
ar
X

iv
:1

40
8.

70
19

v1
  [

cs
.IT

]  
29

 A
ug

 2
01

4

On Index Coding and Graph Homomorphism
Javad B. Ebrahimi∗, Mahdi Jafari Siavoshani†

∗Institute of Network Coding, Chinese University of Hong Kong, Hong Kong
†Computer Engineering Department, Sharif University of Technology, Tehran, Iran

Email: javad@inc.cuhk.edu.hk, mjafari@sharif.edu

Abstract—In this work, we study the problem of index coding
from graph homomorphism perspective. We show that the
minimum broadcast rate of an index coding problem for different
variations of the problem such as non-linear, scalar, and vector
index code, can be upper bounded by the minimum broadcast
rate of another index coding problem when there exists a
homomorphism from the complement of the side information
graph of the first problem to that of the second problem. As a
result, we show that several upper bounds on scalar and vector
index code problem are special cases of one of our main theorems.

For the linear scalar index coding problem, it has been shown
in [1] that the binary linear index of a graph is equal to a
graph theoretical parameter called minrank of the graph. For
undirected graphs, in [2] it is shown that minrank(G) = k

if and only if there exists a homomorphism from Ḡ to a
predefined graph Ḡk. Combining these two results, it follows
that for undirected graphs, all the digraphs with linear index of
at most k coincide with the graphs G for which there exists a
homomorphism from Ḡ to Ḡk. In this paper, we give a direct
proof to this result that works for digraphs as well.

We show how to use this classification result to generate lower
bounds on scalar and vector index. In particular, we providea
lower bound for the scalar index of a digraph in terms of the
chromatic number of its complement.

Using our framework, we show that by changing the field size,
linear index of a digraph can be at most increased by a factor
that is independent from the number of the nodes.

I. I NTRODUCTION

The index codingproblem, first introduced by Birk and Kol
in the context of satellite communication [3], has received
significant attention during past years (see for example [1],
[4]–[13]). This problem has many applications such as satellite
communication, multimedia distribution over wireless net-
works, and distributed caching. Despite its simple description,
the index coding problem has a rich structure and it has
intriguing connections to some of the information theory
problems. It has been recently shown that the feasibility of
any network coding problem can be reduced to an equivalent
feasibility problem in the index coding problem (and vice
versa) [14]. Also an interesting connection between index
coding problem and interference alignment technique has been
appeared in [11].

In this work, we focus on the index coding problems
that can be represented by a side information graph (defined
in §II), i.e., user demands are distinct and there is exactly
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one receiver for each message. For this case we consider
the framework for studying the index coding problem that
uses ideas from graph homomorphism. More precisely, we
show that the minimum broadcast rate of an index coding
problem (linear or non-linear) can be upper bounded by the
minimum broadcast rate of another index coding problem if
there exists a homomorphism from the (directed) complement
of the side information graph of the first problem to that of
the second problem. Consequently, we show that the chromatic
and fractional chromatic number upper bound are special cases
of our results (e.g., see [1], [7]).

For the case of linear scalar, we also prove the opposite
direction, namely, we show that for every positive integerk
and prime powerq, there exits a digraphHq

k such that the
q-arry linear index ofHq

k is at mostk and the complement
of any digraph whoseq-arry linear index is also at mostk is
homomorphic toHq

k . The set of graphsHq
k are analogous to

the “graph familyGk” defined in [2] for studying a parameter
of the graph calledminrank. In contrast to those graphs,Hq

k

are defined for arbitrary finite fields as opposed to the binary
field and more importantly, they can be utilised to study the
linear index code even if the graphs of interest are directed.
Moreover, our proof does not use the result of [1] about
the equivalence between the minrank and the linear index of
graphs.

Using the reduction of the scalar index coding problem
to the homomorphism problem and the notion of increasing
functions on the set of digraphs, we provide a family of
lower bounds on the binary index of digraphs. As a particular
example of such lower bounds, we extend the the previously
known boundlogq(χ(G)) ≤ lindq(G) [15] from q = 2 to
arbitraryq.

As an application of our work, we show a connection
betweenlindp(·) andlindq(·) whenp andq are different prime
powers.

