation occurs
whenRj

1 = 0, we have that

N
(j+1)
1 =

(

1−
1

k − j

)

Pr(Rj
1 = 0) +

1

k − j
E

[

Rj
1

]

=

(

1−
1

k − j

)

(

1− p
(j)
1

)m(j)

+
1

k − j
m(j)p

(j)
1 .

Analogously, the expected number of symbols entering thei-
th ripple at stepj + 1 corresponds to the number symbols
which leave thei+ 1-th ripple,

N j+1
i = E

[

R
(j)
i+1χ

j+1
i+1

]

= χj+1
i+1m

(j)p
(j)
i+1.

The expected number of active output symbols in the graph
at stepj + 1 can be computed recursively as

m(j+1) = m(j) −N
(j+1)
1 ,

andp(j)i+1 can be computed imposing the following balance

E

[

R
(j+1)
i

]

= E

[

R
(j)
i

]

+N
(j+1)
i+1 −N

(j+1)
i .

Where N
(j+1)
i+1 and N

(j+1)
i are respectively the expected

number of symbols entering and leaving thei-th ripple. We
have finally that

m(j+1)p
(j+1)
i = m(j)p

(j)
i +N

(j+1)
i+1 −N

(j+1)
i

p
(j+1)
i =

m(j)p
(j)
i +N

(j+1)
i+1 −N

(j+1)
i

m(j+1)
.

The expected number of inactivations within stepj will be

n
(j)
inact = Pr(Rj

1 = 0) =
(

1− p
(j)
1

)m(j)

, (2)

while expected number of (overall) inactive symbols at decod-
ing stepl, denoted byN (l)

inact, will be

N
(l)
inact =

l
∑

j=1

n
(j)
inact. (3)

In the following we will adopt the shorthandNinact to refer to
N

(k)
inact, that is, the expected number of inactivations required

to decode.
Fig. 4 shows the average number of inactivations needed to

decode a linear random fountain code (LRFC)1 and a robust
soliton distribution (RSD) with parametersc = 0.09266 and
δ = 0.001993, both with average output degreēΩ = 12 and
k = 1000. It can be observed how for both distributions the
estimated number of inactivations is very close to the average
number of inactivations obtained through simulations.

Fig. 5 shows the evolution ofR(j)
i and N

(j)
inact with the

decoding stepj for the RSD distribution atǫ = 0.2. The
simulation results were obtained averaging200 independent
realizations. It can be observed how the match between
simulation results and the prediction is very tight.

IV. D EGREEDISTRIBUTION DESIGN

The algorithm proposed in section III predicts the expected
number of inactivations needed to decode a LT code. We have
devised an efficient implementation of the algorithm which
makes it possible to perform a numerical optimization of the
output degree distributionΩ.

The algorithm used to perform the numerical optimization
is simulated annealing (SA) [10], a fast meta-heuristic method
for global optimization. The starting point of SA corresponds
to an initial statesinit plus an initial temperatureTinit. At
every step the temperature of the system is decreased and
a number of candidate successive states for the system are
generated as a slight variation of the previous state. For high
temperatures SA allows moving the system to higher energy
states but this becomes less and less likely as the temperature
of the system decreases. This step is repeated until the system
reaches a target energy or until a maximum number of steps
are carried out. In our case the states correspond to degree

1The degree distribution of a LRFC follows a binomial distribution.
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Fig. 4. Average number of inactivations needed to decode a LRFC and a
RSD fork = 1000 and average output degreēΩ = 12. The markers represent
simulation results and the lines represent the predicted number of inactivations
for random inactivation using the proposed algorithm.
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Fig. 5. Evolution ofR(j)
i

andN
(j)
inact with respect to the decoding stepj

for a RSD withk = 1000 and ǫ = 0.2. The solid lines represent the results
of simulations and the dashed lines the prediction obtainedwith the proposed
algorithm.

distributions and the energy is a function of the predicted
number of inactivationsE = f (Ninact). Note that the optimiza-
tion aims at minimizing the expected number of inactivations
under random inactivation which is known to be suboptimal.
However, we expect that if a degree distributionΩA requires
less inactivations than a degree distributionΩB under random
inactivation, it will tend to require less inactivations under
other inactivation strategies. Our experimental results and the
experimental results in [9] support this fact. In this section
we provide examples of code design based on this numerical

optimization.
The goal of the optimization is minimizing the expected

number of inactivations needed for decoding while complying
with several design constraints. Concretely, we choosek =
10000 and set the following constraints:

• A target probability of decoding failureP ∗

F = 10−2 at
ǫ = 0.

