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Abhishek Agarwal and Arya Mazumd&enior Member, IEEE

Abstract—In this paper we extend the notion oflocally re- sharing scheme the classds and5; must have the following
pairable codes tosecret sharing schemes. The main problem that properties,
we consider is to find optimal ways to distribute shares of a
secret among a set of storage-nodes (participants) such ththe

content of each node (share) can be recovered by using conten ADAAcA — Aeld
of only few other nodes, and at the same time the secret can B CB,BeB, = B €B,
be reconstructed by only some allowable subsets of nodes. As
a special case, an eavesdropper observing some set of specifi and
nodes (such as less than certain number of nodes) does not get B. C 2l \ A

s = S

any information. In other words, we propose to study a localy

repairable distributed storage system that is secure agast a

passive eavesdropper that can observe some subsets of nodes.  For a perfect secret sharing scheme we have the above
We provide a number of results related to such systems monotone property anf, = 9[n] \ A,. Perfect schemes for

including upper-bounds and achievability results on the number . )
of bits that can be securely stored with these constraints.nl access structures of the forh, = {A C [n] : [A] > m] are

particular, we provide conditions under which a locally repairable ~ called threSh9|dsecret sharing SChem?S- We refer 1pfpr a
code can be turned into a secret sharing scheme and extend thecomprehensive survey of secret sharing schemes.
results of secure repairable storage to cooperative repaiand A convenient property of schemes that need to store data

storage on networks. Additionally, we consider perfect seet . S . e
sharing schemes over general access structures under laityl in a distributed storage system is local repairabilig} fe.

constraints and give an example of a perfect secret sharing @Y Storage node can be repaired by accessing a small subset
scheme that can have small locality. Lastly, we provide a loar Of other nodes, much smaller than is required for decoding
bound on the size of a share compared to the size of the secretthe complete data. Error-correcting codes with the locgéire
that shows how locality affects the sizes of shares in a pede property — locally repairable codes (LRC) — have been the
scheme. center of a lot of research activities latel§],[[8], [1€], [24].
Consider ann length code over g-ary alphabetC C Fy
. INTRODUCTION of size|C| = ¢*. The code is said to havecality r, if for

Secret sharing schemes were proposed by Shamir aRgryi, 1 < i < n, there exists a seR; C [n] \ {i} with
Blakley [7], [27] to provide security against an eavesdroppef, | < r such that for any two codewords u’ € C satisfying
with unbo_un(jed computa_tlonal capability. Consider thereiecui # u}, we haveur, # uj.. In a code with localityr,
as a realization of a (uniform) random vectSrover some any symbol of a codeword can be deduced by reading only
support. Defineln] := {1,2,...,n} and let2* denote the at mostr other symbols of the codeword. For application in
power set for setd. Suppose that shares of the secret are {gstributed storage, the code is further required to haegel
be distributed among participants (storage nodes) such thahinimum distance, since that helps recovery in the event of

a set of shares belonging 14, C 2l"], is able to determine 4 catastrophic failures (i.e., up th— 1 node failures). It is

the secret.A, is called the access structure of the secrghown that B] for such a code,

sharing scheme. Denote the random variable corresponding

to the share of a participant (or node)e [n] by C; and

let C = (C1Cs...C,). Let x4 denote the projection of the

vectore € F™ to the co-ordinates isl C [n]. For a singleton ) .

setA = {i} letx; := x(;;. A secure scheme has the prOlfJertWh'Ch,C 1S a:;slo aclhlevali:ebL], [” ]('jA g-ary code OT IeTgtm,

that a subset of shares in the block-l&t C 2" are unable to i'?‘?q an ocad@yr will be qaf.eQan(pr,]k, r)q—lc_)puma LRC

determine anything about the secret. THH$S|C ) = H(S) T ItS minimum distance satisfiesL with equality. _

for any B € B, and H(S|C4) = 0 for any A € A,, where  Security in distributed storage has recently been consitier

H(-) denotes the entropy For a standardnonotonesecret in @ number of papers, for example][ [17], [2(], [29]

