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Abstract—We study the problem of universal decoding for
unknown discrete memoryless channels in the presence of era-
sure/list option at the decoder, in the random coding regime.
Specifically, we harness a universal version of Forney’s classical
erasure/list decoder developed in earlier studies, which is based
on the competitive minimax methodology, and guarantees uni-
versal achievability of a certain fraction of the optimum random
coding error exponents. In this paper, we derive an exact single-
letter expression for the maximum achievable fraction. Examples
are given in which the maximal achievable fraction is strictly less
than unity, which imply that, in general, there is no universal
erasure/list decoder which achieves the same random coding
error exponents as the optimal decoder for a known channel.
This is in contrast to the situation in ordinary decoding (without
the erasure/list option), where optimum exponents are universally
achievable, as is well known. It is also demonstrated that previous
lower bounds derived for the maximal achievable fraction are not
tight in general. We then analyze a generalized random coding
ensemble which incorporate a training sequence, in conjunction
with a suboptimal practical decoder (“plug-in” decoder), which
first estimates the channel using the known training sequence,
and then decodes the remaining symbols of the codeword using
the estimated channel. One of the implications of our results, is
setting the stage for a reasonable criterion of optimal training.
Finally, we compare the performance of the “plug-in” decoder
and the universal decoder, in terms of the achievable error
exponents, and show that the latter is noticeably better than
the former.

Index Terms—Universal decoding, error exponents, erasure/list
decoding, maximum-likelihood decoding, random coding, gener-
alized likelihood ratio test, training sequence, plug-in decoder,
channel uncertainty, competitive minimax.

I. INTRODUCTION

IN many practical situations encountered in coded com-

munication systems, the channel over which transmission

takes place is unknown to the receiver. Typically, the optimal

maximum likelihood (ML) decoder depends on the channel

statistics, and therefore its usage is precluded. In such cases,

universal decoders are sought which do not require knowledge

of the actual channel, but still preform well just as if the

channel was known to the decoder. The design of such univer-

sal decoders was extensively addressed for ordinary decoding

This research was partially supported by The Israeli Science Foundation
(ISF), grant no. 412/12. This paper was presented in part at the 2015 IEEE
Information Theory Workshop (ITW), and the 2015 Information Theory and
Applications (ITA) Workshop.

(without the erasure/list option), see, e.g., [1-7], and refer-

ences therein. For example, for unknown discrete memoryless

channels (DMCs), the maximum mutual information (MMI)

decoder [1] is asymptotically optimal for ordinary decoding,

in the sense that it achieves the same random coding error

exponents as the ML decoder. However, for decoders with an

erasure/list option, only partial results exist.

In this paper, we focus on universal erasure/list decoders

proposed and analyzed by Forney for known channels [8].

Erasure/list decoding is especially attractive for unknown

channels, since communicating at any fixed rate, however

small, is inherently problematic, since this fixed rate might be

larger than the unknown capacity of the underlying channel.

It makes sense to try to adapt the coding rate to the channel

conditions, which can be learned on-line at the transmitter

whenever a feedback link from the receiver to the transmitter is

available. A possible approach to handle the problem described

above is the rateless coding methodology, see, for example [9-

14], in which at every time instant the decoder either makes

a decision on one of the transmitted messages or decides to

request an additional symbol via the feedback line. The latter

case can be considered as an “erasure” event for the decoder,

and so universal erasure decoders are required (see discussion

in [15]).

In [4, Chapter 10, Theorem 10.11], Csiszár and Körner

proposed a family of universal erasure decoders, parametrized

by some real parameter, for DMCs, and analyzed the resulting

error exponents. While this family is in the spirit of the MMI

decoder, it does not achieve the same exponents as Forney’s

optimal erasure/list decoder. More recently, in [16], Moulin has

generalized this family of decoders and proposed a family of

decoders parametrized by a weighting function. An optimal

weighting function was sought which maximizes the total

error exponent of the worst channel in the family, under a

constraint on the worst channel undetected-error exponent (the

worst channel associated with the two exponents might be

different). The decoder was considered universal if the above

mentioned trade-off between the worst case exponents does

not change even if the choice of specific decoder in the family

of allowed decoders can depend on the channel (see [16, Eq.

(3.11)], and the discussion that follows). However, this is a

rather weak criterion, in the sense that the optimal decoder

only depends on the worst case exponents. So, if the family

of channels is rich enough (e.g. includes channels whose

http://arxiv.org/abs/1410.7005v2
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capacity is lower than the required rate), then the worst case

exponents are simply zero, and any decoder is universal. To

this end, a stronger criterion for universality was proposed,

which states that a decoder is universal if it achieves Forney’s

exponents (for a known channel) for all channels in the family.

In [16, Proposition 5.5], Moulin provided sufficient conditions

under which the decoder of Csiszár and Körner is universal

in the strong sense. Loosely speaking, it is required that the

total error exponent is small enough for all channels in the

family. These conditions, however, strongly limit the families

of channels for which this decoder is universal.

In [15], Merhav and Feder studied the problem using a

different approach. Specifically, they considered the problem

of universal decoding with an erasure/list option for the

class of DMCs indexed by an unknown parameter θ. They

invoked the competitive minimax methodology proposed in

[17], in order to derive a universal version of Forney’s clas-

sical erasure/list decoder. Recall that for a given DMC with

parameter θ, a given coding rate R, and a given threshold

parameter T (all to be formally defined later), Forney’s era-

sure/list decoder optimally trades off between the exponent,

E1(R, T, θ), of the probability of total error event, E1, and the

exponent, E2(R, T, θ) = E1(R, T, θ) + T , of the probability

of undetected error event, E2, for an erasure decoder (or,

average list size for list decoder), in the random coding

regime. The universal erasure/list decoder of [15] guarantees

achievability of an exponent, Ê1(R, T, θ), which is at least

as large as ξ · E1(R, T, θ) for all θ, for some constant

ξ ∈ (0, 1] that is independent of θ (but does depend on R
and T ), and at the same time, an undetected error exponent

for erasure decoder (or, average list size for list decoder)

Ê2(R, T, θ) ≥ ξ · Ê1(R, T, θ) + T for all θ. At the very least

this guarantees that whenever the probabilities of E1 and E2
decay exponentially for a known channel, so they do even

when the channel is unknown, using the proposed universal

decoder. It should be remarked, that the benchmark exponents

in [15] were the classical lower bounds on E1(R, T, θ) and

E2(R, T, θ) derived by Forney [8].

Clearly, to maximize the guaranteed exponents obtained by

the universal decoder of [15], the maximal ξ ∈ [0, 1] such

that the above holds is of interest. This maximal fraction

is the central quantity of this paper and will be denoted

henceforth by ξ∗(R, T ). If, for example, ξ∗(R, T ) is strictly

less than unity, then it means that there is a major difference

between universal ordinary decoding and universal erasure/list

decoding: while for the former, it is well known that optimum

random coding error exponents are universally achievable (at

least for some classes of channels and certain random coding

distributions), in the latter, when the erasure/list options are

available, this may no longer be the case1. In [15], Merhav

and Feder invoked Gallager’s bounding techniques to analyze

the exponential behavior of upper bounds on the probabilities

1We could have similarly required that the universal decoder would

achieve an undetected error exponent of Ê2(R, T, θ) ≥ ξ̃ · E2(R, T, θ) for

all θ ∈ Θ, and some ξ̃ ∈ (0, 1]. While the numerical value of the maximal

achievable ξ̃, say ξ̃∗(R, T, θ), will be different from ξ∗(R, T, θ), the main
conclusions of the paper will not change. Specifically, ξ∗(R, T, θ) < 1 if and

only if ξ̃∗(R, T, θ) < 1.

E1 and E2. Accordingly, a single-letter expression for a lower

bound to ξ∗(R, T ) was obtained, which we denote henceforth

by ξL(R, T ). Since ξL(R, T ) was merely a lower bound, the

question of achievability of Forney’s erasure/list exponents

was not fully settled in [15]2.

As was previously mentioned, even for a known channel,

only lower bounds for the exponents were obtained by Forney

[8]. More recently, inspired by a statistical-mechanical point of

view on random code ensembles, Somekh-Baruch and Merhav

[18] have found exact expressions for the exponents of the

optimal erasure/list decoder, by assessing the moments of

certain type class enumerators. In this paper, we tackle again

the problem of erasure/list channel decoding using similar

methods, and derive an exact expression for ξ∗(R, T ) with

respect to the exact erasure/list exponents of a known channels

found in [18]. Unlike the lower bound of [15], the exact

expression leads to the following conclusions:

1) In general, ξ∗(R, T ) is strictly less than 1. Therefore, the

known channel exponents in erasure/list decoding cannot

be achieved universally. In this sense, channel knowl-

edge is crucial for asymptotically optimum erasure/list

decoding. This is in sharp contrast to the situation in or-

dinary decoding (without the erasure/list option), where,

as said, optimum exponents are universally achievable,

e.g., by the MMI decoder.

2) In general, ξL(R, T ) is strictly less than ξ∗(R, T ).
Therefore, the Gallager-style analysis technique in [15]

is not always powerful enough to obtain ξ∗(R, T ).

Although the above universal decoder achieves ξ∗(R, T ), it

may have a rather high implementation complexity. Usually,

in practical communication systems with channel uncertainty,

a portion of the blocklength is devoted to training which is a

common part of all codewords. A possible practical decoder is

the “plug-in” decoder, which first estimates the channel using

the known training sequence, and then decodes the remaining

symbols of the codeword using the estimated channel from the

first stage. This suboptimal decoder, on the one hand, has a

smaller complexity, and thus can be more easily incorporated

into practical systems, but on the other hand, achieves only

some ξe(R, T ) ≤ ξ∗(R, T ). For this sub-optimal decoder,

we derive its error exponents and a closed-form formula for

ξe(R, T ), which now depend also on the relative training time

and the type of the sequence. One implication of our results, is

setting the stage for a reasonable criterion of optimal training.

Finally, we show numerically that there is a noticeable loss in

the error exponents incurred by the plug-in decoder compared

to the universal decoder.

The outline of the rest of the paper is as follows. In Section

II, we establish notation conventions, and in Section III we

detail necessary background on erasure/list decoding, both for

known and unknown channels. Then, in Section IV, we present

our main result of an exact expression for ξ∗(R, T ), and

discuss the special case of binary symmetric channel (BSC).

2Note that universality in the weak sense in [16] does not guarantee that
ξ∗(R, T ) is larger than zero because this weak criterion only considers the
worst case channels. A universal decoder in the stronger sense in [16] does
imply that ξ∗(R, T ) = 1, but, as previously mentioned, such universality was
proved only for a restricted families of channels.
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We then shed light on the differences between ξ∗(R, T ) and

ξL(R, T ), along with some numerical results, which illustrate

the main result of this paper. In Section V, we analyze gener-

alized random coding ensembles which incorporates a training

sequence, in conjunction with the suboptimal plug-in decoder

and the universal decoder, and compare its performance with

the universal decoder and the optimal decoder (for known

channel). Finally, in Section VI, we provide proofs for all our

results.

II. NOTATION CONVENTIONS

Throughout this paper, scalar random variables (RVs) will

be denoted by capital letters, their sample values will be

denoted by the respective lower case letters, and their alphabets

will be denoted by the respective calligraphic letters, e.g. X , x,

and X , respectively. A similar convention will apply to random

vectors of dimension n and their sample values, which will be

denoted with the same symbols in the boldface font. The set of

all n-vectors with components taking values in a certain finite

alphabet, will be denoted as the same alphabet superscripted

by n, e.g., Xn. Generic channels will be usually denoted

by the letters P , Q, or W . We shall mainly consider joint

distributions of two RVs (X,Y ) over the Cartesian product of

two finite alphabets X and Y . For brevity, we will denote any

joint distribution, e.g. QXY , simply by Q, the marginals will

be denoted by QX and QY , and the conditional distributions

will be denoted by QX|Y and QY |X . The joint distribution

induced by QX and QY |X will be denoted by QX × QY |X ,

and a similar notation will be used when the roles of X and

Y are switched.