• Maximum average output degreēΩ ≤ 12.
• Maximum output degreedmax = 150.

The first constraint is applied to the a lower bound onPF

derived in [11] and provided by

PF (Ω, k, ǫ) =
k
∑

i=1

(−1)i+1

(

k

i

)

(

k
∑

d=1

Ωd

(

k−i
d

)

(

k
d

)

)k(1+ǫ)

. (4)

The lower bound is tight for reception overhead slightly
larger thanǫ = 0. This constraint aims at discarding degree
distributions which may lead to excessively-high error floors.
The second and third constraints are set to control the average
and maximum encoding complexity. The metric used for
optimization in this examples isE = Ninact+fp(PF ) at ǫ = 0,
where

fp(PF ) =

{

0, PF < PF
∗

b (1 − PF /PF
∗, else

(5)

beingPF
∗ the target probability of decoding failure and ab

a large positive number (b = 1000 was used in the example).
The largeb factor ensures that degree distributions which do
not comply with the target probability of decoding failure are
discarded. The use ofPF in place of the actualPF stems from
the need of having a fast (though, approximate) performance
estimation to be used within the SA recursion (note in fact
that the evaluation of the actualPF may present a prohibitive
complexity). This allows evaluating the energy of a state (i.e.,
degree distribution) very quickly. Although the lower bound in
eq. (4) may not be tight forǫ = 0, where we setPF

∗ = 10−2,
the bound indicates at which error rate the error floor of the
LT code will emerge (the bound it is very tight already for
ǫ ≈ 10−2).

We first performed an optimization in which the degree
distribution is constrained to a truncated RSD distribution. Let
Ω(R) be a RSD distribution. We define the truncated RSD
distribution,Ω(1), as

Ω
(1)
i =











Ω
(R)
i , i < dmax
∑k

j=dmax
Ω

(R)
j , i = dmax

0, i > dmax.

(6)

Hence, the objective of this first optimization was finding
the RSD parametersc and δ which minimize the number
of inactivations. In second stage we perform an optimization
without any constraint on the shape of the degree distribution.
We refer to the distribution obtained by this optimization
method asΩ(2). Fig. 6 shows the number of inactivations
needed for decoding as a function ofǫ for Ω(2) andΩ(1), which
has parametersc = 0.05642 andδ = 0.0317. If we look first
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Fig. 6. Average number of inactivations needed for decoding, Ninact, for
k = 10000. The solid and dashed lines represent the predicted number of
inactivations under random inactivation forΩ(1) andΩ(2), respectively. The
markers denote the average number of inactivations under random inactivation
and maximum active degree inactivation obtained through simulations.

at the results for random inactivation we can observe how the
predicted number of inactivations is quite close to the actual
number of inactivations obtained trough simulations. Moreover
it correctly predicts the fact thatΩ(2) requires less inactivations
than Ω(1). It is however remarkable that the truncated RSD
distribution has a very good performance in terms of number
of inactivations, despite the fact that the RSD was designed
for BP decoding and not inactivation decoding. The simulation
results for maximum active degree inactivation show that, as
expected, maximum active degree inactivation requires less
inactivations than random inactivation, though the difference
is very limited. Furthermore,Ω(2) needs less inactivations than
Ω(1) also under maximum active degree inactivation. For sake
of completeness, the the probability of decoding failure for
Ω(1) andΩ(2) is provided in Fig. 7.

V. CONCLUSIONS

We proposed a simple method to estimate the expected
decoding complexity of LT code under inactivation decoding.
The proposed method estimates the number of inactivations
which have to be performed to decode an LT code, showing
to provide accurate predictions for a variety of examples.
Moreover, the model introduced in this paper has been in-
corporated into a numerical design procedure which allows
defining output degree distributions aiming at minimizing
the decoding complexity while complying with some design
constraints (e.g., on the average output degree, the maximum
output degree and/or probability of decoding failure). The
proposed framework can be efficiently adopted to design LT
codes with various performance / complexity trade-offs under
inactivation decoding.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10

−4

10
−3

10
−2

10
−1

10
0

ǫ

P
F

 

 

PF RSD

PF RSD

PF OPT

PF OPT

Fig. 7. PF vs ǫ for Ω(1) and Ω(2). Lines represent the lower bound in
Eq. (4) and markers denote simulation results.
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