_ o _ and references therein. In these papers the main objestive i
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A. Contributions and organization show how locality effects the sizes of shares in a perfect
scheme as they relate to the size of the secret. These results
are presented in sectioh (see theoreni4).
5) ExtensionWe extend the notion of security to cooperative
1) Distributed storageWe provide bounds and achievability local repair L9 where a Distributed Storage System can
results for a locally repairable scheme for access stractur deal with simultaneous multiple node failures. We provide
and block-list, A, = {A C [n] : |A] > m} and upper-bounds on the secrecy capacity and construct achiev-
Bs = {B C [n] : |B| < ¢}, respectively. As evident  able schemes for this scenario in sectltn
from definition 1, this access and block structures moddl) Extension.A different and practical generalization for
a simple distributed storage scenario. We assume that thesecret sharing scheme is made in which the Distributed
shares of the secrets are locally recoverable and at theStorage System is represented by a grgpbuch that a
same time an adversary observing up /teshares does node can only connect to its neighbors dnfor repair.
not get any information. A more general version of this This scenario has been considered in secfibn
model that also considers repair bandwidth as a parameter
appears in]d]. In sectionll we also address the conditions  Il. A SECREFSHARING SCHEME FOR DISTRIBUTED
under which a locally repairable error-correcting code can STORAGE

be converted into a secret sharing scheme with the aboveye start this section by formally defining a secret sharing

access structure. scheme for a particular, common access structure and block-

Comparison of this part with results ofl{]: In [18], Jist: A, = {A C [n]:|A| >m} andBs = {B C [n]: |B| <

bounds on secrecy capacity for regenerat?ng gnd Ioca}y}/_ For a codeC C F? and setl C [n] defineC; := {x; €

recoverable codes have been derived using mformatl@m .z eC).

theoretic inequalities, and achievability of these bounds'

using schemes that require Gabidulin precoding technigRéfinition 1. An (n, k, ¢, m,r),-secret sharing scheme con-

has been shown. sists of a randomized encodgrthat maps a uniform secret

Our method to prove the converse result is different frofi € F% randomly toC' = f(S) € F7, and must have the

that used in [g]. One advantage of our technique foifollowing three properties.

the bound in sectioril is that it can be easily applied 1) (Recovery) Given amy. symbols ofC, the secretS is

to cooperative repair (sectidfi) and repairable codes on completely determined. This guarantees that the secret is

graphs (sectionV). recoverable even with the loss of any- m shares.

We provide a random coding argument using network flow

grapphs to show the existengce %f an achie\?ability scheme H(S|C1) =0, VI C [n] [I| = m (2)

for the bound, and also adapt the method of][for 2) (Security) Any set of shares ofC does not reveal

more general scenarios mentioned above (i.e., cooperative anything about the secret.

repair and repairable codes on graphs). For these scenarios

WE use Iemr?wﬁ and Gabidulir%J prr)eC())ding to construct H(S|C,) = H(8), V] € [n], |T] = ¢ (3)

transformations to form secure schemes from existing non- A scheme satisfying this condition is callédecure. An

secure locally repairable codes. eavesdropper that can observenodes is called arf-

2) Maximal recoverabilityThe Gabidulin precoding described strength eavesdropper.

above can be used to construct optimal codes but require®) (Locality) For any share, there exist at mesither shares

an exponentially large (im) alphabet size. A simple that completely determine this. For allthere exist$R; C

construction of secret sharing schemes from LRCs is [n]\ {i}: |R;| < r, such that

provided in eq. {4). We specify in lemma the additional H(Ci|Cr,) =0 @)

constraints that an optimal LRC would have to satisfy PR =

to be able to construct optimal secret sharing schemes TR, is called the recovery set of shaie

in this method. This shows that to construct an optimal .
: . . he maximum amount of secret that can be stored as

secure scheme with small share size we essentially nee

. a function of n,¢,m and r is called the capacity of the
a maximally recoverable codever small alphabet (see : . ) )
theorems). secret sharing scheme and in the following we provide exact

3) Perfect secret sharing with small localityn sectionV, characterization of this quantity. We can define the segurit

. . condition above in a modified way where the eavesdropper is
we consider perfect secret sharing schemes over gener