The expectation operator will be denoted by E {·}, and when

we wish to make the dependence on the underlying distribution

Q clear, we denote it by EQ {·}. The entropy of X and the

conditional entropy of X given Y , will be denoted HX(Q),
HX|Y (Q), respectively, where Q is the underlying probability

distribution. The mutual information of the joint distribution Q
will be denoted by I(Q). The divergence (or, Kullback-Liebler

distance) between two probability measures Q and P will be

denoted by D(Q||P ). For two numbers 0 ≤ q, p ≤ 1, D(q||p)
will stand for the divergence between the binary measures

{q, 1− q} and {p, 1− p}.

For a given vector x, let Q̂x denote the empirical distri-

bution, that is, the vector {Q̂x(x), x ∈ X}, where Q̂x(x)
is the relative frequency of the letter x in the vector x. Let

TP denote the type class associated with P , that is, the set

of all sequences x for which Q̂x = P . Similarly, for a

pair of vectors (x,y), the empirical joint distribution will be

denoted by Q̂xy , or simply by Q̂, for short. All the previously

defined notations for regular distributions will also be used for

empirical distributions.

The cardinality of a finite set A will be denoted by |A|,
its complement will be denoted by Ac. The probability of an

event E will be denoted by Pr {E}. The indicator function

of an event E will be denoted by I {E}. For two sequences

of positive numbers, {an} and {bn}, the notation an
.
= bn

means that {an} and {bn} are of the same exponential order,

i.e., n−1 log an/bn → 0 as n → ∞, where in this paper,

logarithms are defined with respect to (w.r.t.) the natural basis,

that is, log(·) ≡ ln(·). Finally, for a real number x, we let

|x|
+ , max {0, x}.

III. MODEL FORMULATION AND SHORT BACKGROUND

A. Known Channel

Consider a DMC with a finite input alphabet X , finite output

alphabet Y , and a matrix of single-letter transition probabilities

{W (y|x) , x ∈ X , y ∈ Y}. A rate-R codebook consists of

M =
⌈

enR
⌉

length-n codewords xm ∈ Xn, m = 1, 2, . . . ,M ,

representing the M messages. It will be assumed that all

messages are a-priori equiprobable. We assume the ensemble

of fixed composition random codes of blocklength n, where

each codeword is selected at random, uniformly within a type

class T (PX) for some given random coding distribution PX

over the alphabet X .

In the following, we give a short description on the op-

eration of the erasure decoder and then the list decoder. A

decoder with an erasure option is a partition of the observation

space Yn into (M + 1) regions, denoted by {Rm}
M
m=0. An

erasure decoder works as follows: If y ∈ Yn falls into the

mth region, Rm, for m = 1, 2, . . . ,M , then a decision is

made in favor of message number m. If y ∈ R0, then no

decision is made and an erasure is declared. Accordingly, we

shall refer to y ∈ R0 as an erasure event. Given a code

C , {x1, . . . ,xM} and a decoder R , (R0, . . . ,RM ), we

define two error events. The event E1 is the event of deciding

on erroneous codeword or making an erasure, and the event

E2 which is the undetected error event, namely, the event of

deciding on erroneous codeword. It is evident that E1 is the

disjoint union of the erasure event and E2. The probabilities

of all the aforementioned events are given by:

Pr {E1} =
1

M

M
∑

m=1

∑

y∈Rc
m

W (y|xm) , (1)

Pr {E2} =
1

M

M
∑

m=1

∑

y∈Rm

∑

m′ 6=m

W (y|xm′) , (2)

and

Pr {R0} = Pr {E1} − Pr {E2} . (3)

A list decoder is a mapping from the space of received

vectors Yn into a collection of the subsets of {1, . . . ,M}.

Alternatively, a list decoder is uniquely defined by a set of

M + 1 (not necessarily disjoint) decoding regions {Rm}Mm=0

such that Rm ⊆ Yn and R0 = Yn\
⋃M

m=1 Rm. Given a

received vector y, the mth codeword belongs to the output

list if y ∈ Rm, and if y does not belong to any of the

regions Rm then y ∈ R0, and an erasure is declared. The

average error probability of a list decoder and a codebook C
is the probability that the actual transmitted codeword does

not belong to the output list, and it is defined similarly to (1).

The average list size is the expected (w.r.t. the output of the

channel) number of erroneous codewords in the output list,

and it is easily verified that it is defined exactly as in (2) (see

[8, Eq. (13)]).
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Since the error events for the erasure and list decoders are

defined in the same way, they can be treated on the same

footing. Nonetheless, for descriptive purposes, we will refer to

the erasure decoder, but we emphasize that all the following

analysis and results are true also for the list decoder. When

knowledge on the specific DMC is available at the decoder,

Forney has shown in [8], using the Neyman-Pearson method-

ology, that the optimal trade-off between Pr {E1} and Pr {E2}
is attained by the decision regions R∗ , (R∗

0, . . . ,R
∗
M ) given

by:

R∗
m ,

{

y :
W (y|xm)

∑

m′ 6=m W (y|xm′)
≥ enT

}

, m = 1, 2, . . .M,

(4)

and

R∗
0 ,

M
⋂

m=1

(R∗
m)c , (5)

where T is a parameter, henceforth referred as the threshold,

which controls the balance between the probabilities of E1
and E2. When T ≥ 0 the decoder operates in the erasure

mode, and when it is in the list mode then T < 0. No

other decision rule gives both a lower Pr {E1} and a lower

Pr {E2} than the above choice. Finally, we define the error

exponents Ei (R, T ) , i = 1, 2, as the exponents of the

average probabilities of errors Pr {Ei} (associated with the

optimal decoder R∗), where the average is taken w.r.t. a given

ensemble of the randomly selected codes, that is,

Ei (R, T ) , − lim inf
n→∞

1

n
log Pr {Ei} , i = 1, 2. (6)

An important observation is that Forney’s decision rule for

known DMCs can also be obtained by formulating the follow-

ing optimization problem: Find a decoder R that minimizes

Γ (C,R) where

Γ (C,R) , Pr {E2}+ e−nT Pr {E1} (7)

=
1

M

M
∑

m=1





∑

y∈Rm

∑

m′ 6=m

W (y|xm′)

+
∑

y∈Rc
m

e−nTW (y|xm)



 (8)

for a given codebook C and a given threshold T . Indeed, noting

that (8) can be rewritten as

Γ (C,R) =
∑

y∈Yn

1

M

M
∑

m=1





∑

m′ 6=m

W (y|xm′)I {y ∈ Rm}

+e−nTW (y|xm)I {y ∈ Rc
m}



 , (9)

it is evident that for each m, the bracketed expression is

minimized by R∗
m as defined above. By taking the ensemble

average, we have

E {Γ (C,R∗)} , Pr {E2}+ e−nTPr {E1} . (10)

In [18], it was stated (without a proof) that, in the exponential

scale, there is a balance between the two terms at the right

hand side of (10), namely, the exponent of Pr {E2} equals to

the exponent of e−nTPr {E1}, for the optimal decoder R∗.

We rigorously assert this property in the following lemma, the

proof of which appears in Appendix A.

Lemma 1 For all R and T , the optimal decoder R∗ satisfies:

E2 (R, T ) = T + E1 (R, T ) . (11)

The significance of Lemma 1 is attributed to the fact that

now we only need to assess the exponential behavior of either

Pr {E1}, or, Pr {E2}, but not both. As was mentioned in

the Introduction, in [18], Somekh-Baruch and Merhav have

obtained exact single-letter formulas for the error exponents

E1(R, T ) and E2(R, T ) associated with Pr {E1} and Pr {E2},

respectively. Specifically, they show, that for the ensemble of

fixed composition codes [18, Theorem 1]3,4:

E1(R, T ) = min {Ea(R, T ), Eb(R, T )} , (12)

where

Ea(R, T ) , min
(Q,Q̃)∈Q̂

[

D(Q̃||PX ×W ) + I(Q)−R
]

(13)

and

Eb(R, T ) , min
Q̃∈L̂

D(Q̃||PX ×W ) (14)

where Q̃ is a probability distribution on X × Y , and

Q̂ ,
{

(Q, Q̃) ∈ D : I(Q) ≥ R, Ω̂(Q, Q̃) ≤ 0
}

, (15)

D ,
{

(Q, Q̃) : QX = Q̃X = PX , QY = Q̃Y

}

, (16)

Ω̂(Q, Q̃) , EQ̃ logW (Y |X)− EQ logW (Y |X)− T, (17)

and

L̂ ,

{

Q̃ : EQ̃ logW (Y |X) ≤ R+ T

+ max
Q:(Q,Q̃)∈D: I(Q)≤R

[EQ logW (Y |X)− I(Q)]

}

. (18)

As a special case, we shall consider in the sequel the

problem of universal erasure/list decoding for the BSC, and

to this end, we will use the exact expression of E1(R, T ).
Accordingly, for the BSC with crossover probability θ, it was

shown that [18, Corollary 2]

E1,BSC(R, T ) = min {Ea,BSC(R, T ), Eb,BSC(R, T )} , (19)

where

Ea,BSC(R, T ) , log 2−R

3In [18], each codeword in the codebook was drawn independently of
all other codewords, and its symbols were drawn from an independent and
identically (i.i.d.) distribution (identical for all the codewords). Nonetheless,
the modification to the ensemble of fixed composition codes is straightforward.

4We note that there is an error at the end of the proof of Theorem 1 in
[18], where it was claimed that min {Ea(R, T ), Eb(R, T )} = Ea(R, T ),
which may not be true in general. The correct expression is as in (12).
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+ min
q̃∈[θ,δGV (R)−T/β]

[

D (q̃||θ)− h

(

q̃ +
T

β

)]

, (20)

and

Eb,BSC(R, T ) , min
q̃∈L̂BSC

D (q̃||θ) , (21)

where β(θ) , log [(1− θ)/θ], and δGV(R) denote the nor-

malized Gilbert-Varshamov (GV) distance, i.e., the smaller

solution, δ, to the equation

h(δ) = log 2−R, (22)

where h(δ) , −δ log δ−(1−δ) log(1−δ) is the binary entropy

function, and

L̂BSC ,

{

q̃ : −q̃ · β(θ) ≤ R+ T

+ max
q: R≥log 2−h(q)

[−q · β(θ) + h(q)− log 2]

}

. (23)

B. Unknown Channel

We now move on to the case of an unknown channel.

Consider a family of DMCs

WΘ , {Wθ (y|x) , x ∈ X , y ∈ Y, θ ∈ Θ} , (24)

with a finite input alphabet X , a finite output alphabet Y , and

a matrix of single-letter transition probabilities {Wθ (y|x)},

where θ is a parameter, or the index of the channel in the

class, taking values in some set Θ, which may be countable

or uncountable. For example, θ may represent the set of all

|X | · (|Y| − 1) single-letter transition probabilities that define

the DMC with the given input and output alphabets. In our

problem, the channel is unknown to the receiver designer, and

the designer only knows that the channel belongs to the family

of channels WΘ, that is, θ itself is unknown.

When the channel is unknown, the competitive minimax

methodology, proposed and developed in [15], proves useful.

Specifically, let Γθ (C,R) in (7) designate the above defined

Lagrangian, where we now emphasize the dependence on the

index of the channel, θ. Similarly, henceforth we shall denote

the error exponents in (6) by E1(R, T, θ) and E2(R, T, θ).
Also, let Γ̄∗

θ , E {minR Γθ (C,R)}, which is the ensemble

average of the minimum of the above Lagrangian (achieved by

Forney’s optimum decision rule) w.r.t. the channel Wθ (y|x),
for a given θ. Note that by Lemma 1, the exponential order of

Γ̄∗
θ is e−n(E1(R,T,θ)+T ). A competitive minimax decision rule

R is one that achieves

min
R

max
θ∈Θ

Γθ (C,R)

Γ̄∗
θ

, (25)

which is asymptotically equivalent to

min
R

max
θ∈Θ

Γθ (C,R)

e−n[E1(R,T,θ)+T ]
. (26)

However, as discussed in [15], such a minimax criterion,

of competing with the optimum performance, may be too

ambitious, and the value of the minimization problem in (26)

may diverge to infinity for every R, as n → ∞. A possible

remedy for this situation is to compete with only a fraction

ξ ∈ [0, 1] of E1 (R, T, θ), which we would like to choose as

large as possible. To wit, we are interested in the competitive

minimax criterion

Kn(C) = min
R

Kn(C,R), (27)

in which

Kn(C,R) = max
θ∈Θ

Γθ(C,R)

e−n(ξE1(R,T,θ)+T )
. (28)

Accordingly, for a given rate R and threshold T , we wish to

find ξ∗(R, T ), defined as:

ξ∗(R, T ) , sup

{

ξ ∈ [0, 1] : lim sup
n→∞

1

n
log K̄n ≤ 0

}

, (29)

that is, the largest value of ξ such that the ensemble average

K̄n , E {Kn(C)} would not grow exponentially fast.

