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Abstract—In this work, we study the problem of index coding one receiver for each message. For this case we consider
from graph homomorphism perspective. We show that the the framework for studying the index coding problem that
minimum broadcast rate of an index coding problem for different uses ideas from graph homomorphism. More precisely, we

variations of the problem such as non-linear, scalar, and w&or h that th e broadcast rate of ind di
index code, can be upper bounded by the minimum broadcast show thal the minimum broadcast rate of an Index coding

rate of another index coding problem when there exists a Problem (linear or non-linear) can be upper bounded by the

homomorphism from the complement of the side information minimum broadcast rate of another index coding problem if

graph of the first problem to that of the second problem. As a there exists a homomorphism from the (directed) complement

result, we show that several upper bounds on scalar and veato f the sjde information graph of the first problem to that of

index code problem are special cases of one of our main theaons. th d bl c " how that the ch fi
For the linear scalar index coding problem, it has been shown e secoh problem. _onsequen Yy, we show that the C_ romatl

in [A] that the binary linear index of a graph is equal to a and fractional chromatic number upper bound are speciabcas

graph theoretical parameter called minrank of the graph. For of our results (e.g., seel[1].1[7]).

undirected graphs, in [2] it is shown that minrank(G) = k

if and only if there exists a homomorphism from G 10 @  pEor the case of linear scalar, we also prove the opposite

predefined graph Gi. Combining these two results, it follows directi I h that f itive int
that for undirected graphs, all the digraphs with linear ind ex of irection, namely, we show that for every positive integer

at most k coincide with the graphs G for which there exists a and prime powel, there exits a digraptif; such that the
homomorphism from G to Gi. In this paper, we give a direct g-arry linear index ofH is at mostk and the complement
proof to this result that works for digraphs as well. of any digraph whose-arry linear index is also at most is
We show how to use this classmcatlon result to generate lowe homomorphic toH_,‘j. The set of graph:H,Z are analogous to
bounds on scalar and vectqr index. In par’nculay, we providea the * h familve.” defined in 21 f tudvi t
lower bound for the scalar index of a digraph in terms of the € “graph familyGry, . efined in [2] for studying a parameter
chromatic number of its complement. of the graph calledninrank In contrast to those graph#}/
Using our framework, we show that by changing the field size, are defined for arbitrary finite fields as opposed to the binary
linear index of a digraph can be at most increased by a factor field and more importantly, they can be utilised to study the
that is independent from the number of the nodes. linear index code even if the graphs of interest are directed
Moreover, our proof does not use the result lof [1] about

the equivalence between the minrank and the linear index of
Theindex codingproblem, first introduced by Birk and Kol graphs.

in the context of satellite communicationl [3], has received

significant attention during past years (see for example [1] Using the reduction of the scalar index coding problem
[4]-[13]). This problem has many applications such as kel 1o the homomorphism problem and the notion of increasing
communication, multimedia distribution over wireless -nefynctions on the set of digraphs, we provide a family of
works, and distributed caching. Despite its simple desionp |ower bounds on the binary index of digraphs. As a particular
the index coding problem has a rich structure and it hakample of such lower bounds, we extend the the previously

intriguing connections to some of the information theorknown boundlog, (x(G)) < lind,(G) [15] from ¢ = 2 to
problems. It has been recently shown that the feasibility gfpjtraryq. ! B

any network coding problem can be reduced to an equivalent
feasibility problem in the index coding problem (and vice As an application of our work, we show a connection

versa) [14]. Also an interesting connection between ind%tweeriindp(-) andlind, (-) whenp andgq are different prime
coding problem and interference alignment technique hes bgowers.

appeared in[[11].