The remainder of this paper is organised as follows. In§II
we introduce notation, some preliminary concepts about graph
homomorphism and give the problem statement. The main
results of the paper and their proofs are presented in§III and
§IV. In §V, some applications of our main results are stated.
The omitted proofs can be found in [16].
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II. N OTATION AND PROBLEM STATEMENT

A. Notation and Preliminaries

For convenience, we use[m : n] to denote for the set of
natural numbers{m, . . . , n}. For any setA, we useP⋆(A) to
denote for all of the non-empty subsets ofA. Let x1, . . . , xn

be a set of variables. Then for any subsetA ⊆ [1 : n] we
definexA , (xi : i ∈ A).

A directed graph (digraph)G is represented byG(V,E)
whereV is the set of vertices andE ⊆ (V × V ) is the set
of edges. Forv ∈ V (G) we denote byN+

G (v) as the set of
outgoing neighbours ofv, i.e., N+

G (v) = {u ∈ V : (v, u) ∈
E(G)}. For a digraphG we useG to denote for itsdirectional
complement, i.e., (u, v) ∈ E(G) iff (u, v) /∈ E(G).

Definition 1 (Homomorphism, see [17]). Let G and H be
any two digraphs. Ahomomorphismfrom G to H , written
as φ : G 7→ H is a mappingφ : V (G) 7→ V (H) such that
(φ(u), φ(v)) ∈ E(H) whenever(u, v) ∈ E(G). If there exists
a homomorphism ofG to H we writeG → H , and if there is
no such homomorphism we shall writeG 9 H . In the former
case we say thatG is homomorphic toH .

Definition 2. On the set of all loop-less digraphsG, we define
the partial pre order “4” as follows. For every pair ofG,H ∈
G, G 4 H if and only if there exists a homomorphismφ :
G 7→ H . It is straightforward to see that “4” is reflexive and
transitive. Moreover, ifG 4 H andH 4 G, then the digraphs
G andH are homomorphically equivalent (i.e.,G → H and
H → G). In this case we writeG ∼ H .

Notice that homomorphically equivalence does not imply
isomorphism between graphs (digraphs). For example, all the
bipartite graphs are homomorphically equivalent toK2 and
therefore are homomorphically equivalent to each other but
they are not necessarily isomorphic.

Definition 3. Let D ⊆ G be an arbitrary set of digraphs. A
mappingh : D 7→ R is called increasingoverD if for every
G,H ∈ D such thatG 4 H thenh(G) ≤ h(H).

B. Problem Statement

Consider the communication problem where a transmitter
aims to communicate a set ofm messagesx1, . . . , xm ∈ X to
m receivers by broadcastingℓ symbolsy1, . . . , yℓ ∈ Y, over a
public noiseless channel. We assume that for eachj ∈ [1 : m],
the jth receiver has access to the side informationxAj

, i.e.,
a subsetAj ⊆ [1 : m] \ {j} of messages. Each receiverj
intends to recoverxj from (yℓ, xAj

).
This problem, which is a basic setting of theindex cod-

ing problem, can be represented by adirected side infor-
mation graphG(V,E) where V represents the set of re-
ceivers/messages and there is an edge from nodevi to vj ,
i.e., (vi, vj) ∈ E, if the ith receiver has packetxj as side
information. An index coding problem, as defined above, is
completely characterized by the side information setsAj .

In the following definitions, we formally define validity of
an index codes and some other basic concepts in index coding
(see also [4], [7], and [12]).

Definition 4 (Valid Index Code). A valid index codefor G
over an alphabetX is a set(Φ, {Ψi}

m
i=1) consisting of: (i)

an encoding functionΦ : Xm 7→ Yℓ which mapsm source
messages to a transmitted sequence of lengthℓ of symbols
from Y; (ii) a set of m decoding functionsΨi such that for
eachi ∈ [1 : m] we haveΨi(Φ(x1, . . . , xm), xAi

) = xi.

Definition 5. Let G be a digraph, andX and Y are the
source and the message alphabet, respectively.
(i) The “broadcast rate” of an index code(Φ, {Ψi}) is defined
as indX (G,Φ, {Ψi}) ,

ℓ log |Y|
log |X | .