In [15], the following universal decoding metric was defined

f(xm,y) , max
θ∈Θ

{

en[ξE1(R,T,θ)+T ]Wθ(y|xm)
}

, (30)

and a universal erasure/list decoder was proposed which has

the following decision regions

R̂m ,

{

y :
f(xm,y)

∑

m′ 6=m f(xm′ ,y)
≥ enT

}

, m = 1, 2, . . .M,

(31)

and

R̂0 ,
M
⋂

m=1

R̂c
m. (32)

The property that makes R̂ , (R̂0, R̂1, . . . , R̂M ) interesting

is that it was shown in [15], that it is asymptotically optimal,

i.e., for any given ξ, Kn(C, R̂) may only be sub-exponentially

larger than Kn(C). Thus, the largest ξ such that K̄n is sub-

exponential is also attained by R̂. Hence, in order to find the

largest achievable ξ, we would like to evaluate exactly the

exponential order of E[Kn(C, R̂)], as a function of ξ.

We conclude this section with a few remarks:

1) Note that the results in this paper can be generalized

to other random coding ensembles which assign equal

probabilities within every type class (for more details see

[15, Section V]). For conceptual simplicity, we confine

attention to fixed-composition random coding.

2) We have assumed that the input distribution PX is

fixed, and so the dependence of ξ∗(R, T ) in PX was

omitted. While, in essence, the input distribution may

be optimized to maximize ξ∗(R, T, PX) over some

set of input distributions (where, for the moment, we

make the dependence in PX explicit), the meaning of

the resulting maximal value should be examined very

carefully. Specifically, if we maximize over the entire

simplex, the resulting maxPX
ξ∗(R, T, PX) is simply

1, which is achieved, trivially and uninterestingly, by

any input assignment that puts all its mass on a single

codeword. Of course the resultant communication sys-

tem is completely useless. The point is that the minimax

criterion is relative (competitive minimax), i.e., it looks

at the difference between the ML exponent and the best

universally achievable exponent, allowing (among other
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things) both exponents to be poor. It seems that any other

conceivable approach for universality will also suffer

from a difficulty to define a reasonable criterion for a

good choice of PX .

3) For T = 0 it can be shown that the exponent (12)

coincides with the ordinary random coding exponent.

Since the MMI is a universal decoder which achieves

the random coding exponent, then clearly any optimal

erasure/list universal decoder may only have better ex-

ponents, and therefore ξ∗(R, 0) = 1.

IV. RESULTS

In this section, our results are presented and discussed.

Proofs are relegated to Section VI.

A. Exact formula for the largest achievable fraction

We start with a few definitions. Let

G(R, T, ξ, Q̃) , max
θ∈Θ

{

ξE1 (R, T, θ) + T

+EQ̃ logWθ(Y |X)
}

, (33)

Ω(R, T, ξ,Q, Q̃) , G(R, T, ξ, Q̃)−G(R, T, ξ,Q)− T,
(34)

where E1 (R, T, θ) is given in (12). Finally, let

Q ,
{

(Q, Q̃) ∈ D : I(Q) ≥ R, Ω(R, T, ξ,Q, Q̃) ≤ 0
}

(35)

and

L ,

{

Q̃ : G(R, T, ξ, Q̃) ≤ R+ T

+ max
Q:(Q,Q̃)∈D, I(Q)≤R

[G(R, T, ξ,Q)− I(Q)]

}

. (36)

where D is defined in (16).

Theorem 1 Consider the ensemble of fixed composition codes

of type T (PX). Then, for any given T ∈ R and R ≥ 0,

ξ∗(R, T ), defined in (29), is equal to the largest number ξ
that simultaneously satisfies:

max
θ∈Θ

{

ξE1 (R, T, θ)−

min
(Q,Q̃)∈Q

{

D(Q̃||PX ×Wθ) + I(Q)−R
}

}

≤ 0, (37)

and

max
θ∈Θ

{

ξE1 (R, T, θ)−min
Q̃∈L

D(Q̃||PX ×Wθ)

}

≤ 0. (38)

Notice that in order to find ξ∗(R, T ) one can perform a

simple line search over the interval [0, 1] using the condition

in Theorem 1. Alternatively, in the following corollary, we also

propose an analytical single-letter expression for ξ∗(R, T ).

Corollary 1 Let G(Q̃Y ) , {Q : I(Q) ≤ R, QY = Q̃Y }, and

define (39)-(42), shown at the top of the next page, where in

the optimizations QX = Q̃X = PX . Then,

ξ∗(R, T ) = min {ξ∗1 (R, T ) , ξ∗2 (R, T )} . (43)

For the special case of the BSC, one can simplify the above

minimization problems over the joint distributions (Q, Q̃),
and obtain instead a one-dimensional minimization problem.

Indeed, consider the family of BSCs where the unknown

crossover probability θ belongs to Θ = [0, 1]. Recall that (c.f.

end of Subsection III-A) β(θ) = log [(1− θ)/θ]. Define

φ(θ) ,
ξE1 (R, T, θ) + log(1− θ) + T

β(θ)

−
maxθ′ {ξE1 (R, T, θ′) + log(1− θ′)− β(θ′) · q̃}

β(θ)
(44)

and

q∗1 , max
θ≤1/2

φ(θ), (45)

q∗2 , min
θ>1/2

φ(θ). (46)

Finally, let

g (q∗1 , q
∗
2) ,

{

log 2, if q∗1 > 1/2, or, q∗2 < 1/2,

max {h (q∗1) , h (q
∗
2)} , otherwise

(47)

and

LBSC ,

{

q̃ : max
0≤θ≤1

[ξE1(R, T, θ)− q̃ · β(θ) + log θ] ≤ R

+ T + max
0≤θ≤1

[ξE1(R, T, θ)−max {θ, δGV(R)} · β(θ)

+ log θ + h(max {θ, δGV(R)})− log 2]

}

. (48)

We have the following result.

Corollary 2 Consider a family of BSCs, where the unknown

crossover probability θ belongs to Θ = [0, 1], and with fixed

composition codes of type PX = (1/2, 1/2). Then, ξ∗(R, T )
is equal to the largest number ξ that simultaneously satisfies:

max
0≤θ≤1

{

ξ ·E1,BSC(R, T, θ)

−min
q̃

[

D (q̃||θ) + |−g (q∗1 , q
∗
2) + log 2−R|

+
]

}

≤ 0, (49)

and

max
0≤θ≤1

{

ξ · E1,BSC(R, T, θ)− min
q̃∈LBSC

D (q̃||θ)

}

≤ 0, (50)

where E1,BSC(R, T, θ) is given in (19).
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ξ̂1(R, T,Q, Q̃, θ, θ1, θ2, λ) ,
D(Q̃||PX ×Wθ) + I(Q)−R+ λEQ̃ [logWθ1 (Y |X)]− λEQ [logWθ2 (Y |X)]− λT

E1 (R, T, θ)− λE1 (R, T, θ1) + λE1 (R, T, θ2)
, (39)

ξ∗1 (R, T ) , min
θ∈Θ

min
(Q̃,Q)∈D, Q∈Gc(Q̃Y )

max
λ≥0

max
θ1∈Θ

min
θ2∈Θ

ξ̂1(R, T,Q, Q̃, θ, θ1, θ2, λ), (40)

ξ̂2(R, T,Q, Q̃, θ, θ1, θ2, λ) ,
D(Q̃||PX ×Wθ) + λEQ̃ [logWθ1 (Y |X)]− λEQ [logWθ2 (Y |X)]− λ [R+ T − I(Q)]

E1 (R, T, θ)− λE1 (R, T, θ1) + λE1 (R, T, θ2)
, (41)

ξ∗2 (R, T ) , min
θ∈Θ

min
Q̃

max
λ≥0

max
θ1∈Θ

min
Q∈G(Q̃Y )

min
θ2∈Θ

ξ̂2(R, T,Q, Q̃, θ, θ1, θ2, λ), (42)

B. Discussion and Comparison with Previous Results

While in this work we have derived the exact maximal

achievable ξ∗(R, T ) for fixed composition coding of type PX ,

in [15, Theorem 2], Merhav and Feder have obtained the

following lower bound [15, Theorem 2]:

ξ∗(R, T ) ≥ ξL(R, T ) ,

min
(θ,θ′′)∈Θ2

max
0≤s≤ρ≤1

E(θ, θ′′, s, ρ)− ρR− sT

(1 − s)E1(R, T, θ) + sE1(R, T, θ′′)
(51)

where

E(θ, θ̃, s, ρ) ,

min
QY

[F (QY , 1− s, θ) + ρF (QY , s/ρ, θ
′′)−H(QY )] (52)

and

F (QY , 1− s, θ) ,

min
QX|Y : (QY ×QX|Y )

X
=PX

[I(Q)− λEQ logWθ(Y |X)] . (53)

Before we continue, we remark that in [15], Forney’s lower

bound on E1(R, T, θ) was used instead of its exact value as

derived in [18], but for the sake of comparison any exponent

can be used, and specifically, the exact exponent. Now, note

that an alternative (equivalent) representation of ξL(R, T ) in

(51) is that it is given by the largest ξ such that for any pair

(θ, θ′′) ∈ Θ2

max
0≤s≤ρ≤1

E(θ, θ′′, s, ρ)− ρR− sT − ξ [(1− s)E1(R, T, θ)

+sE1(R, T, θ′′)] ≥ 0. (54)

Straightforward algebraic manipulations show that the last

inequality can be rewritten as

max
0≤s≤ρ≤1

min
(Q,Q̃)∈D

Ψ(R, T, θ, θ, θ′′, Q, Q̃, ρ, s) ≥ 0 (55)

where

Ψ(R, T, θ, θ′, θ′′, Q, Q̃, ρ, s, ξ) , D(Q̃||PX ×Wθ)

+ ρ [I(Q)−R] + s ·
[

EQ̃ logWθ′(Y |X) + ξE1(R, T, θ′)

− EQ logWθ′′(Y |X)− ξE1(R, T, θ′′)− T
]

− ξE1(R, T, θ).

(56)

For any given (θ, θ′′) ∈ Θ2, and (s, ρ),
Ψ(R, T, θ, θ′, θ′′, Q, Q̃, ρ, s, ξ) is convex in5 (Q, Q̃), and

for a given (Q, Q̃), it is linear (and hence concave) in (s, ρ) .

Thus, the minimax theorem implies that (55) is equivalent to

min
(θ,θ′′)∈Θ2

min
(Q,Q̃)∈D

max
0≤s≤ρ≤1

Ψ(R, T, θ, θ, θ′′, Q, Q̃, ρ, s, ξ) ≥ 0.