In this work, we focus on the index coding problems The remainder of this paper is organised as followsillh
that can be represented by a side information graph (defingd introduce notation, some preliminary concepts abouyitgra
in {), i.e., user demands are distinct and there is exacymomorphism and give the problem statement. The main

_ o _ results of the paper and their proofs are presentefilifand
The work described in this paper was partially supported bgrant

from University Grants Committee of the Hong Kong Speciahfdistrative gm In gm some appllca'uons of qur ‘mam results are stated.
Region, China (Project No. AoE/E-02/08). The omitted proofs can be found in_[16].
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II. NOTATION AND PROBLEM STATEMENT
A. Notation and Preliminaries

For convenience, we usen : n| to denote for the set of
natural numbergm, ..., n}. For any setd, we useP*(A) to
denote for all of the non-empty subsets 4f Let x4, ..., z,
be a set of variables. Then for any subsktC [1 : n] we
definez 4 2 (z; : i € A).

A directed graph (digraphyz is represented by7(V, F)
whereV is the set of vertices an&@ C (V x V) is the set
of edges. Forw € V(G) we denote byN/; (v) as the set of
outgoing neighbours of, i.e., N&(v) = {u € V : (v,u) €
E(G)}. For a digraphG we useG to denote for itdirectional
complementi.e., (u,v) € E(G) iff (u,v) ¢ E(G).

Definition 1 (Homomorphism, see [17])Let G and H be
any two digraphs. Ahomomorphismfrom G to H, written
as¢ : G — H is a mappings : V(G) — V(H) such that
(¢p(u), p(v)) € E(H) whenever(u,v) € E(G). If there exists
a homomorphism off to H we writeG — H, and if there is
no such homomorphism we shall write—+~ H. In the former
case we say thaf’ is homomorphic toH.

Definition 2. On the set of all loop-less digraplis we define
the partial pre order ‘" as follows. For every pair of7, H €
G, G < H if and only if there exists a homomorphism:
G — H. Itis straightforward to see that<” is reflexive and
transitive. Moreover, if7 < H and H < G, then the digraphs
G and H are homomorphically equivalent (.67 — H and
H — G). In this case we write5 ~ H.

Definition 4 (Valid Index Code) A valid index codefor G
over an alphabet¥ is a set(®,{¥;},) consisting of: (i)
an encoding functiord : X™ — Y’ which mapsm source
messages to a transmitted sequence of ledgti symbols
from Y; (ii) a set of m decoding functionsl; such that for
eachi € [1: m] we havel,;(®(z1,...,2m),T4;) = 2.

Definition 5. Let G be a digraph, andX and ) are the
source and the message alphabet, respectively.

(i) The “broadcast rateof an index code(®, {;}) is defined
asindy (G, ®, {¥;}) £ Tl

(i) The “index of G over X, denoted bynd x (G) is defined
as de(G) = inf@,{\pi} indy (G, P, {\Ill})

(i) If X =Y =T, (the g-element finite field for some prime
powerq), the “scalar linear indexof G, denoted byind,(G)

is defined aslind,(G) £ infg g, indg, (G, ®,{¥;}) in
which the infimum is taken over the coding functions of the

form & = (®4,...,d,) and eachd; is a linear combination
of z;’s with coefficients froni,.
(ivy If x = ]th and Y = TF,, the vector linear

q
in_d>ex for G, denoted by lind;(G) is defined as
lind,: (G) £ inf (g} indp: (G, ®, {¥;}) where the infimum
is taken over all coding function® = (®4,...,®,) such that
®; : Fi — F, are F,-linear functions.
(v) The “minimum broadcast rate of the
coding problem of G is defined as ind(G)
inf)( inf@{\pi} indx(G,‘b,{\Pi}).

index
A

IIl. INDEX CODING VIA GRAPH HOMOMORPHISM

. Notice _that homomorphically _equwalence does not imply In this section, we will explain a method for designing index
isomorphism between graphs (digraphs). For example, all th

bipartite araphs are homomorphically equivalentie and codes from another instance of index coding problem when
P grap P y €dq 2 there exists a homomorphism from the complement of the side

therefore are homomorphically equivalent to each other erjl%ormation graph of the first problem to that of the second

o ! |
they are not necessarily isomorphic. one. As an application to this result, we will showgi] that

Definition 3. Let D C G be an arbitrary set of digraphs. A some of the previously known results about index code design
mappingh : D — R is calledincreasingover D if for every are special types of our general method.