(ii) The “ index” of G overX , denoted byindX (G) is defined
as indX (G) = infΦ,{Ψi} indX (G,Φ, {Ψi}).
(iii) If X = Y = Fq (the q-element finite field for some prime
powerq), the “scalar linear index” of G, denoted bylindq(G)
is defined aslindq(G) , infΦ,{Ψi} indFq

(G,Φ, {Ψi}) in
which the infimum is taken over the coding functions of the
form Φ = (Φ1, . . . ,Φℓ) and eachΦi is a linear combination
of xj ’s with coefficients fromFq.
(iv) If X = F

t
q and Y = Fq, the vector linear

index for G, denoted by
−−→
lindqt(G) is defined as

−−→
lindqt(G) , infΦ,{Ψi} indFt

q
(G,Φ, {Ψi}) where the infimum

is taken over all coding functionsΦ = (Φ1, . . . ,Φℓ) such that
Φi : F

tm
q 7→ Fq are Fq-linear functions.

(v) The “minimum broadcast rate” of the index
coding problem of G is defined as ind(G) ,
infX infΦ,{Ψi} indX (G,Φ, {Ψi}).

III. I NDEX CODING VIA GRAPH HOMOMORPHISM

In this section, we will explain a method for designing index
codes from another instance of index coding problem when
there exists a homomorphism from the complement of the side
information graph of the first problem to that of the second
one. As an application to this result, we will show in§V that
some of the previously known results about index code design
are special types of our general method.

Theorem 1. Consider two instances of the index coding
problems over the digraphsG andH with the source alphabet
X . If G 4 H then

indX (G) ≤ indX (H).

In other words, the functionindX (·) is a non-decreasing
function on the pre order set(G,4).

First we explain the proof idea of Theorem 1 which is as
follows. If G 4 H , by definition there exists a homomorphism
φ : G 7→ H . Notice that the functionφ maps the vertices ofG
to the vertices ofH . Thus we can also consider,φ as a function
from V (G) to V (H). For every vertexw ∈ V (H), we denote
by φ−1(w) to be the set of all the verticesv ∈ V (G) such that
φ(v) = w; (see Figure 1). This way, we partition the vertices
of G into the classes of the formφ−1(w) wherew ∈ V (H).

Next, we take an optimal index code forH over the source
alphabetX that achieves the rateindX (H). Then, we show
that we can treat every partφ−1(w) as a single node and



G H

G H

φ

φ−1

Fig. 1. Homomorphismφ maps the vertices ofG to the vertices ofH. The
pre-imageφ−1 of the homomorphism can be considered as a mapping from
V (H) to V (G), i.e., for everyw ∈ V (H), φ−1(w) is the set of all the
verticesv in V (G) such thatφ(v) = w.

w1

w2

⇐=
φ−1

φ−1(w1)

φ−1(w2)

Fig. 2. Demonstration of Lemma 1. Part (i) states that insideeach bundle
φ−1(wi) we have a clique and part (ii) states that ifw2 is an outgoing
neighbour ofw1 in H then all of the vertices inφ−1(w1) of G are connected
to all of the vertices inφ−1(w2) of G (note that all of the edges from
φ−1(w1) to φ−1(w2) are not shown in the figure).

translate the index code ofH to one forG. This shows the
statement of the theorem, i.e.,indX (G) ≤ indX (H).

Before we formally define the translation and verify its
validity, we will state two technical lemmas that will be
required later in the proof of Theorem 1.

Lemma 1. (i) For everyw ∈ V (H), φ−1(w) is a clique in
G.
(ii) If w2 ∈ N+

H(w1), v1 ∈ φ−1(w1), and v2 ∈ φ−1(w2) then
v2 ∈ N+

G (v1). (Also see Figure 2).

Definition 6. For every finite setX and positive integerm,
a functionf : Xm 7→ X is called coordinate-wise one-to-one
if by setting the values for everym− 1 variables off , it is a
one-to-one function of the remaining variable, i.e., for every
j ∈ [1 : m] and any choice ofa1, . . . , aj−1, aj+1, . . . , am ∈
X , the functionf(a1, . . . , aj−1, x, aj+1, . . . , am) : X 7→ X is
one-to-one.

Lemma 2. For every finite setX and m ∈ N, there exists a
coordinate-wise one-to-one function.

Proof of Theorem 1: Suppose that V (H) =
{w1, . . . , wn} where n = |V (H)|. Let φ : G 7→ H
be a homomorphism. As stated in Lemma 1, the vertex
set of G can be partitioned inton cliques of the form
φ−1(wi). So, we can list the vertices ofG as V (G) =
{v1,1, . . . , v1,k1

, . . . , vn,1, . . . , vn,kn
} such thatφ−1(wi) =

{vi,1, . . . , vi,ki
} andki = |φ−1(wi)|. Note thatm = |V (G)| =

∑n
i=1 ki.
Let ℓ = indX (H) and ΦH(x1, . . . , xn) : Xn 7→ Yℓ (in

addition to a set of decoders{ΨH
i }) be an optimal valid index

code for H over the source alphabetX (and the message
alphabetY) wherexi is the variable associated to the node
wi.