(57)

On the other hand, the exact value of ξ∗(R, T ) in Theorem 1 is

determined by the two conditions (37)-(38). In what follows,

we shall concentrate on the first condition in (37), as this

condition can be compared to (57). Thus, let us focus on the

case in which the condition in (37) is more stringent than

the condition in (38). Then, according to (37), a fraction ξ is

achievable if

min
θ∈Θ

min
(Q,Q̃)∈D

D(Q̃||PX ×Wθ)+ I(Q)−R− ξE1(R, T, θ) ≥ 0

(58)

where the minimum over (Q, Q̃) is such that I(Q) ≥ R and

Ω(R, T, ξ,Q, Q̃) ≤ 0. Now, the optimization problem in (58)

is equivalent to

min
θ∈Θ

min
(Q,Q̃)∈D

max
ρ′≥0

max
s≥0

[

D(Q̃||PX ×Wθ)− ξE1(R, T, θ)

+(1− ρ′) [I(Q)−R] + sΩ(R, T, ξ,Q, Q̃)
]

≥ 0, (59)

or by letting ρ = 1− ρ′ we get

min
θ∈Θ

min
(Q,Q̃)∈D

max
ρ≤1

max
s≥0

[

D(Q̃||PX ×Wθ) + ρ [I(Q)−R]

+sΩ(R, T, ξ,Q, Q̃)− ξE1(R, T, θ)
]

≥ 0, (60)

which is equivalent to

min
θ∈Θ

min
(Q,Q̃)∈D

max
ρ≤1

max
s≥0

max
θ′∈Θ

min
θ′′∈Θ

Ψ(R, T, θ, θ′, θ′′, Q, Q̃, ρ, s, ξ) ≥ 0. (61)

Moreover, for a given (θ,Q, Q̃), we may write

max
ρ≤1

max
s≥0

max
θ′∈Θ

min
θ′′∈Θ

Ψ(R, T, θ, θ′, θ′′, Q, Q̃, ρ, s, ξ)

= min
θ′′∈Θ

max
θ′∈Θ

max
0≤ρ≤1

max
s≥0

Ψ(R, T, θ, θ′, θ′′, Q, Q̃, ρ, s, ξ),

(62)

5The input distributions of both Q and Q̃ are assumed fixed to PX ,
and we are essentially only optimizing over the conditional distributions

(QY |X , Q̃Y |X).
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because under the constraint s ≥ 0, the inner minimization

over θ′′ ∈ Θ does not depend on the value of (ρ, s, θ′): it

is simply the θ′′ ∈ Θ which maximizes EQ logWθ′′(Y |X) +
ξE1(R, T, θ′′) 6. Thus, the resulting condition is

min
(θ,θ′′)∈Θ2

min
(Q,Q̃)∈D

max
0≤ρ≤1

max
s≥0

max
θ′∈Θ

Ψ(R, T, θ, θ′, θ′′, Q, Q̃, ρ, s, ξ) ≥ 0. (63)

By comparing the condition in (63) to the condition of the

lower bound of [15] in (57), the following differences are

observed:

1) In (57) an additional constraint s ≤ ρ is imposed.

2) In (57) a sub-optimal choice of θ′ = θ is imposed.

Accordingly, these differences may cause the value of the

minimax in (57) to be lower than the value of the optimiza-

tion problem in (63), which results in a lower achievable

ξ compared to ξ∗(R, T ), as one should expect. Next, we

provide two examples, where in the first one these differences

are immaterial, and in the second one they do matter. The

former happens when the optimal solution in (63), denoted by

(θ∗, θ′′∗, Q∗, Q̃∗, ρ∗, s∗), satisfies s∗ ≤ ρ∗, and the maximizer

of EQ̃∗ logWθ′(Y |X) + ξL(R, T ) · E1(R, T, θ′) is given by

θ∗. Accordingly, in this case, the value of (63) equals to

(57). Since, in addition, in this example, the condition in

(37) is more stringent than the condition in (38), we obtain

ξ∗(R, T ) = ξL(R, T ). The conclusion that stems from this

observation is that, in this case, the analysis in [15] is tight.

Example 1 In [15], a family of BSCs was considered where

θ ∈ Θ designates the cross-over probability of the BSC, and

Θ = {0, 1/100, 2/100, . . . , 1}. The values of ξL(R, T ) were

computed for various values of R and T . It was assumed

that T ≥ 0, which means that the decoder operates in the

erasure mode. Numerical calculations of the bound derived in

this work (and the exact formula), result in exactly the same

values as given in [15, Table 1], and so in all these cases,

the analysis of [15] was sufficient to provide tight results.

For example, for (R, T ) = (0.05, 0.15), and codebook type

PX = (1/2, 1/2), we obtain ξL(R, T ) = 0.495. Also, the two

worst case channels (i.e., the solutions to (63)) are θ∗ = 0.18
and θ′′∗ = 0.22 while θ′∗ = θ∗ and ρ∗ = 0.36 > s∗ = 0.185.

So, since s∗ < ρ∗ and θ′∗ = θ∗, the discussion above implies

that a tight result is obtained, that is, ξ∗(R, T ) = ξL(R, T ) =
0.495. Thus, in the worst case over all θ ∈ Θ, the exponent

Ê1(R, T, θ) is not less than 0.495 · E1(R, T, θ).

Since ξ∗(R, T ) < 1 for some R and T , we arrive at the

following conclusion: In general, in the random coding regime

of erasure/list decoding, there is no universal decoder which

achieves the same error exponent as Forney’s decoder for

every channel in the class. This fact is in contrast to ordinary

decoding, in which the MMI decoder achieves the exact same

error exponent as the ML decoder. In this sense, knowledge of

6If for a given real function f(u, v) the minimizer v∗ w.r.t. v does not
depend on u, then maxu∈U minv∈V f(u, v) = maxu∈U f(u, v∗) ≥
minv∈V maxu∈U f(u, v), and the minimax inequality results
maxu∈U minv∈V f(u, v) = minv∈V maxu∈U f(u, v), assuming that
U and V are two independent sets (i.e., rectangular).

the channel is crucial when erasure/list options are allowed.

The possible difficulty of universalizing an erasure decoder

is apparent for the BSC: While for ordinary decoding, the

optimal detector depends only on whether θ ≤ 1/2 or θ > 1/2
(i.e., minimum distance versus maximum distance decoders,

respectively), and thus rather easy to universalize, the optimal

erasure decoder depends on the exact value of θ.

Nonetheless, in general, we might have that ξL(R, T ) is

strictly less than ξ∗(R, T ). Again, assume that the condition

in (37) dominates ξ∗(R, T ). To provide intuition, notice that

in (63) triplets (θ, θ′, θ′′) ∈ Θ3 are optimized, in contrast to

(57), where only pairs of channels (θ, θ′′) ∈ Θ2 are optimized.

Thus, for a family of only two channels, namely, |Θ| = 2,

typically (but not necessarily) the second difference above,

of imposing the constraint θ′ = θ, is immaterial. Then, the

only difference between the conditions in (57) and (63) is the

constraint s ≤ ρ. Let us assume that this is indeed the case,

and let us notice that s can be thought as a Lagrange multiplier

for the constraint

EQ̃ logWθ′(Y |X) + ξE1(R, T, θ′)− EQ logWθ′′(Y |X)

− ξE1(R, T, θ′′)− T ≤ 0. (64)

Now, if the constraint, at the optimal solution, is slack, then

the optimal Lagrange multiplier is s∗ = 0. In this case, the

constraint s ≤ ρ is immaterial and so (57) and (63) are

exactly the same. However, as we shall see in the sequel, it

is possible that s∗ > ρ∗ in (63), and then the values of the

objective in (57) and (63) are different. Observing (64), it is

apparent that as T decreases, and especially in the list mode

of T < 0, the optimal s∗ of (63) increases, perhaps beyond the

optimal ρ∗. Thus, if both s∗ > ρ∗ and the condition in (37)

dominates ξ∗(R, T ), we get that ξL(R, T ) < ξ∗(R, T ). The

following example provides such a simple case. We remark,

that such a phenomenon was already observed in a Slepian-

Wolf erasure/list decoding scenario, for a known source [19].

There too, in the list regime of T < 0, there is a gap between

the Forney-style bound and the exact random binning error

exponents.

Example 2 Consider a family of two BSCs, where Θ =
{0.1, 0.15}, and a type PX = (1/2, 1/2) for the random fixed

composition codebook. We take (R, T ) = (0.4,−0.25), and

since T < 0, the decoder operates in the list mode. We obtain

that ξL(R, T ) = 0.716 which is strictly less than ξ∗(R, T ) =
0.727. In the optimization problem (57), the optimal values are

ρ∗ = s∗ = 0.231, while if the constraint s ≤ ρ is relaxed, then

the optimal values are s = 0.231 > ρ = 0.217. The resulting

value of the optimization problem is exactly 0.727, just as

ξ∗(R, T ). Moreover, for this example, the largest achievable ξ
which satisfies condition (37) is the same for condition (38).

While the difference between ξL(R, T ) and ξ∗(R, T ) is not

very large, it is nevertheless existent and in more intricate

scenarios, the differences might be more significant.

V. DECODING WITH TRAINING

Usually, in practical communication systems with channel

uncertainty, a portion of the blocklength is devoted to a
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training sequence which is common to all codewords. This

sequence is aimed for learning the unknown channel. In this

section, we will first define random coding ensembles which

incorporate a training sequence. Then, we shall propose and

compare two decoders for this scenario: the (asymptotically

optimal) universal decoder in (31), and a “plug-in” decoder,

which first estimates the channel using the training sequence,

and then decodes the remaining symbols of the codeword using

the estimated channel.

A. Definition of training ensembles

For reasons that will be clear in the sequel, we consider two

variants of an ensemble which incorporate a training sequence.

In the first ensemble, we fix a portion7 α ∈ [0, 1) of the

blocklength n. Then, a training sequence8 x̄ ∈ Xαn is chosen9

within type P̄X , and M = enR codewords x̃m ∈ X (1−α)n,

m = 1, 2, . . . ,M , are selected at random, uniformly within a

type class T (PX) for some given random coding distribution

PX over the alphabet X . The transmitted codewords are then

the concatenations xm = (x̄, x̃m) for 1 ≤ m ≤ M . In the

second ensemble, the blocklength of M = enR codewords

x̃m ∈ Xn, m = 1, 2, . . . ,M , remains n, but the codewords

are prefixed with a training sequence of length βn, where

β ≥ 0. The later ensemble leads of course to a reduction of

the effective rate to Reff = R/(1 + β). Since the channel is a

DMC, it can be easily verified that only the type of the training

sequence P̄X will affect performance, but not the particular

sequence within the type class T (P̄X). Evidently, when α = 0
or β = 0, we revert to the ordinary random coding ensemble.

Finally, it is important to emphasize that there is an inherent

trade-off in using training (i.e., taking α > 0 or β > 0):

learning time comes at the expense of effective blocklength

and vice-versa.

B. Universal decoder

Whenever ξ∗(R, T ) < 1, one can hope to improve ξ∗(R, T )
by using the training ensemble10 defined above with α > 0,

along with the asymptotically optimal decoder in (31). That

is, even though the first αn symbols are the same for all

codewords, the decoder computes the metric f(xm,y) for

the entire codeword. With a slight abuse of notation, we

may denote the maximal fraction achieved by this decoder as

ξ∗(R, T, α, P̄X), for α ∈ [0, 1), and then α = 0 corresponds

to the ordinary fixed-composition ensemble, considered in

Subsection IV-A. The methods used to prove Theorem 1, can

be generalized to obtain ξ∗(R, T, α, P̄X), and in Appendix

7As discussed in [7, Appendix I], achieving the random coding error
exponent when using a plug-in decoder with a training sequence of length
αnn such that αn → 0 is not possible, even for ordinary decoding. In a
nutshell, the error exponent of the plug-in decoder is not degraded by the
estimation error of the channel only when the length of the training sequence
is a linear function of n. For this reason, we consider a training sequence of
length αn, where α is a constant fraction.

8Henceforth, over-bar will indicate quantities which are related to the
training part.

9For brevity, integer constraints will be omitted.
10In this subsection, we will describe our results only for the first ensemble

(defined by α), but similar results can be readily derived for the second
ensemble (defined by β).

B, a closed-form formula for ξ∗(R, T, α, P̄X), with a proof

outline, are provided. Nonetheless, we suspect that, in fact,

ξ∗(R, T, α, P̄X) cannot be improved in this way, namely,

choosing α = 0 is optimal.