G, H €D such thatG < H thenh(G) < h(H). Theorem 1. Consider two instances of the index coding
B. Problem Statement problems over the digraphs and H with the source alphabet

Consider the communication problem where a transmittdf. If G < H then
aims to communicate a set of messages,...,z,, € X to
m receivers by broadcastinfgsymbolsyy,...,y, € ), over a
public noiseless channel. We assume that for gagHl : m],
the jth receiver has access to the side informatigy, i.e.,
a subsetd; C [1 : m]\ {j} of messages. Each receivgr
intends to recover; from (y*,z.4,). First we explain the proof idea of Theordrh 1 which is as

This problem, which is a basic setting of tiedex cod- follows. If G < H, by definition there exists a homomorphism
ing problem, can be represented bydiected side infor- ¢ : G — H. Notice that the functiow maps the vertices af
mation graphG(V, E) where V represents the set of re-to the vertices off. Thus we can also consideras a function
ceivers/messages and there is an edge from ngde v;, fromV(G) to V(H). For every vertexw € V(H ), we denote
i.e., (v;,v;) € E, if the ith receiver has packet; as side by ¢~'(w) to be the set of all the verticese V(G) such that
information. An index coding problem, as defined above, i(v) = w; (see Figur€ll). This way, we partition the vertices
completely characterized by the side information séts of G into the classes of the form—!(w) wherew € V(H).

In the following definitions, we formally define validity of Next, we take an optimal index code féF over the source
an index codes and some other basic concepts in index codifighabetY that achieves the ratedy (H). Then, we show
(see alsol[4],[17], and_[12]). that we can treat every part—!(w) as a single node and

lnd)((G) S indx(H).

In other words, the functiorindy(-) is a non-decreasing
function on the pre order sé@, <).



¢ code for H over the source alphabet (and the message

G q alphabet))) where z; is the variable associated to the node
-~ W .
a ¢! I Validity of the index code implies that for every nodg €
H, there exists a decoding functioh : )* x KING (i)l
H H _
Fig. 1. Homomorphism maps the vertices aff to the vertices of. The X such that\l}i ((I) (xl’ te ’xn)7 xN§ (wi)) = w; for every

pre-images ' of the homomorphism can be considered as a mapping froghoice of (z1,...,z,) € X™.
V(H) to V(G), i.e, for everyw € V(H), ¢~ (w) is the set of all the  Finally, we construct a valid index code f6fover the same
verticesv in V(@) such thatp(v) = w. ' . .
alphabet sets and the same transmission lefidgttus it results
in an index code folG with the same broadcast rate. For an
¢~ (we) wy explicit construction seé [16]. [ |
As a result of Theorer 1 we have the following corollary.

¢! Corollary 1. Consider two instances of the index coding
D — problems over the digraph& and H. If G < H then we
have
wr 1) for general multi-letter indexgdemd(G) < ind(H),
¢~ (wr) 2) for linear vector index codedind(G) < lind(H),

3) for linear scalar index codedind,(G) < lind,(H).

