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Local Rank Modulation for Flash Memories
Michal Horovitz

Abstract

Local rank modulation scheme was suggested recently for representing information in flash memories in order to

overcome drawbacks of rank modulation. For s ≤ t ≤ n with s|n, (s, t, n)-LRM scheme is a local rank modulation

scheme where the n cells are locally viewed through a sliding window of size t resulting in a sequence of small

permutations which requires less comparisons and less distinct values. The distance between two windows equals

to s. To get the simplest hardware implementation the case of sliding window of size two was presented. Gray codes

and constant weight Gray codes were presented in order to exploit the full representational power of the scheme.

In this work, a tight upper-bound for cyclic constant weight Gray code in (1, 2, n)-LRM scheme where the weight

equals to 2 is given. Encoding, decoding and enumeration of (1, 3, n)-LRM scheme is studied.

I. INTRODUCTION

Flash memory is a non-volatile technology that is both electrically programmable and electrically erasable. It

incorporates a set of cells maintained at a set of levels of charge to encode information. While raising the charge

level of a cell is an easy operation, reducing the charge level requires the erasure of the whole block to which the

cell belongs. For this reason charge is injected into the cell over several iterations. Such programming is slow and

can cause errors since cells may be injected with extra unwanted charge. Other common errors in flash memory

cells are due to charge leakage and reading disturbance that may cause charge to move from one cell to its adjacent

cells. In order to overcome these problems, the novel framework of rank modulation was introduced in [1]. In this

setup the information is carried by the relative ranking of the cells’ charge levels and not by the absolute values

of the charge levels. This allows for more efficient programming of cells, and coding by the ranking of the cells’

charge levels is more robust to charge leakage than coding by their actual values. The push-to-the-top operation is

a basic minimal cost operation in the rank modulation scheme by which a single cell has its charge level increased

so as to be the highest of the set.

A drawback of the rank modulation is the need for a large number of comparisons when reading the induced

permutation. Furthermore, distinct n charge levels are required for a group of n cells. The local rank modulation

scheme was suggested in order to overcome these problems. In this scheme, the n cells are locally viewed through

a sliding window, resulting in a sequence of small permutations which requires less comparisons and less distinct

values. For s ≤ t ≤ n with s|n, (s, t, n)-LRM scheme, defined in [2], is a local rank modulation scheme over n
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physical cells, where t is the size of each sliding window, and s is the distance between two windows. In this

scheme, the push-to-the-top operation merely raises the charge level of the selected cell above those cells which

are comparable with it. We say a sequence f of n/s permutations from St is (s, t, n)-LRM scheme realizable if

it can be demodulated to a sequence of charges in n cells under (s, t, n)-LRM scheme. Except for the degenerate

case where s = t = n, not every sequence is realizable.

In this paper we discuss two topics. In Section II we introduce a tight upper-bound for (1, 2, n; 2)-LRMGC

(a constant-weight-Gray-code in (1, 2, n)-LRM scheme where the weight is 2), and in Section III, (1, 3, n)-LRM

scheme is studied.

II. THE (1, 2, n)-LRM SCHEME

(1, 2, n)-LRM scheme is a local rank modulation scheme over n physical cells, where the size of each sliding

window is 2, and each cell starts a new window. Thus, only two permutations exist: [1, 2] associated with the

logical value 1, and [2, 1] associated with 0. Therefore, in (1, 2, n)-LRM scheme we store about one bit per

cell, which requires just one comparison per cell for reading, and perform comparisons with two cells for a

push-to-the-top operation. It is easily verified that the only two binary sequences not mapped to (1, 2, n)-LRM

scheme are the all-ones and all-zeros sequences. Hence, the set of the realizable words in (1, 2, n)-LRM scheme

is S(n) = {0, 1}n \ {0n, 1n}. The push-to-the-top operation raises the charge level of the selected cell above its

adjacent cells, therefore it is made by selecting a window of size 2 in the original codeword and overwriting it with

01.

In [1] Gray codes were presented in order to exploit the full representational power of the rank modulation

scheme and data rewriting schemes.

Definition 1. A Gray code, G, for (1, 2, n)-LRM scheme (denoted by (1, 2, n)-LRMGC) is a sequence of N distinct

length n binary codewords from S(n). G = g0, g1, . . . , gN−1, where for each 0 ≤ i ≤ N − 2, gi+1 is a result of a

push-to-the-top operation on gi If g0 is also a result of a push-to-the-top operation on gN−1 then we say that G

is cyclic.

The weight of g where g ∈ {0, 1}n, denoted by w(g), is the number of 1’s in g. Let S(n,w) be the set of all

codewords in S(n) with weight w.

Definition 2. Let G = g0, g1 . . . , gN−1 be a Gray code for (1, 2, n)-LRM scheme. G is a constant-weight Gray

code for (1, 2, n)-LRM scheme (denoted by (1, 2, n;w)-LRMGC) if for each 0 ≤ i ≤ N − 1, gi ∈ S(n,w).