To gain intuition for the explanation of this phenomena,

we focus on two codewords only, x̃1 and x̃2, of length

(1 − α)n. In ordinary decoding for a known channel, the

decision on the decoded codeword is made only on the basis

of the order between the likelihoods of both codewords, i.e.,

Wθ(ỹ|x̃1) ≶ Wθ(ỹ|x̃2). On the other hand, in erasure/list

decoding for a known channel, the actual likelihood values

are of importance due to the multiplication of the competing

likelihood by e(1−α)nT (recall that, for example, the first code-

word is selected only if Wθ(ỹ|x̃1) > e(1−α)nT · Wθ(ỹ|x̃2)).
Now, if a common prefix (training sequence) is added to

both codewords (and transmitted over the channel), clearly

the likelihood of the first part Wθ(ȳ|x̄) is the same for both

codewords. Let the combined codewords be x1 = (x̄, x̃1) and

x2 = (x̄, x̃1), and the combined channel output be y = (ȳ, ỹ).
Then, while the order between the combined likelihoods is

preserved Wθ(y|x1) ≶ Wθ(y|x2), as the blocklength is now

n and not (1 − α)n, the ratio between the values of the two

likelihoods (or its inverse), now has to exceed enT , rather

than the smaller value of e(1−α)nT , so that erasure will not be

decided.

This occurs also in the case of an unknown channel, namely,

for the universal decoder in (31), and in the extreme cases for

which α is close to 1, it may happen that only erasures are

decided, which leads to a zero total error exponent. For small

and moderate values of α the total error exponent may not be

zero, but is still nonetheless worse than the exponent achieved

with α = 0. For the family of BSCs in Example 1, we have

numerically verified that α = 0 for all rates and thresholds.

We conjecture that this holds for more general families of

channels.

C. Plug-in decoder

A possible practical decoder (termed “plug-in” decoder),

for the training ensembles defined, works in two stages: First,

the decoder estimates the channel using the known training

sequence, and then uses this estimated channel in place of

the true (unknown) channel in using Forney’s decoder (4)-(5),

for the remaining symbols of the codeword. This sub-optimal

decoder, and the competitive minimax decoder in (31), are two

extremes. Indeed, the decoder in (31) achieves ξ∗(R, T ) but

may have rather high implementation complexity. The plug-in

decoder, on the one hand, has smaller complexity, and thus can

be more easily incorporated into practical systems11, but on

the other hand, achieves only some ξe(R, T ) ≤ ξ∗(R, T ) (to

be rigorously defined in the sequel). Therefore, if ξe(R, T ) ≪
ξ∗(R, T ) then there is substantial motivation to use the more

complex decoder (31). If, however, ξe(R, T ) ≈ ξ∗(R, T ) then

the plug-in decoder is sufficient to almost achieves the optimal

performance, while still keeping a reasonable implementation

11If, e.g., the code has some structure and the decoder for a known channel
can be implemented for any θ ∈ Θ, then the plug-in decoder for an unknown
channel only requires an additional estimation step.
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complexity. In this subsection, we analyze the competitive

minimax performance of the plug-in decoder.

As mentioned above, the training part, x̄, shall be used by

the decoder to estimate the channel (this is the first stage). Let

us split the output vector y into two parts (ȳ, ỹ), where the

first part corresponds to the training. The channel estimator is

a function θ̂(Q̄) ∈ Θ, where Q̄ = Q̂x̄ȳ . Then, in the second

stage, optimal decoding (for a known channel) is employed

for the remaining symbols of the codeword, assuming that the

channel is Wθ̂(Q̄). Let us denote this plug-in decoder by Re,

and its associated exponents by Ee
i (R, T, θ, α), for i = 1, 2

for the first ensemble, and Ĕe
i (R, T, θ, β) for the second

ensemble. To analyze these exponents let Em
i (R, T, θ, θ̂) for

i = 1, 2, designate the error exponents associated with the op-

timal decoder for a known channel, when tuned to the channel

Wθ̂(Q̄), but used over the channel Wθ (i.e., mismatched de-

coder), for the ordinary fixed-composition ensemble (without

training). Then, a routine method of types argument reveals

that

Ee
i (R, T, θ, α) = min

Q̄: Q̄X=P̄X

{

α ·D
(

Q̄||P̄X ×Wθ

)

+(1− α) · Em
i (R, T, θ, θ̂(Q̄))

}

, (65)

Ĕe
i (R, T, θ, β) = min

Q̄: Q̄X=P̄X

{

β ·D
(

Q̄||P̄X ×Wθ

)

+Em
i (R, T, θ, θ̂(Q̄))

}

, (66)

for i = 1, 2. Now, Em
i (R, T, θ, θ̂) can be obtained by

simply replacing every instance of EQlogWθ(Y |X), which

represent the log-likelihoods assuming the correct channel,

with the mismatched log-likelihoods EQlogWθ̂(Q̄)(Y |X) in

the exponent expressions of [18, Theorem 1 and Theorem

2]12. Note, however, that since a mismatched decoder is,

in general, sub-optimal, Lemma 1 cannot be used, and the

equality Em
2 (R, T, θ, θ̂) = Em

1 (R, T, θ, θ̂) + T may not nec-

essarily hold. Thus, in the mismatched case, the expression

for Em
2 (R, T, θ, θ) (see, [18, Theorem 2]) must be used,

along with the above replacement (to obtain Em
2 (R, T, θ, θ̂)).

It should be stressed, however, that the expression for

Em
2 (R, T, θ, θ) in [18, Theorem 2] is valid only for the erasure

mode13, i.e., T ≥ 0, which shall be assumed henceforth.

Finally, as can be seen from the above expressions, we need

to define/find the estimator θ̂(Q̄). If, e.g., Θ is the family of

all DMCs, with input alphabet X and output alphabet Y , then

the maximum likelihood estimator can be used, which in this

case, is just the parameter θ which corresponds to Q̄Y |X where

Q̄ = Q̂x̄ȳ . A different example is the family of all BSCs, and

12As mentioned before, in [18] the i.i.d. ensemble was assumed. The
modification to the fixed-composition ensemble is straightforward, and only
requires removing the D(QX ||PX) terms.

13In general, the undetected error probability event (pertaining to the error
exponent E2), is more difficult to analyze than the total error event (pertaining
to the error exponent E1), and in [18], E2 was only analyzed for the erasure
regime. The difficulty stems from the fact that the analysis in [18] is possible
only for disjoint decoding regions, which is not the case in the list regime.
Unfortunately, a direct analysis (namely, without relying on the relation E2 =
E1 + T , which might be wrong for the plug-in decoder) of the undetected
error exponent in the list regime is much more challenging.

in this case the maximum likelihood (ML) estimator is simply

Q̂x̄ȳ(X 6= Y ).
At this point, we can we can use the definition of the

competitive criterion Kn(C,R
e) in (28), and define K̄e

n ,
E {Kn(C,R

e)}, where the expectation is w.r.t. the first training

ensemble defined above. As before, for a given rate R and

threshold T , we will be interested in the maximal achievable

ξ such that

ξe(R, T, α, P̄X) , sup

{

ξ ∈ [0, 1] : lim sup
n→∞

1

n
log K̄e

n ≤ 0

}

.

(67)

The above definition sets the stage for a reasonable criterion

of optimal training, which includes both the relative training

time and the optimal (type of the) training sequence. In other

words, the training fraction α and training type P̄X can be

optimized to obtain,

ξe(R, T ) , max
0<α<1

max
P̄X

ξe(R, T, α, P̄X). (68)

Contrary to the universal decoder considered in the previous

subsections, here, we can easily extract ξe(R, T, α, P̄X), as

it appears only in the denominator of (28). Indeed, letting

Ee
i (R, T, θ), for i = 1, 2, be the error exponents associated

with the plug-in decoder Re, and the training ensemble defined

above, using (28) and (67), it is easy to verify that (69)-(71),

shown at the top of the next page, hold. Similar results can be

obtained for the second training ensemble. Note that for the

second ensemble ξ should be monotonically increasing with

β, because the more we train the plug-in decoder, the better

we compete with the informed decoder. Accordingly, when

β → ∞ the plug-in decoder actually knows the channel, so

the maximal ξ should be trivially one, but Reff is zero. In

between these two extremes, we get the entire spectrum of

trade-offs between the maximal ξ and Reff.

D. Numerical examples

Consider the setting of Example 1, in which a family of

BSCs is studied where θ ∈ Θ designates the cross-over

probability of the BSC, and Θ = {0, 1/100, 2/100, . . . , 1}.

Due to the symmetry of the channels, we take PX = P̄X =
(1/2, 1/2). The plug-in decoder employs the ML estimator in

the initial estimation stage to estimate the unknown crossover

probability.

For a given rate R and threshold T we will plot the error

exponent achieved for any given θ ∈ Θ by the various

decoders. In light of the discussion in Subsection V-B, for both

the optimal decoder for a known channel and the universal

decoder (31), we will assume that there is no training, i.e.,

α = 0 (or, β = 0). From the proof of Theorem 1, it is evident

that the exponents achieved by the universal decoder (31) are

given by

Eu
1 (R, T, θ) , min

{

min
Q̃∈L

D(Q̃||PX ×Wθ),

min
(Q,Q̃)∈Q

{

D(Q̃||PX ×Wθ) + I(Q)−R
}

}

, (72)
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ξe(R, T, α, P̄X) = min
θ∈Θ

{

−
1

E1(R, T, θ)

[

T + lim sup
n→∞

1

n
E {Γθ(C,R

e)}

]}

(69)

= min
θ∈Θ

{

−
1

E1(R, T, θ)
[T −min {Ee

1(R, T, θ) + T,Ee
2(R, T, θ)}]

}

(70)

= min
θ∈Θ

{

1

E1(R, T, θ)
[min {Ee

1(R, T, θ), Ee
2(R, T, θ)− T }]

}

. (71)
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θ

 

 

E1(R, T, θ)
E2(R, T, θ)
Eu

1 (R, T, θ)
Eu

2 (R, T, θ)
Ee

1(R, T, θ,α = 0.25)
Ee

2(R, T, θ,α = 0.25)

Fig. 1. Comparison of the error exponents achieved by the optimal decoder
for known channel, universal decoder, and the plug-in decoder, as a function
of θ, for R = T = 0.1, ξ∗(R, T ) = 0.66, and using the first ensemble with
α = 0.25.

and Eu
2 (R, T, θ) = Eu

1 (R, T, θ) + T , due to Lemma 2 (see,

Appendix A). To evaluate (72), in every instance of ξ (e.g.,

(33)), we substitute ξ∗(R, T ) which was already calculated in

Example 1. Finally, the exponents of the plug-in decoder are

given in (65) and (66), for the two ensembles, respectively.

In our simulations, we choose R = T = 0.1, for which

ξ∗(R, T ) = 0.66, and we use α = 0.25, which turns out to be

the (approximately) optimal length of the training sequence,

for all θ ∈ Θ. Fig. 1 compares the error exponents achieved by

the various decoders (i.e., optimal decoder for known channel,

universal decoder, and plug-in decoder), as a function of θ,

using the first ensemble (defined via α) for the plug-in decoder.

It can be seen that there is a noticeable loss in using the plug-in

decoder compared to the universal decoder. Fig. 2 compares

the error exponents achieved by the various decoders, as a

function of θ, using the second ensemble (defined via β) for

the plug-in decoder, using two values of β. From this figure, it

can be seen that for β = 0.32 the performance of the plug-in

decoder are close to the universal decoder, and for β = 0.5
the performance are fairly close to the known channel decoder.

Recall, however, that the price in using β = 0.32 and β = 0.5
is an effective rate of Reff = 0.76 · R and Reff = (2/3) · R,

respectively.

Remark 1 Remarkably, in our numerical calculations we get

that ξe(R, T ) = 0 (defined in (68)), for all R ≥ 0 and

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

θ

 

 

E1(R, T, θ)
E2(R, T, θ)
Eu

1 (R, T, θ)
Eu

2 (R, T, θ)
Ĕe

1(R, T, θ, β = 0.320)
Ĕe

2(R, T, θ, β = 0.320)
Ĕe

1(R, T, θ, β = 0.500)
Ĕe

2(R, T, θ, β = 0.500)

Fig. 2. Comparison of the error exponents achieved by the optimal decoder
for known channel, universal decoder, and the plug-in decoder, as a function
of θ, for R = T = 0.1, ξ∗(R, T ) = 0.66, and using the second ensemble
with β = 0.32, 0.5.