Fig. 2. Demonstration of Lemnid 1. Part (j) states that ingideh bundle V. AN EQUIVALENT FORMULATION FOR LINEAR SCALAR

¢~ (w;) we have a clique and part (i) states thatuf, is an outgoing INDEX CODING PROBLEM
neighbour ofw; in H then all of the vertices i~ (w1) of G are connected q . . .
to all of the vertices ing—1(w2) of G (note that all of the edges from Let G be the set of all the finite digraphs for which

¢~ ! (w1) to ¢~ ' (ws2) are not shown in the figure). lind,(G) < k. It is obvious to see thag/ is an infinite family
of digraphs. However, in this section, we will show tiggthas

) . a maximal member with respect to the pre ordgf.“We give
translate the index code df to one forG. This shows the gy explicit construction for a maximal element @ which

statement of the theorem, i.éndx (G) < indx(H). we call it ;9.
Before we formally define the translation and verify its | fact V\lfe show that'G € G¢, G < H?. On the other
validity, we will state two technical lemmas that will bepgng by Corollan{ll, Part Skwe knowkthat(ﬂ < HY

required later in the proof of Theoreh 1. thenlind, (G) < lind,(H{) < k. Thus, we can conclude the
Lemma 1. (i) For everyw € V(H), ¢~*(w) is a clique in following theorem.
G Theorem 2. For every positive integek and a prime power

(i) If ws € Nt (wy), v € 6= (w1), andwy € ¢ (ws) then

, there exists a graptH{ with 2°=1 k-1 nodes such that
vy € NZ (v1). (Also see Figurél2). , graptt, g1 9

for every graphG, lind,(G) < k if and only if G < H} or

Definition 6. For every finite setY and positive integermn, equivalently, there exists a homomorphism frGto .

a functionf : XY™ — X is called coordinate-wise one-to-one For the sake of simplicity, we prove the theorem joe 2.
if by setting the values for every — 1 variables off, itis a For general, a construction forZ] as well as a proof of the
one-to-one function of the remaining variable, i.e., foegv above theorem is presented in [16].

j € [1: m] and any choice of,...,a;—1,aj41,...,am € We start by presenting a construction f&i. Consider a
X, the functionf (a1, ..., a;—1,2,aj41,...,am) : X = X is k x (2¥ — 1) binary matrix B whose rows are labelled by
one-to-one. numbersl, 2, ...,k and whose columns are labelled by non-

empty subsets ofl : k]. For every@a # J C [1 : k], the
J-th column of B is the indicator vector of the set, i.e., the
(i, J)-th entry of B is 1 iff i € J.

Proof of Theorem[]l: Suppose thatV(H) = Let A be a(2* — 1) x (2* — 1) binary matrix whose rows
{wi,...,w,} wheren = |V(H)|. Let ¢ : G ~ H and columns are indexed by non-empty subsetd of:] and
be a homomorphism. As stated in Lemmh 1, the vertélxe I-th row of A is equal to the binary summation (xor) of
set of G can be partitioned inton cliques of the form the rows of B corresponding to the elements bfNotice that

Lemma 2. For every finite sett’ and m € N, there exists a
coordinate-wise one-to-one function.

¢~ (w;). So, we can list the vertices off as V(G) = A,y = 1iff [INJ|is an odd number. Figufg 3 shows an
{V11y s Vlkys- s Unty--o,Unk, } SUch thato=!(w;) = example ofA for k = 2.

{vit1,-- ., vik, } andk; = ¢~ (w;)|. Note thatn = |V (G)| = Now, define the digrapli/; as follows. The set of vertices
S ki of H? is the set of pairdI,J) wherew # I,J C [1 : k]

Let ¢ = indx(H) and @ (zy,...,2,) : X" — Y (in and A ;) = 1. We denote the vertex dff? associated with
addition to a set of decode{®’}) be an optimal valid index (I,.J) by v(r,5)- Equivalently, the vertices ofi? are V(1,)



{1} 1 0 1
A= {2} 0 1 1
{1,2} 1 1 0 My M

Fig. 5. The relation between seld;’s and set”;s.