Validity of the index code implies that for every nodewi ∈
H , there exists a decoding functionΨH

i : Yℓ ×X |N+

H
(wi)| 7→

X such thatΨH
i (ΦH(x1, . . . , xn), xN+

H
(wi)

) = xi for every
choice of(x1, . . . , xn) ∈ Xn.

Finally, we construct a valid index code forG over the same
alphabet sets and the same transmission lengthℓ; thus it results
in an index code forG with the same broadcast rate. For an
explicit construction see [16].

As a result of Theorem 1 we have the following corollary.

Corollary 1. Consider two instances of the index coding
problems over the digraphsG and H . If G 4 H then we
have

1) for general multi-letter index codes:ind(G) ≤ ind(H),
2) for linear vector index codes:

−−→
lindqt(G) ≤

−−→
lindqt(H),

3) for linear scalar index codes:lindq(G) ≤ lindq(H).

IV. A N EQUIVALENT FORMULATION FOR L INEAR SCALAR

INDEX CODING PROBLEM

Let Gq
k be the set of all the finite digraphsG for which

lindq(G) ≤ k. It is obvious to see thatGq
k is an infinite family

of digraphs. However, in this section, we will show thatGq
k has

a maximal member with respect to the pre order “4”. We give
an explicit construction for a maximal element ofGq

k which
we call it Hq

k .
In fact, we show that∀G ∈ Gq

k, G 4 Hq
k . On the other

hand, by Corollary 1, Part 3, we know that ifG 4 Hq
k

then lindq(G) ≤ lindq(H
q
k) ≤ k. Thus, we can conclude the

following theorem.

Theorem 2. For every positive integerk and a prime power
q, there exists a graphHq

k with qk−1
q−1 qk−1 nodes such that

for every graphG, lindq(G) ≤ k if and only if G 4 Hq
k or

equivalently, there exists a homomorphism fromG to Hq
k .

For the sake of simplicity, we prove the theorem forq = 2.
For generalq, a construction forHq

k as well as a proof of the
above theorem is presented in [16].

We start by presenting a construction forH2
k . Consider a

k × (2k − 1) binary matrixB whose rows are labelled by
numbers1, 2, . . . , k and whose columns are labelled by non-
empty subsets of[1 : k]. For every∅ 6= J ⊆ [1 : k], the
J-th column ofB is the indicator vector of the setJ , i.e., the
(i, J)-th entry ofB is 1 iff i ∈ J .

Let A be a(2k − 1)× (2k − 1) binary matrix whose rows
and columns are indexed by non-empty subsets of[1 : k] and
the I-th row of A is equal to the binary summation (xor) of
the rows ofB corresponding to the elements ofI. Notice that
A(I,J) = 1 iff |I ∩ J | is an odd number. Figure 3 shows an
example ofA for k = 2.

Now, define the digraphH2
k as follows. The set of vertices

of H2
k is the set of pairs(I, J) where∅ 6= I, J ⊆ [1 : k]

andA(I,J) = 1. We denote the vertex ofH2
k associated with

(I, J) by v(I,J). Equivalently, the vertices ofH2
k are v(I,J)



A =





{1} {2} {1,2}

{1} 1 0 1
{2} 0 1 1
{1,2} 1 1 0





Fig. 3. An example of the matrixA3×3 for k = 2.

a1({2}, {1, 2}) a2 ({1}, {1, 2})

b1

({2}, {2})

b2({1, 2}, {2})

c1

({1}, {1})

c2 ({1, 2}, {1})

Fig. 4. The digraphH2

2
consists of6 vertices.

where∅ 6= I, J ⊆ [1 : k] and |I ∩ J | is an odd number.
The edges ofH2

k are of the form(v(I,J), v(I′,J′)) such that
A(I,J′) = 1. A simple way to visualize the digraphH2

k is the
following. The vertex set ofH2

k is the 1’s of the matrixA
and there exists an edge from one vertex to another one if and
only if the entry that is in the same row as the first vertex and
in the same column of the second vertex is also equal to1. In
particular, all the1’s that are in the same row (column) form
a clique. An example ofH2

k for k = 2 is depicted in Figure 4.
In this example,(v({1},{1}), v({2},{1,2})) ∈ E(H2) because of
the entry({1}, {1, 2}).