The motivation for constant-weight Gray codes was described in [2]. The transitions between adjacent words in

the constant-weight variant of (1, 2, n)-LRM scheme replace a window of size 2 in gi which contains 10 with 01

in gi+1, i.e., ’pushing’ of a logical ’1’ a single place to the right.
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A. Upper bound for the size of a cyclic (1, 2, n; 2)-LRMGC

Let C be a cyclic (1, 2, n; 2)-LRMGC of size N . The obvious question to be asked is, what is the size of the

largest code C? It was proved in [2] (Theorem 8) that N ≤
(
n
2

)
− 1

8 (n− 3)(n− 5). This bound was obtained by

translating the question into a graph problem. The related graph Gn is defined in [2]. The set of vertices in Gn is

S(n, 2), and there exists an edge v → v′ in Gn if and only if v′ can follow v in a (1, 2, n; 2)-LRMGC. By a careful

analysis of Gn, we obtain the following result.

Theorem 3. If C is a cyclic (1, 2, n; 2)-LRMGC of size N then N ≤ 2n.

The complete (long) proof will be given in the full version of this paper. Obviously there exists a cyclic (1, 2, n;w)-

LRMGC of size 2n (see [2]). Thus we have that 2n is a tight upper-bound.

III. THE (1, 3, n)-LRM SCHEME

(1, 3, n)-LRM scheme is a local rank modulation scheme over n physical cells, where the size of each sliding

window is 3, and each cell starts a new window. Since the size of a sliding window is 3, demodulated sequences

of permutations in this scheme contain 3! permutations. Therefore we need an alphabet of size 6 to present the

demodulated sequences of permutations. The alphabet S = {0, 1, . . . , 5} represents 6 permutations as follows.

0 , [1, 2, 3],

1 , [1, 3, 2],

2 , [2, 1, 3],

3 , [3, 1, 2],

4 , [2, 3, 1],

5 , [3, 2, 1].

We denote the words over this alphabet as base-words, and define a mapping of the base-words to codewords

over an alphabet of size 3.

Let Se = {0, 2, 4} and So = {1, 3, 5} be a partition of S into even and odd symbols, respectively. Let

α = (α0, α1, . . . , αn−1) be a base-word. Note that the last two cells which determine αi are the first two cells

which represent αi+1, where 0 ≤ i ≤ n− 1 and i+1 is taken modulo n. Therefore, given αi, there are only three

options for αi+1. Let S̃e and S̃o be the sets of symbols that can follow the symbols in Se and So, respectively. It

can be easily verified that S̃e = {0, 1, 3} and S̃o = {2, 4, 5}.

The base-word α is mapped to a codeword c = (c0, c1, . . . , cn−1). The relation between αi, αi+1, and ci where

0 ≤ i ≤ n− 1 and i+ 1 is taken modulo n, is presented in the following table.

αi ∈ Se αi+1 = 0 αi+1 = 1 αi+1 = 3

αi ∈ So αi+1 = 2 αi+1 = 4 αi+1 = 5

ci = 0 ci = 1 ci = 2
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A length n codeword, c, over the alphabet {0, 1, 2} is legal, if there exists a realizable base-word α, such that α

is encoded to c. Note that not all the base-words are realizable. The last cell is compared with the first two cells,

and the cell before is compared with the first cell. Thus, there exists a base-word, α = (α0, α1, . . . , αn−1), such

that α satisfies the dependence between αi+1 and αi (for each 0 ≤ i ≤ n− 1 where i+ 1 is taken modulo n), but

α is still not realizable. For example, the following base-words are not realizable:

• 0n - the charge levels are always decreased.

• 5n - the charge levels are always increased.

• (14)(n/2) (where n is even) - the charge levels are decreased in the odd cells and increased in the even cells,

and the levels of the odd cells are always higher than the levels in the even cells.

The only two base-words mapped to the codeword 1n are (14)(n/2) and (41)(n/2). These base-words are not

realizable. Therefore the all-ones codeword is not legal.

Thus, given a legal codeword c = (c0, c1, . . . , cn−1), there exists 0 ≤ i ≤ n− 1, such that ci ∈ {0, 2}. Without

loss of generality, we can assume that c0 6= 1 (since the base-words and the codewords are cyclic).

If c0 = 0 then we have α1 ∈ {0, 2}, i.e., α1 is even. Thus, α2 is determined by an entry in the first row in the

above table, where the column is chosen according to c2. If c0 = 2 then we have α1 ∈ {3, 5}, i.e., α1 is odd. Thus,

α2 is determined by an entry in the second row in the above table, where the column is chosen according to c2.

Now, it is easy to determine α3, α4, . . . , αn−1 and also α0 and α1. Note that if α1 is not equal to an optional

initial value (from the set {0, 2} if c0 = 0 and from {3, 5} if c0 = 2) then we can conclude that c is not legal.

This method provides us an one-to-one mapping between the realizable base-words and the legal codewords.

But, also some non-realizable base-words (due to the charge levels) are mapped to codewords. Therefore these

codeword are illegal. Thus, decoding a given codeword to a base-word doesn’t guarantee that the codeword is legal.

For example, the base-word α = 5n is mapped to the codeword c = 2n and α = 0n is mapped to c = 0n.

The number of legal codewords is exactly the number of the realizable base-words. This number can be obtained

by constructing 33 recursive equations which describe the relations between the charge levels of the last two and

the first two cells. A careful analysis of these 33 equations yields the following result which provides the motivation

for using this scheme.

Theorem 4. If M is the number of legal words in (1, 3, n)-LRM scheme then lim
n→∞

M
3n = 1.

Some of the results on (1, 3, n)-LRM scheme can be generalized to (1, t, n)-LRM scheme for each t > 3. It is

currently under researched if for Mt, the number of legal words in (1, t, n)-LRM scheme, we have lim
n→∞

Mt

tn = 1

for each t > 3.
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