form z;, i € C; appear, or none of them appearjin Hence,
each messagg can be written as a summationof. ;) where
T(e,) = Yiee, ti- Thereforey; =3 ;0 xic,-
Next, we will define another partition ¢t : m| as follows.
By definition of linear index coding, it is guaranteed that fo
every vertexv;, the side information of; and some subset of
messages, transmitted by the source, will be enough;fto
recoverz;. The set of indices of every such subset of messages
is called asufficient familyfor that particular receiver. Notice
that for a particular receiver;, minimal sufficient familied
are not necessarily unique. For example, it is possible dhat
receiver can reconstruct its bit using the first two messages
and its side information, or from the third message and its
side information. However, there exists at least one mihima
sufficient family of the messages. Let: [1 : m| — P*([1 :
be a function that to every € [1 : m], v(i) assigns a
inimal sufficient family forv;. It is also easy to observe that
if the set{y;|; € J} is a minimal sufficient family of the
messages for; thenwv; is able to reconstruct; using its side
information andd_ ; ;.
For every¢ # I C [1 : k], defineD; to bey~1(I). Since
is a function,D;’s for different I's will partition the set
: m]. Notice that by the definition ofy, if ¢ € D; then
{y; : j € I} is a minimal sufficient family forv;. Therefore,
Lemma 3. If lindyz(G) < k thenG < HZ, i.e., there exists a vi can retrievez; using its side information and_;_; y;.
homomorphismp from G to HZ. That is to say that in the summatioEjel y;, the variable
x; appears and also, if another variablg appears, them;
Proof: The proof of this lemma is by constructing knowsz; as its side information, i.e(v;,vi') € E(G).
Suppose thalind; () < k. Therefore, there exists an index At this point, we are able to define a homomorphism fiGm
coding scheme that transmitsbinary messages. to HZ. In fact, we define a functiop : V(G) — V(H2) and
Suppose that thej-th transmitted message i§; = show that if(v;, vir) ¢ E(G) then (¢(v;), d(vir)) ¢ E(H2).
> icn, vi for the setshy, ..., My C [1:m] wherez; isthe  sinceC;’s and alsoD;’s both partition the seft : m], for
variable associated to the nodge V(G). For every subset everyv; € V(G), there exists a unique pair ¢f,J), & #
@ #J C[L:k] defineCy = Mo, M; \ Uyg; M- I,J C[1:k]suchthat € Dy, i € Cy. Defined(v:) = v(r ).
In other words('; consists of all the indices that belong tan order to complete the proof, we need to show thas a
all of Mj’s with j € J but no other);. From elementary set well-defined function, i.e.¢(v) is a vertex of H? and also
theory, it is easy to observe thét;’'s are pairwise disjoint; (vi,v) € E(G) = (¢(v;), d(vir)) ¢ E(H,f).
(see Figuré15). Moreover, note that the union(df’s is the
whole set of[1 : m]. This is due to the fact that all/; C
[1 : m] and thereforeC;'s are also subset dfl : m] and if
some element il : m] is missing in all theC)’s, it is also
missing in all theM;’s. That s, there exists avertexc V(G) Lemma 5. If v;, vy € V(G) and (v;,vy) ¢ E(G) then
such that its corresponding variable does not appear iyany (¢(v;), ¢(vir)) ¢ E(HE).
Equivalently, in none of the transmitted messages the biaria
x; contributes. But this is a contradiction since the ventex
cannot recover its demand only from its side information. S
Cjy's are 28 — 1 disjoint subsets ofl : m] which cover the
whole set[1 : m]. In fact, eachC'; consists of some indices IHere by a minimal sufficient family we refer to a sufficient iymwhere
such that for every message, either all the variables of the none of its subsets is a sufficient family.

Fig. 4. The digrath§ consists of6 vertices.

where@ # I,J C [1 : k] and|I N J| is an odd number.
The edges ofH? are of the form(v(z, 7y, v(rr,,y) such that
A7,y = 1. A simple way to visualize the digrapH? is the
following. The vertex set off? is the 1's of the matrix A
and there exists an edge from one vertex to another one if
only if the entry that is in the same row as the first vertex a
in the same column of the second vertex is also equal to
particular, all thel’s that are in the same row (column) form
a clique. An example of{? for k = 2 is depicted in Figurgl4.
In this example(v({1},{1}), V({2}.11,2})) € E(H2) because of
the entry({1}, {1, 2}).