The next lemma explains the role of the family of digraph
H2

k ’s in studying the scalar index coding problem.

Lemma 3. If lind2(G) ≤ k thenG 4 H2
k , i.e., there exists a

homomorphismφ from G to H2
k .

Proof: The proof of this lemma is by constructingφ.
Suppose thatlind2(G) ≤ k. Therefore, there exists an index
coding scheme that transmitsk binary messages.

Suppose that thej-th transmitted message isyj =
∑

i∈Mj
xi for the setsM1, . . . ,Mk ⊆ [1 : m] wherexi is the

variable associated to the nodevi ∈ V (G). For every subset
∅ 6= J ⊆ [1 : k] defineCJ ,

⋂

j∈J Mj \
⋃

l/∈J Ml.
In other words,CJ consists of all the indices that belong to

all of Mj ’s with j ∈ J but no otherMl. From elementary set
theory, it is easy to observe thatCJ ’s are pairwise disjoint;
(see Figure 5). Moreover, note that the union ofCJ ’s is the
whole set of[1 : m]. This is due to the fact that allMi ⊆
[1 : m] and thereforeCJ ’s are also subset of[1 : m] and if
some element in[1 : m] is missing in all theCJ ’s, it is also
missing in all theMi’s. That is, there exists a vertexvi ∈ V (G)
such that its corresponding variable does not appear in anyyj.
Equivalently, in none of the transmitted messages the variable
xi contributes. But this is a contradiction since the vertexvi
cannot recover its demand only from its side information. So,
CJ ’s are 2k − 1 disjoint subsets of[1 : m] which cover the
whole set[1 : m]. In fact, eachCJ consists of some indices
such that for every messageyj , either all the variables of the

C{1} C{2}C{1,2}

M1 M2

Fig. 5. The relation between setsMj ’s and setsC′
J
s.

form xi, i ∈ CJ appear, or none of them appear inyj . Hence,
each messageyj can be written as a summation ofx[CJ ] where
x[CJ ] ,

∑

i∈CJ
xi. Therefore,yj =

∑

J∋j x[CJ ].
Next, we will define another partition of[1 : m] as follows.

By definition of linear index coding, it is guaranteed that for
every vertexvi, the side information ofvi and some subset of
messages, transmitted by the source, will be enough forvi to
recoverxi. The set of indices of every such subset of messages
is called asufficient familyfor that particular receiver. Notice
that for a particular receivervi, minimal sufficient families1

are not necessarily unique. For example, it is possible thata
receiver can reconstruct its bit using the first two messages
and its side information, or from the third message and its
side information. However, there exists at least one minimal
sufficient family of the messages. Letγ : [1 : m] 7→ P⋆([1 :
k]) be a function that to everyi ∈ [1 : m], γ(i) assigns a
minimal sufficient family forvi. It is also easy to observe that
if the set {yj|j ∈ J} is a minimal sufficient family of the
messages forvi thenvi is able to reconstructxi using its side
information and

∑

j∈J yj .
For everyφ 6= I ⊆ [1 : k], defineDI to beγ−1(I). Since

γ is a function,DI ’s for different I ’s will partition the set
[1 : m]. Notice that by the definition ofγ, if i ∈ DI then
{yj : j ∈ I} is a minimal sufficient family forvi. Therefore,
vi can retrievexi using its side information and

∑

j∈I yj .
That is to say that in the summation

∑

j∈I yj , the variable
xi appears and also, if another variablexi′ appears, thenvi
knowsxi′ as its side information, i.e.,(vi, vi′) ∈ E(G).

At this point, we are able to define a homomorphism fromG
to H2

k . In fact, we define a functionφ : V (G) 7→ V (H2
k) and

show that if(vi, vi′) /∈ E(G) then (φ(vi), φ(vi′ )) /∈ E(H2
k).

SinceCJ ’s and alsoDI ’s both partition the set[1 : m], for
every vi ∈ V (G), there exists a unique pair of(I, J), ∅ 6=
I, J ⊆ [1 : k] such thati ∈ DI , i ∈ CJ . Defineφ(vi) = v(I,J).
In order to complete the proof, we need to show thatφ is a
well-defined function, i.e.,φ(v) is a vertex ofH2

k and also
(vi, vi′) /∈ E(G) ⇒ (φ(vi), φ(vi′ )) /∈ E(H2

k ).