T > 0. This result may be attributed to the fact that our

competitive criterion implicitly assumes that the difference

between the total error exponent and the undetected error

exponent is T (and rightfully, as this is true for both the

optimal decoder in the case of a known channel, and for

the asymptotically optimal decoder in the case of unknown

channel). However, this is not necessarily true for the plug-in

decoder, and Ee
2(R, T, θ) maybe less than Ee

1(R, T, θ) + T ,

and so the undetected error exponent of the plug-in decoder

poorly competes with ξ ·E1(R, T, θ)+T (recall the definition

in (26)). For this example, no value of α has produced

Ee
2(R, T, θ) ≥ T uniformly over θ ∈ Θ and this resulted

in the zero values ξe(R, T ) (recall (71)). So, even in this

relatively simple example, using a plug-in decoder will cause

a significant loss in error exponents. In light of this result, a

less pessimistic criterion, could be

min
R

max
θ∈Θ

Γθ (C,R)

e−n[ξ̄·E1(R,T,θ)+ξ̄T ]
, (73)

where now T is also multiplied by ξ̄. A fraction ξ achieved

under this criterion implies that the plug-in decoder simulta-

neously achieves exponents of Ee
1(R, T, θ) ≥ ξ̄ · E1(R, T, θ)

and Ee
2(R, T, θ) ≥ ξ̄ · E2(R, T, θ) = ξ · (E1(R, T, θ) + T )

for all θ ∈ Θ. The analysis of the maximal achievable fraction

ξ̄(R, T ) that pertains to (73) is the same as for ξe(R, T ) under

the original criterion. Of course, this alternative criterion will
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lead to different numerical values for ξe(R, T ) (specifically,

positive values for T > 0).

VI. PROOFS

In the following, for simplicity of notations, we omit the

dependency of the various quantities on R, T , and ξ, as they

remain constants along the proofs, e.g., Ω(R, T, ξ,Q, Q̃) will

be replaced with Ω(Q, Q̃).
Proof of Theorem 1: We analyze the total error term,

following the steps of [18, Section V]. As was mentioned

earlier, we want to assess the (exact) exponential behavior

of E

[

Kn(C, R̂)
]

. In [15, Theorem 2], an upper bound was

derived on this quantity, so here we seek a tight lower bound.

Let Θn denote the set of values of θ that achieve the maximum

at the right-hand side of (30) for some x ∈ Xn,y ∈ Yn. Note

that the elements of Θn depend on x and y only through their

joint type, and whence, we have that |Θn| ≤ (n+1)|X |·|Y|−1,

i.e. the size of Θn is a polynomial function of n. Now,

E

[

Kn(C, R̂)
]

= E

{

max
θ∈Θ

Γθ(C, R̂)

e−n(ξE1(θ)+T )

}

≥ E

{

max
θ∈Θn

Γθ(C, R̂)

e−n(ξE1(θ)+T )

}

(a).
= E

{

∑

θ∈Θn

Γθ(C, R̂)

e−n(ξE1(θ)+T )

}

(b)
= E

{

∑

θ∈Θn

1
M

∑M
m=1

∑

y∈R̂m

∑

m′ 6=m Wθ(y|Xm′)

e−n(ξE1(θ)+T )

+

1
M

∑M
m=1

∑

y∈R̂c
m
e−nTWθ(y|Xm)

e−n(ξE1(θ)+T )

}

= E







1

M

M
∑

m=1

∑

y∈R̂m

∑

m′ 6=m

∑

θ∈Θn

en(ξE1(θ)+T )Wθ(y|Xm′)







+ E







1

M

M
∑

m=1

∑

y∈R̂c
m

∑

θ∈Θn

enξE1(θ)Wθ(y|Xm)







(c).
= E







1

M

M
∑

m=1

∑

y∈R̂m

∑

m′ 6=m

max
θ∈Θn

en(ξE1(θ)+T )Wθ(y|Xm′)







+ E







1

M

M
∑

m=1

∑

y∈R̂c
m

max
θ∈Θn

enξE1(θ)Wθ(y|Xm)







= E







1

M

M
∑

m=1

∑

y∈R̂m

∑

m′ 6=m

f(Xm′ ,y)







+ E







1

M

M
∑

m=1

∑

y∈R̂c
m

e−nT f(Xm,y)







(74)

where in (a) and (c) we have used the fact that the size of

Θn is polynomial, and thus can be absorbed in the enT factor

(see, [18, pp. 5, footnote 2]), and (b) follows from (8). As was

shown in [15, eq. after (A.1)], the lower bound in (74) is, in

fact, also an upper bound on E

[

Kn(C, R̂)
]

. Therefore, in the

exponential scale, nothing was lost due to the above bounding,

and we essentially have that

E

[

Kn(C, R̂)
]

.
= E







1

M

M
∑

m=1

∑

y∈R̂m

∑

m′ 6=m

f(Xm′ ,y)







+ E







1

M

M
∑

m=1

∑

y∈R̂c
m

e−nT f(Xm,y)







.

(75)

Contrary to the proof technique used in [15] to assess the expo-

nential behavior of (75), where Chernoff and Jensen bounds

were invoked, here, we will evaluate the exact exponential

scale of the two terms on the right hand side of (75). It can

be noticed that the first expression is related to undetected

errors (or average number of incorrect codewords on the list),

and the second one is related to the total error (erasures and

undetected errors). For brevity, we define

A1 , e−nT · E







1

M

M
∑

m=1

∑

y∈R̂c
m

f(Xm,y)







, (76)

and

A2 , E







1

M

M
∑

m=1

∑

y∈R̂m

∑

m′ 6=m

f(Xm′ ,y)







, (77)

and so

E

[

Kn(C, R̂)
]

.
= A1 +A2. (78)

As was mentioned before, we would like to analyze the

exponential rate of (75), or, equivalently, of (76) and (77).

Now, note that,

lim
n→∞

1

n
logE

[

Kn(C, R̂)
]

= max

{

lim
n→∞

1

n
logA1, lim

n→∞

1

n
logA2

}

, (79)

whenever all the limits exist. Then, a fraction ξ is achievable

if both n−1 logA1 and n−1 logA2 converge to a non-positive

constant as n → ∞. Let us begin with the evaluation of A1.

Continuing from (76), we get (80)-(84), shown at the top of the

next page, where (a) follows from the symmetry of the random

coding mechanism, and the probability in the last equation is

over the random choice of {Xm′}m′ 6=m, which determines

R̂m. Now, if Q is the joint empirical probability distribution

(defined on X × Y) of xm′ and y, then,

f(xm′ ,y) = max
θ∈Θ

{

en(ξE1(θ)+T )Wθ(y|xm′)
}

(85)

= max
θ∈Θ

{

en(ξE1(θ)+T )enEQ logWθ(Y |X)
}

(86)

= exp

[

n ·max
θ∈Θ

{(ξE1(θ) + T ) + EQ logWθ(Y |X)}

]

(87)

= exp [n ·G(Q)] , (88)

where

G(Q) , max
θ∈Θ

{

ξE1 (θ) + T + EQ̃ logWθ(Y |X)
}

. (89)
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A1 = e−nT
E

{

1

M

M
∑

m=1

∑

y

f(Xm,y) · I{y ∈ R̂c
m}

}

(80)

(a)
= e−nT

E

{

∑

y

f(Xm,y) · I{y ∈ R̂c
m}

∣

∣

∣

∣

∣

mth message transmitted

}

(81)

= e−nT
∑

y

E

{

f(Xm,y) · I{y ∈ R̂c
m}

∣

∣

∣
mth message transmitted

}

(82)

= e−nT
∑

xm

PX(Xm = xm)
∑

y

E

{

f(Xm,y) · I{y ∈ R̂c
m}

∣

∣

∣
Xm = xm,mth message transmitted

}

(83)

= e−nT
∑

xm

PX(Xm = xm)
∑

y

f(xm,y) · Pr
{

y ∈ R̂c
m

∣

∣

∣
Xm = xm,mth message transmitted

}

(84)

Next, we shall focus on the latter probability in (84). For a

given xm and y, let Q̃ = P̂xy , and let Ny(Q) denote the

number of codewords (excluding xm) whose joint empirical

probability distribution with a given y is Q. Accordingly, we

have that

Pr
{

y ∈ R̂c
m|Xm = xm,Y = y

}

= Pr







∑

m′ 6=m

f(Xm′ ,y) ≥ f(xm,y)e−nT







= Pr







∑

Q

Ny(Q) exp [n ·G(Q)] ≥ exp
[

n ·G(Q̃)
]

e−nT







.
= Pr

{

max
Q

Ny(Q) exp [n ·G(Q)] ≥ exp
[

n ·G(Q̃)
]

e−nT

}

= Pr







⋃

Q

Ny(Q) exp [n ·G(Q)] ≥ exp
[

n ·G(Q̃)
]

e−nT







.
=

∑

Q

Pr
{

Ny(Q) exp [n ·G(Q)] ≥ exp
[

n ·G(Q̃)
]

e−nT
}

.
= max

Q
Pr

{

Ny(Q) exp [n ·G(Q)] ≥ exp
[

n ·G(Q̃)
]

e−nT
}

= max
Q∈S(P̂y)

Pr
{

Ny(Q) ≥ exp
[

n · Ω(Q, Q̃)
]}

(90)

where

Ω(Q, Q̃) , G(R, T, ξ, Q̃)−G(R, T, ξ,Q)− T (91)

and for a given Q̆Y , S(Q̆Y ) , {Q : QY = Q̆Y }. The

asymptotic analysis of the probability in (90) was carried out

in [18, Section V] for any given Ω, and it is not different here.

The result relies on the exponential decay of the probability

that the joint type of a given y with a randomly chosen xm′

is Q, namely

p , Pr
{

P̂Xm′ ,y = Q
}

. (92)

Under the assumed random coding ensemble, a simple appli-

cation of the method of types reveals that [4]

p
.
= exp {−nI(Q)} . (93)

Next, standard large deviations arguments (cf. [18, Section

V]) reveal that for Q ∈ S(P̂y), we have (94), shown at the

top of the next page, where by an
.
= 0 we mean that an

decreases to 0 super-exponentially fast. Define U(Q̃) in (95).

Thus, substituting (94) in (90) and then in (84), we obtain,

using the method of types,

A1
.
= e−nT

∑

xm

P (Xm = xm)
∑

y

f(xm,y) · U(Q̃) (96)

.
= e−nT max

Q̃
exp

[

nHY |X(Q̃)
]

exp
[

nG(Q̃)
]

U(Q̃).