The next lemma explains the role of the family of digrap
Hp’s in studying the scalar index coding problem.

Lemma 4. The mappingy is a well-defined function from
V(G) to V(H}), i.e., ifv; € V(G) thenA(; 5y = 1 in which
I, J are such that € D; and: € Cj.

[
So far, we have proved that lindy(G) < k thenG <
2. Conversely, ifG < H? then by CorollanfIl we have



lind2(G) < lind2(HE). Therefore, the following lemma will is no natural way to construct some index code for the same
finalize the proof of Theorern 2. graph but over a different fielfi,,. In fact, in [8], it has been
shown that for every pair of finite fields, and[F, of different
characteristics and for evefy< e < 0.5, there exists a graph
G with n vertices such thdind, (G) < n¢,lind,(G) > n'~¢.
. . . C Here we use the results of Theorem 1 and Theorem 2 to
In this section, we will demonstrate several applicatiohs o s . :
. . . show that iflind,(G) is less than a fixed number then by
the theorems stated in the previous sections. . : . S L
changing the field size, the corresponding linear indicas ca
at most differ by a factor that depends only on the field sizes

Lemma 6. For every positive integek, linds(H?) < k.

V. APPLICATION

A. Upper Bounds

Here, we will show that some of the earlier upper boun
are only special cases of Corolldry 1.

Example 1. One of the earliest upper bounds on thel;(G)

is x(G) where x(-) is the chromatic number of a graph
(e.g., seel]4]). Notice that in our framework, this result is

an immediate consequence of Corollaty 1, Part 3. That is, ﬁgl and then by Theorem 1ind,, (G) < lind,, (H{")

x(G) = r thenG — K, where K, is a complete graph with

r vertices. Thuslind;(G) < lindz(K,) =7 = x(G).

Example 2. In [7], it is shown thatlind(G) < x(G) where
x¢(+) is thefractional chromatic numbenf a graph. See [16]
for the proof using our framework.

(1]

[2]
The crucial observation is that the parametg(€?) and [l

Xf(G) can be defined using existence of homomorphisms
from G to the family of complete graphs and Kneser graphsi]
respectively. (See [16] for the definition of Kneser graphs)
B. Lower Bounds

By using Theoren]2, the following result can be proved.

(5]

Lemma 7. Suppose that is an increasing function oG, <) (6]
andr is an upper bound om(H}). For every digraphG, if

h(G) > r thenlindy(G) > k.

Proof: If lindy(G) < k then by Theorel 27 < Hy, and  [g]
thereforeh(G) < h(Hy) < r which is a contradiction. =
Lemmal[T is a powerful tool to find lower bounds on the[g]
index coding problem. Actually for every increasing fuocti [10]
h on (G, <) we have one lower bound on the index codin 1
problem. In the next theorem, we provide a lower bound on

(7]

lind, (@) in terms of the chromatic number dl. [12]
Theorem 3. For every digraphG, lind,(G) > log,(x(G)).  [13]
Proof: The function h(G) = x(G) is an increasing
function on (G, <). Suppose thatind,(G) = k. Therefore, 14

xX(G) < x(H]) < ¢* = ¢4, The first inequality is
implied by the previous Lemma. For a proof of the secoridd]
inequality seel[16]. ]
C. Index Codes and Change of Field Size [16]
Existence of a certain index code for a given graph Ovﬁrﬂ
a fixed finite field is equivalent to the existence of linear
combinations of the source messages over the ground field
with certain Algebraic / Combinatorial constraints. If the
ground field is changed, there is no natural way of updating
the index code over the new field. In other words, if for a fixed
graphG, an index code over a finite fieldl,, is given, there

daﬁ-'d is independent from the size of the graph. More precisely
the following result holds:

Theorem 4. Let G be a graph andy,, ¢ are two different
prime powers. Therjnd,, (G) < lind,, (Hl‘“dq @)
1

Proof: Suppose thalind,, (G) = k. By Theorem 2G <
. nm

REFERENCES

Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Indexding with side
information,” IEEE Trans. Inf. Theoryvol. 57, no. 3, pp. 1479-1494,
2011.