Lemma 4. The mappingφ is a well-defined function from
V (G) to V (H2

k), i.e., if vi ∈ V (G) thenA(I,J) = 1 in which
I, J are such thati ∈ DI and i ∈ CJ .

Lemma 5. If vi, vi′ ∈ V (G) and (vi, vi′) /∈ E(G) then
(φ(vi), φ(vi′ )) /∈ E(H2

k).

So far, we have proved that iflind2(G) ≤ k then G 4
H2

k . Conversely, ifG 4 H2
k then by Corollary 1 we have

1Here by a minimal sufficient family we refer to a sufficient family where
none of its subsets is a sufficient family.



lind2(G) ≤ lind2(H
2
k). Therefore, the following lemma will

finalize the proof of Theorem 2.

Lemma 6. For every positive integerk, lind2(H
2
k) ≤ k.

V. A PPLICATION

In this section, we will demonstrate several applications of
the theorems stated in the previous sections.

A. Upper Bounds

Here, we will show that some of the earlier upper bounds
are only special cases of Corollary 1.

Example 1. One of the earliest upper bounds on thelind2(G)
is χ(G) where χ(·) is the chromatic number of a graph
(e.g., see [4]). Notice that in our framework, this result is
an immediate consequence of Corollary 1, Part 3. That is, if
χ(G) = r thenG → Kr whereKr is a complete graph with
r vertices. Thus,lind2(G) ≤ lind2(Kr) = r = χ(G).

Example 2. In [7], it is shown thatlind(G) ≤ χf (G) where
χf (·) is the fractional chromatic numberof a graph. See [16]
for the proof using our framework.

The crucial observation is that the parametersχ(G) and
χf (G) can be defined using existence of homomorphisms
from G to the family of complete graphs and Kneser graphs,
respectively. (See [16] for the definition of Kneser graphs).

B. Lower Bounds

By using Theorem 2, the following result can be proved.

Lemma 7. Suppose thath is an increasing function on(G,4)
and r is an upper bound onh(Hk). For every digraphG, if
h(G) > r then lind2(G) > k.

Proof: If lind2(G) ≤ k then by Theorem 2,G 4 Hk and
thereforeh(G) ≤ h(Hk) ≤ r which is a contradiction.

Lemma 7 is a powerful tool to find lower bounds on the
index coding problem. Actually for every increasing function
h on (G,4) we have one lower bound on the index coding
problem. In the next theorem, we provide a lower bound on
lindq(G) in terms of the chromatic number ofG.

Theorem 3. For every digraphG, lindq(G) ≥ logq(χ(G)).

Proof: The function h(G) = χ(G) is an increasing
function on (G,4). Suppose thatlindq(G) = k. Therefore,
χ(G) ≤ χ(Hq

k) ≤ qk = qlindq(G). The first inequality is
implied by the previous Lemma. For a proof of the second
inequality see [16].

C. Index Codes and Change of Field Size

Existence of a certain index code for a given graph over
a fixed finite field is equivalent to the existence of linear
combinations of the source messages over the ground field
with certain Algebraic / Combinatorial constraints. If the
ground field is changed, there is no natural way of updating
the index code over the new field. In other words, if for a fixed
graphG, an index code over a finite fieldFq1 is given, there

is no natural way to construct some index code for the same
graph but over a different fieldFq2 . In fact, in [5], it has been
shown that for every pair of finite fieldsFp andFq of different
characteristics and for every0 < ǫ < 0.5, there exists a graph
G with n vertices such thatlindp(G) < nǫ, lindq(G) > n1−ǫ.

Here we use the results of Theorem 1 and Theorem 2 to
show that if lindp(G) is less than a fixed number then by
changing the field size, the corresponding linear indices can
at most differ by a factor that depends only on the field sizes
and is independent from the size of the graph. More precisely
the following result holds:

Theorem 4. Let G be a graph andq1, q2 are two different
prime powers. Then,lindq2(G) ≤ lindq2(H

q1
lindq1

(G)).

Proof: Suppose thatlindq1(G) = k. By Theorem 2,G 4
Hq1

k and then by Theorem 1,lindq2(G) ≤ lindq2(H
q1
k ).
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