(97)

Note that the condition:

Ω(Q, Q̃) ≤ R− I(Q) (98)

in (95) is equivalent to

G(Q̃) ≤ G(Q)− I(Q) +R+ T. (99)

Thus, we obtain that the exponent of A1 is given by

lim
n→∞

1

n
logA1 = −T −min

{

Ẽa(R, T, ξ), Ẽb(R, T, ξ)
}

,

(100)

in which

Ẽa(R, T, ξ) , min
(Q,Q̃)∈Q

[

−HY |X(Q̃)−G(Q̃) + I(Q)−R
]

(101)

where

Q ,
{

(Q, Q̃) ∈ D : I(Q) ≥ R, Ω(R, T, ξ,Q, Q̃) ≤ 0
}

,

(102)

and

Ẽb(R, T, ξ) , min
Q̃∈L

[

−HY |X(Q̃)−G(Q̃)
]

(103)

where

L ,

{

Q̃ : G(R, T, ξ, Q̃) ≤ R+ T

+ max
Q:(Q,Q̃)∈D, I(Q)≤R

[G(R, T, ξ,Q)− I(Q)]

}

. (104)

Now, we want to find the maximal ξ for which

−T − Ẽa(R, T, ξ) ≤ 0, (105)
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Pr
{

Ny(Q) ≥ enΩ(Q,Q̃)
}

.
=















exp
{

−n |I(Q)−R|+
}

Ω(Q, Q̃) ≤ 0

1 0 < Ω(Q, Q̃) ≤ R− I(Q)

0 Ω(Q, Q̃) > R− I(Q)

, (94)

U(Q̃) , max
Q∈S(Q̃Y )















exp [−n(I(Q)−R)] Ω(Q, Q̃) ≤ 0, I(Q) > R

1 I(Q) ≤ R, Ω(Q, Q̃) ≤ R− I(Q)

0 otherwise

. (95)

−T − Ẽb(R, T, ξ) ≤ 0. (106)

For Ẽa(R, T, ξ), substituting G(Q), given in (89), in (101),

we obtain (107)-(110), shown at the top of the page, which is

exactly the condition in (37). In a similar manner, one obtains

− Ẽb(R, T, ξ)− T

= max
θ

{

ξE1 (θ)−min
Q̃∈L

D(Q̃||PX ×Wθ)

}

, (111)

which is exactly the condition in (38). This concludes the

analysis of A1, and we next consider A2. In essence, we can

derive the exponential behavior of A2, using similar methods

to the derivation of E2(R, T, θ) in [18]. However, since the

resulting exponent limn→∞
1
n logA2 is continuous in T , just

as limn→∞
1
n logA1, we may invoke the following lemma,

which is analogue to Lemma 1, and is proved in Appendix A:

Lemma 2 For all R and T :

lim
n→∞

1

n
logA2 = T + lim

n→∞

1

n
logA1. (112)

Thus, it suffices to asses the exponent of either A1 or A2,

and then the other one is immediately obtained. While both

A1 and A2 can be analyzed, the analytical formula for the

exponent of A1 is more compact, and thus we only presented

it.

Proof of Corollary 1: Define the set G(Q̃Y ) , {Q :
I(Q) < R, QY = Q̃Y }. We start from the first condition in

Theorem 1, which is equivalent to requiring that for all θ and

Q̃

ξE1 (R, T, θ) ≤ D(Q̃||PX ×Wθ)

+ min
Q∈Gc(Q̃Y )

max
λ≥0

[

I(Q)−R + λ · Ω(R, T, ξ,Q, Q̃)
]

.

(113)

Letting

Ωθ1,θ2(R, T, ξ,Q, Q̃) , ξE1 (R, T, θ1) + EQ̃ [logWθ1 (Y |X)]

− [ξE1 (R, T, θ2) + EQ [logWθ2 (Y |X)]]− T, (114)

we have by definition,

Ω(R, T, ξ,Q, Q̃) = max
θ1

min
θ2

Ωθ1,θ2(R, T, ξ,Q, Q̃). (115)

Substituting (115) in (113), we get

ξE1 (R, T, θ) ≤ D(Q̃||PX ×Wθ)

+ min
Q∈Gc(Q̃Y )

max
λ≥0

max
θ1

min
θ2

[

I(Q)−R

+λ · Ωθ1,θ2(R, T, ξ,Q, Q̃)
]

, (116)

which is equivalent to demanding that for all Q ∈ Gc
R(Q̃Y )

there exist some λ ≥ 0 and θ1 ∈ Θ, such that for all θ2 ∈ Θ
we have

ξE1 (R, T, θ) ≤ D(Q̃||PX ×Wθ) + I(Q)−R

+ λ · Ωθ1,θ2(R, T, ξ,Q, Q̃). (117)

Upon substitution of (114) in (117), after rearranging the

terms, we obtain ξ ≤ ξ̂1(R, T,Q, Q̃, θ, θ1, θ2, λ), where ξ̂1
is defined in (39). Thus, the largest achievable ξ which

satisfies the first condition is ξ∗1(R, T ). In the same way,

the second condition yields ξ∗2(R, T ), and thus, ξ∗(R, T ) =
min {ξ∗1 (R, T ), ξ∗2(R, T )}.

Proof of Corollary 2: In the following, we analyze the

objective in (37) for any θ. Starting with the left term, E1(θ),
note that this is just the expression that was considered in [18,

pp. 6450-6451, eqs. (64)-(73)]. For completeness, we present

here the main steps in the simplification of this term to the

BSC. We start with the analysis of Ea(R, T ) given in (13).

First, note that

EQ̂ logWθ(Y |X)− EQ logWθ(Y |X)

=
[

Q (X 6= Y )− Q̂ (X 6= Y )
]

β (118)

where β = log [(1− θ) /θ]. Thus, recalling (12), E1(θ) takes

the form

min
Q̃







D(Q̃||PX ×Wθ)

+

∣

∣

∣

∣

∣

min
Q∈Q̂BSC(Q̃)

(

−HX|Y (Q) + log 2−R
)

∣

∣

∣

∣

∣

+






(119)

where

Q̂BSC(Q̃) ,
{

Q : QY = Q̃Y ,

Q (X 6= Y ) ≤ Q̃ (X 6= Y ) +
T

β

}

. (120)

Now, note that

HX|Y (Q) = HI{X 6=Y }|Y (Q) ≤ HI{X 6=Y }(Q), (121)
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−Ẽa(R, T, ξ)− T = max
(Q,Q̃)∈Q

[

HY |X(Q̃) +G(Q̃)− I(Q) +R
]

− T (107)

= max
(Q,Q̃)∈Q

[

HY |X(Q̃) + max
θ

{

ξE1 (θ) + EQ̃ logWθ(Y |X)
}

− I(Q) +R

]

(108)

= max
θ

{

ξE1 (θ) + max
(Q,Q̃)∈Q

{

HY |X(Q̃)− I(Q) +R+ EQ̃ logWθ(Y |X)
}

}

(109)

= max
θ

{

ξE1 (θ)− min
(Q,Q̃)∈Q

{

D(Q̃||PX ×Wθ) + I(Q)−R
}

}

, (110)

and thus

min
Q̃







D(Q̃||PX ×Wθ)

+

∣

∣

∣

∣

∣

min
Q∈Q̂BSC(Q̃)

(

−HX|Y (Q) + log 2−R
)

∣

∣

∣

∣

∣

+






≥ min
Q̃







D(Q̃||PX ×Wθ)

+

∣

∣

∣

∣

∣

min
Q∈Q̂BSC(Q̃)

(

−HI{X 6=Y }(Q) + log 2−R
)

∣

∣

∣

∣

∣

+






(122)

= min
q̃

{

D (q̃||θ) +

∣

∣

∣

∣

min
q≤q̃+T/β

(−h (q) + log 2−R)

∣

∣

∣

∣

+
}

(123)

where the last step follows since the minimizing Q̃ is such that

Q̃X = PX to obtain minimal D(Q̃||PX ×Wθ), and it is easy

to verify using convexity arguments that given Q̃(X 6= Y ) = q̃
the divergence D(Q̃||PX ×Wθ) is minimized for a symmetric

Q̃Y |X , namely,

Q̃Y |X (y|x) =

{

q̃ x = y

1− q̃ x 6= y
, (124)

for which D(Q̃||PX ×Wθ) = D (q̃||θ). Finally, it is evident

that we have equality in (122) if we choose

QY |X (y|x) =

{

q x = y

1− q x 6= y
, (125)

and thus it is the minimizer. Next, we observe that −h (q) is

a decreasing function of q for q ∈ [0, 1/2] and increasing for

q ∈ [1/2, 1]. Thus,

min
q̃

{

D (q̃||θ)

+

∣

∣

∣

∣

min
q≤q̃+T/β

(−h (q) + log 2−R)

∣

∣

∣

∣

+
}

= min
q̃

{

D (q̃||θ)

+

∣

∣

∣

∣

−h

(

min

{

1

2
, q̃ +

T

β

})

+ log 2−R

∣

∣

∣

∣

+
}

= min
q̃

{

D (q̃||θ)

−h

(

min

{

δGV (R) , q̃ +
T

β

})

+ log 2−R

}

= min
q̃∈[θ,δGV (R)−T/β]

[

D (q̃||θ)− h

(

q̃ +
T

β

)]

+ log 2−R

(126)

where the last step can be easily verified using monotonicity

properties of the binary entropy and divergence [18, p. 6451

after eq. (72)]. Now, we analyze Eb(R, T ) given in (14). Note

that there is no conceptual difference between Ea(R, T ) and

Eb(R, T ), and it can be verified that the latter can be written

as

min
q̃∈L̂BSC

D (q̃||θ) (127)

where

L̂BSC ,

{

q̃ : −q̃ · β ≤ R+ T

+ max
q: R≥log 2−h(q)

[−q · β + h(q)− log 2]

}

. (128)

Next, for any θ, consider the right term in objective of

(37). Note that the only difference between the left and the

right terms in (37) is just the inner minimization region.

Accordingly, the right term takes the form

min
Q̃

{

D(Q̃||PX ×Wθ)

+

∣

∣

∣

∣

∣

min
Q∈QBSC(Q̃)

(

−HX|Y (Q) + log 2−R
)

∣

∣

∣

∣

∣

+






(129)

where

QBSC(Q̃) ,
{

Q : QY = Q̃Y ,

max
θ′

{

ξE1(θ
′)− β(θ′)Q̃ (X 6= Y ) + log (1− θ′)

}

−max
θ′

{ξE1(θ
′)− β(θ′)Q (X 6= Y ) + log (1− θ′)}

− T ≤ 0
}

. (130)
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Let Ẽ1 (θ) , E1 (θ) + log(1 − θ)/ξ. Then, using exactly the

same steps as before, we get

min
Q̃







D(Q̃||PX ×Wθ)

+

∣

∣

∣

∣

∣

min
Q∈QBSC(Q̃)

(

−HX|Y (Q) + log 2−R
)

∣

∣

∣

∣

∣

+






≥ min
Q̃







D(Q̃||PX ×Wθ)

+

∣

∣

∣

∣

∣

min
Q∈QBSC(Q̃)

(

−HI{X 6=Y }(Q) + log 2−R
)

∣

∣

∣

∣

∣

+






(131)

= min
q̃







D (q̃||θ) +

∣

∣

∣

∣

∣

min
q∈Q̃BSC(q̃)

(−h (q) + log 2−R)

∣

∣

∣

∣

∣

+






,

(132)

and equality can be achieved choosing Q to be symmetric, as

before, and

Q̃BSC(q̃) ,

{

q : max
θ′

{

ξẼ1(θ
′)− β(θ′) · q̃

}

−max
θ′

{

ξẼ1(θ
′)− β(θ′) · q

}

− T ≤ 0

}

. (133)

Next, we simplify the set Q̃BSC(q̃). The constraint on q in the

definition of Q̃BSC(q̃), is equivalent to demanding that there

exist some θ′ ∈ Θ such that the following holds

β(θ′)q − ξẼ1(θ
′) ≤ T −max

θ′′

{

ξẼ1(θ
′′)− β(θ′′) · q̃

}

,

(134)

or equivalently

β(θ′)q ≤ ξẼ1(θ
′) + T −max

θ′′

{

ξẼ1(θ
′′)− β(θ′′) · q̃

}

.

(135)

Now, note that β(θ′) ≥ 0 if and only if θ′ ≤ 1/2. Accordingly,

this means that, in terms of q, Q̃BSC(q̃) is equivalent to q ≤
q∗1 or q ≥ q∗2 , where q∗1 and q∗2 are given in (45) and (46),

respectively. Consequently,

min
q̃







D (q̃||θ) +

∣

∣

∣

∣

∣

min
q∈Q̃BSC(q̃)

(−h (q) + log 2−R)

∣

∣

∣

∣

∣

+






= min
q̃

{

D (q̃||θ) + |(−g (q∗1 , q
∗
2) + log 2−R)|+

}

(136)

where g (q∗1 , q
∗
2) is defined in (47). Finally, we consider the

right term in (38). Using the same steps as above we obtain

that

min
Q̃∈L

D(Q̃||PX ×Wθ) = min
q̃∈LBSC

D (q̃||θ) (137)

where LBSC is defined in (138)-(139), shown at the top of the

next page, where the last step in (139) follows from the fact

that the maximizer q in the optimization problem in (138) is

given by max {θ, δGV(R)}.