E. Chlamtac and I. Haviv, “Linear index coding via senfidige pro-
gramming,” CoRR vol. abs/1107.1958, 2011.

Y. Birk and T. Kol, “Informed-source coding-on-demanisdod) over
broadcast channels,” im Proc. 17th Ann. IEEE Int. Conf. Comput.
Commun. (INFOCOM)1998, pp. 1257—1264.

N. Alon, E. Lubetzky, U. Stav, A. Weinstein, and A. Hadgid “Broad-
casting with side information,” ifProceedings of the 2008 49th Annual
IEEE Symposium on Foundations of Computer Sciesee FOCS '08,
2008, pp. 823-832.

E. Lubetzky and U. Stav, “Nonlinear index coding outpeniing the
linear optimum,”|IEEE Trans. Inf. Theoryvol. 55, no. 8, pp. 3544—
3551, 2009.

S. El Rouayheb, A. Sprintson, and C. Georghiades, “Orirttiex coding
problem and its relation to network coding and matroid thEdEEE
Trans. Inf. Theoryvol. 56, no. 7, pp. 3187-3195, 2010.

A. Blasiak, R. D. Kleinberg, and E. Lubetzky, “Index cadivia linear
programming,”CoRR vol. abs/1004.1379, 2010.

Y. Berliner and M. Langberg, “Index coding with outerpkx side
information,” in IEEE Int. Symp. Inf. Theory2011, pp. 806-810.

I. Haviv and M. Langberg, “On linear index coding for raod graphs,”
in IEEE Int. Symp. Inf. Theony2012, pp. 2231-2235.

A. Tehrani, A. Dimakis, and M. Neely, “Bipartite indexding,” in IEEE
Int. Symp. Inf. Theory2012, pp. 2246-2250.

H. Maleki, V. R. Cadambe, and S. A. Jafar, “Index codingan
interference alignment perspectivélbRR vol. abs/1205.1483, 2012.
K. Shanmugam, A. G. Dimakis, and M. Langberg, “Localgra&oloring
and index coding,CoRR vol. abs/1301.5359, 2013.

F. Arbabjolfaei, B. Bandemer, Y.-H. Kim, E. Sasogluddn Wang, “On
the capacity region for index coding,” ifEEE Int. Symp. Inf. Theory
2013, pp. 962—966.

M. Effros, S. Y. E. Rouayheb, and M. Langberg, “An eqlévace
between network coding and index codinGbRR vol. abs/1211.6660,
2012.

M. Langberg and A. Sprintson, “On the hardness of apipnaking
the network coding capacity,” iHEEE International Symposium on
Information Theory 2008, pp. 315-319.

J. Ebrahimi Boroojeni and M. Jafari Siavoshani, “Onerdcoding and
graph homomorphism,Technical Report2014. [Online]. Available:
http://mahdi.jafaris.net/download/TechReports/Irdeding.pd’

P. Hell and J. NesetrilGraphs and Homomorphismser. Oxford Lecture
Series in Mathematics and Its Applications. OUP Oxford,4200


http://mahdi.jafaris.net/download/TechReports/IndexCoding.pdf

	I Introduction
	II Notation and Problem Statement
	II-A Notation and Preliminaries
	II-B Problem Statement

	III Index Coding via Graph Homomorphism
	IV An Equivalent Formulation for Linear Scalar Index Coding Problem
	V Application
	V-A Upper Bounds
	V-B Lower Bounds
	V-C Index Codes and Change of Field Size

	References