APPENDIX A

PROOF OF LEMMAS 1 AND 2

We begin with the proof of Lemma 1. For the sake of this

proof, we will explicitly designate the dependence on T , and

denote the decoder in (4)-(5), with parameter T , by R∗(T ).
Similarly, we will denote the value of (7) as Γ(C,R, T ). As

we have mentioned, the decoder minimizing Γ(C,R, T ) can

be easily seen to be given by R∗(T ). Now, assume conversely,

that the exponents associated with E[Γ(C,R∗(T ), T )] satisfy

E2(R, T ) < T + E1(R, T ). (A.1)

The opposite case, where the inequality in (A.1) is reversed,

can be handled analogously. Accordingly, this means that in

the exponential scale, we have

E[Γ(C,R∗(T ), T )]
.
= e−nE2(R,T ). (A.2)

Now, it is evident that E1(R, T ) is a monotonically decreasing

function of T (allowing more erasures increases Pr {E1}),

and E2(R, T ) is a monotonically increasing function of T
(allowing more erasures decreases Pr {E2}) [18]. Now, due to

the fact that E1(R, T ) and E2(R, T ) are continuous functions

of T [18, eqs. (23) and (31)], without loss of essential

generality, there exists ǫ > 0 and δ1 ≥ 0, δ2 > 0 such that

E1(R, T + ǫ) = E1(R, T )− δ1 (A.3)

and

E2(R, T + ǫ) = E2(R, T ) + δ2 (A.4)

yet

E2(R, T + ǫ) < T + E1(R, T + ǫ). (A.5)

Note that since it is not guaranteed that E1(R, T ) or E2(R, T )
are strictly monotonic, as it might be the case that δ2 = 0 too,

i.e., regions of plateau. Accordingly, there are several cases

to consider. First, if just E1(R, T ) is within a plateau region,

then the above arguments remain the same since δ1 = 0 but

δ2 > 0. Secondly, if just E2(R, T ) is within a plateau region,

then we claim that this contradicts the optimality of Forney’s

decoder. Indeed, in this case, if we increase T by some small

ǫ > 0 (such that E2(R, T + ǫ) is within the plateau), we

obtain a decoder with exponents E2(R, T + ǫ) = E2(R, T )
and E1(R, T + ǫ) < E1(R, T ), and yet, due to continuity,

E2(R, T ) < E1(R, T + ǫ). Thus, we obtained that the optimal

decoder R∗(T + ǫ) has the same performance as R∗(T ), in

terms of E[Γ(C,R∗(T ), T )], but with worse Pr {E1}, which

means not the best trade-off between Pr {E1} and Pr {E2},

and thus contradicting the optimality of Forney’s decoder at

T+ǫ. Finally, if both exponents are within a region of plateau,

we can simply vary T until we leave this region, and thus we

can assume that δ2 > 0. To conclude, we obtained that

E[Γ(C,R(T + ǫ), T )]
.
= e−nE2(R,T+ǫ) (A.6)
.
< e−nE2(R,T ) (A.7)
.
= E[Γ(C,R(T ), T )] (A.8)

which contradicts the property that R∗(T ) is the minimizer of

Γ(C,R, T ).
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LBSC ,

{

q̃ : max
θ

[ξE1(θ) − q̃ · β + log θ] ≤ R + T + max
q: R≥log 2−h(q)

{

max
θ

[ξE1(θ)− q · β + log θ] + h(q)− log 2

}}

(138)

=

{

q̃ : max
θ

[ξE1(R, T, θ)− q̃ · β(θ) + log θ] ≤ R+ T

+max
θ

[ξE1(R, T, θ)−max {θ, δGV(R)} · β(θ) + log θ + h(max {θ, δGV(R)})− log 2]

}

(139)

The proof of Lemma 2 follows the same steps as above.

Indeed, the Lagrangian associated with the universal erasure

decoder (see, (75)), has a similar structure to the Lagrangian

associated with the optimal (known channel) decoder (see,

(8)). As was mentioned in the proof of Theorem 1, the

exponents of A1 and A2 are both continuous. So, just as the

difference between the exponents of Pr {E1} and Pr {E2} is

T , the difference between the exponents of A1 and A2 is also

T .

APPENDIX B

UNIVERSAL DECODER WITH TRAINING

To present the achieved fraction for the ensemble which

includes training, we need to slightly generalize the definitions

preceding Theorem 1. The definitions of G(R, T, ξ, Q̃) in (33)

and Ω(R, T, ξ,Q, Q̃) in (34) remain exactly the same. Define,

J(Q, Q̄) , (1 − α) · I

(

Q− αQ̄

1− α

)

. (B.1)

For a given joint type Q̄, we replace the definition of Q in

(35) with

Q(Q̄) ,
{

(Q, Q̃) ∈ D(Q̄) : J(Q, Q̄) ≥ R,

Ω(R, T, ξ,Q, Q̃) ≤ 0
}

, (B.2)

and replace the definition of L in (36) with

L(Q̄) ,
{

Q̃ : G(R, T, ξ, Q̃) ≤ R+ T

+ max
Q:(Q,Q̃)∈D(Q̄), J(Q,Q̄)≤R

[

G(R, T, ξ,Q)− J(Q, Q̄)
]

}

,

(B.3)

where D defined in (16) is replaced by

D(Q̄) ,
{

(Q, Q̃) : QX = Q̃X = PX , QY = Q̃Y ,

Q− αQ̄

1− α
is a probability distribution

}

. (B.4)

Finally, define

∆θ(Q, Q̄) , α ·D
(

Q̄||P̄X ×Wθ

)

+ (1− α) ·D

(

Q − αQ̄

1− α

∣

∣

∣

∣

∣

∣

∣

∣

PX ×Wθ

)

. (B.5)

Theorem 2 Consider the ensemble defined above with types

P̄X and PX , and a fixed α ∈ [0, 1). Then, ξ∗(R, T, α, P̄X),

defined in (29), is equal to the largest number ξ that simulta-

neously satisfies:

max
θ∈Θ

{

ξE1 (R, T, θ)−

min
Q̄: Q̄X=P̄X

min
(Q,Q̃)∈Q(Q̄)

{

∆θ(Q̃, Q̄) + J(Q, Q̄)−R
}

}

≤ 0,

(B.6)

and

max
θ∈Θ

{

ξE1 (R, T, θ)− min
Q̄: Q̄X=P̄X

min
Q̃∈L(Q̄)

∆θ(Q̃, Q̄)

}

≤ 0.

(B.7)

Choosing a strictly positive α has the potential to increase

ξ∗(R, T, 0, P̄X). However, the behavior of ξ∗(R, T, α, P̄X)
as a function of α, is typically not monotonic. Indeed, as

was mentioned before, on the one hand, as α increases, the

decoder has better knowledge of the channel, even if it does

not estimate it explicit. On the other hand, the number of

available symbols (1 − α)n that are used to distinguish the

M =
⌈

enR
⌉

codewords from one another decreases14. Thus,

we expect that, in general, ξ∗(R, T, α, P̄X) will be maximized

by some α∗ ∈ (0, 1). In addition, the type of the training part

P̄X may also be optimized. Evidently, Theorem 2 sets the stage

for a reasonable criterion of optimal training, which includes

both the relative training time and the optimal (type of the)

training sequence. Similarly to Corollary 1, one can derive a

formula for ξ∗(R, T, α, P̄X), and then, a reasonable objective

would be to optimize ξ∗(R, T, α, P̄X) over both α and P̄X .

Proof of Theorem 2: The proof follows the same lines of

the proof Theorem 1 so we mainly highlight the differences.

We will represent the joint type of the training sequence x̄ and

the training part of y by Q̄. Also, for a given y we will denote

by ȳ the first α · n symbols of y (i.e. the output symbols for

the training sequnece). We continue (84) as shown in (B.8)-

(B.12), presented at the top of the next page. Now, if the joint

type of the training sequence x̄ and the training part of y is

Q̄, and the type of the entire codeword xm and y is Q, then

the type of the last (1−α)n symbols of xm and y is Q−αQ̄
1−α .

So, the probability in Eq. (92) should now be replaced by

p
.
= exp

{

−n · J(Q, Q̄)
}

. (B.13)

Consequently, for Q ∈ S(P̂y), we have (B.14), and we define

(B.15), both shown at the top of the next page. Thus, using

14Note that the blocklength which is used to gauge the rate is still n.
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A1 = e−nT
∑

xm

PX(Xm = xm)
∑

y

f(xm,y) · Pr
{

y ∈ R̂c
m

∣

∣

∣
Xm = xm transmitted

}

(B.8)

= e−nT
∑

xm

PX(Xm = xm)
∑

Q̄

∑

y: P̂x̄ȳ=Q̄

f(xm,y) · Pr
{

y ∈ R̂c
m

∣

∣

∣
Xm = xm transmitted

}

(B.9)

.
= e−nT max

Q̄

∑

xm

PX(Xm = xm)
∑

y: P̂x̄ȳ=Q̄

f(xm,y) · Pr
{

y ∈ R̂c
m

∣

∣

∣
Xm = xm transmitted

}

(B.10)

.
= e−nT max

Q̄
max
Q̃

∑

xm

PX(Xm = xm)
∑

y: P̂x̄ȳ=Q̄, P̂xmy=Q̃

f(xm,y) · Pr
{

y ∈ R̂c
m

∣

∣

∣
Xm = xm transmitted

}

(B.11)

.
= e−nT max

Q̄
max
Q̃

∑

xm

PX(Xm = xm)
∑

y: P̂x̄ȳ=Q̄, P̂xmy=Q̃

f(xm,y) · Pr
{

y ∈ R̂c
m

∣

∣

∣
Xm = xm transmitted

}

. (B.12)

Pr
{

Ny(Q) ≥ enΩ(Q,Q̃)
}

.
=















exp
{

−n
∣

∣J(Q, Q̄)−R
∣

∣

+
}

Ω(Q, Q̃) ≤ 0

1 0 < Ω(Q, Q̃) ≤ R − J(Q, Q̄)

0 Ω(Q, Q̃) > R− J(Q, Q̄)

(B.14)

U(Q̃, Q̄) , max
Q∈S(Q̃Y )















exp
[

−n(J(Q, Q̄)−R)
]

Ω(Q, Q̃) ≤ 0, J(Q, Q̄) > R

1 J(Q, Q̄) ≤ R, Ω(Q, Q̃) ≤ R− J(Q, Q̄)

0 otherwise

(B.15)

the same derivation as in (90), but with (B.14) replacing (94),

we may continue (B.12) as follows:

A1
.
= e−nT max

Q̄
max
Q̃

exp
[

αnHY |X(Q̄)
]

· exp

[

(1− α)nHY |X

(

Q− αQ̄

1− α

)]

exp
[

nG(Q̃)
]

U(Q̃, Q̄).

(B.16)

Thus, we obtain that the exponent of A1 is given by

lim
n→∞

1

n
logA1 = −T −min

{

Ẽa(R, T, ξ), Ẽb(R, T, ξ)
}

,

(B.17)

in which

Ẽa(R, T, ξ) , min
Q̄

min
(Q,Q̃)∈Q(Q̄)

[

− αHY |X(Q̄)

−(1− α)HY |X

(

Q− αQ̄

1− α

)

−G(Q̃) + J(Q, Q̄)−R

]

(B.18)

where Q(Q̄) is defined in (B.2), and

Ẽb(R, T, ξ) , min
Q̄

min
Q̃∈L(Q̄)

[

−αHY |X(Q̄)

−(1− α)HY |X

(

Q − αQ̄

1− α

)

−G(Q̃)

]

(B.19)

where L(Q̄) is defined in (B.3). Now, we want to find the

maximal ξ for which

−T − Ẽa(R, T, ξ) ≤ 0, (B.20)

−T − Ẽb(R, T, ξ) ≤ 0. (B.21)

The expressions for Ẽa(R, T, ξ) and Ẽb(R, T, ξ) can be sim-

plified just as in the proof of Theorem 1 (see Eqs. (110) and

(111)). This results the conditions appearing in the theorem.
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