: . . al%wed to see any sef C [n] of shares and we calculate
access structures under locality constraints. While wevsh : . . .
. e amount of information revealed, i.&(S;C;), in terms
that for threshold secret sharing schemes, there canrsit ex . ; ; L
of n, k,|J|,m andr in an optimal scheme. This extension is

any non-trivial local repairability, we give an example of & . .
. casy from our result and somewhat summarized in coroflary
perfect secret sharing scheme that can have small locality

4) Lower bound on the size of shares in terms of the size ofNOte that, for locally repairable schemes with no security

the secretFurthering the result ofdj] to locally repairable requirement i.e/ = 0 the following lower-bound omn is

) apparent from1),
schemes we provide an analogous lower-bound on the P 0

of a share compared to the size of the secret. We further m>k+[k/r] —1, (5)

Our contributions in this paper are summarized in the
following list.



This lower bound follows from the definition of the minimumTheorem 2. Any (n, k, £, m, r),-secret sharing scheme must
distance of a codé = n—m+1. In the subsequent, we providesatisfy,
the fundamental limit on secrecy capacity and construstion
achieving that limit.

As mentioned in the introduction, a generalized version

k+é§m—{LJ- 8)

r+1

of this type of secret-sharing scheme that include rep

bandwidth and other parameters was studied lif].[ Our
theorems2 and 5 can be obtained as a consequence
results of that paper. We still provide different proofs loése

results as the concepts introduced will be useful for Iat%{:1

developments.

A. Bounds

Let us first prove an immediate and naive upper bound on
the capacity of a locally repairable secret sharing schémae t

follows as a consequence of E®).(

Proposition 1. For any (n, k, £, m, r),-secret sharing scheme,

r+1

Proof: Consider the randomized encodinfy of any
(n, k,¢,m,r)-secret sharing scheme. For any secret ]F’;
define the support of the maf{s) to besupp(f(s)) = {x €
F7 - Pr(f(s) = x) # 0}. Clearly for any pairs,s’ € F¥
s # ', supp(f(s)) Nsupp(f(s')) = 0.

Suppose, for some € F¥, x € supp(f(s)). Let I C [n]
and |I| = (. Note that, for eachs’ € F} \ s, there must
exist z € supp(f(s’)) such thatz; = x; (from the Security
property). LetC C {z € supp(f(s')) : ' € F} andz; = x;}
such that|C N supp(f(s’))| = 1Vs’ € F¥. We haveC C F}
and|C| = ¢*. Moreover, from the Recovery property, any
coordinates of a vector i@ must be unique, which implieg
has minimum distance at least— m + 1.

Since{f(s) : s € F} has localityr any setC C {f(s) :
s € ]F’;} must have locality-. Since, all the codewords i@l
have fixed value on the co-ordinatésCy,)\; € ]Fg*f must
be a code of length — ¢ and localityr. Moreover,Cj,,\; has
minimum distance at least— m + 1 (same a¥’). Now from
eq. (1) we have,

kgm—f—{m_ﬂJ

n—m+1<(n—-4~4)—k—[k/r]+2
k+[k/rl—1<m-—¢
k<m—{- {m — éJ
r+1
where eq. §b) follows by replacing both sides of eggd) by

= (6a)

—

(6b)

Incro(k + [k/r] — 1) and Incro(m — £) respectively, where

Incrg(.) denotes the increasing functidmerg(x) (= = —

T
= |

This naive bound in eq6f) is not the best possible: it can

be further improved to
k+€+{£i£W—1§nL @)
T

To prove (7), instead of trying to use eql) as a black-box,

we follow its proof method4], [9].

The upper-bound in eq8) can also be obtained froni §,

Aheorem 33] where the authors use a different method. It
ﬁrould be noted that eg8)(is equivalent to eq.7). We see

ateq. {) = eq. @) by replacing both sides in eg)(by
the increasing functiofinerg(z) := x—|«/(r+1)]. Similarly
.8) = eq. (/) by replacing each side with the increasing
function Incri(z) := x + [x/r] — 1. This follows because of
the following fact,

Claim 3. For z,y,r € ZT,

y-x—l—[r] 1l <= x=y L"F J (9)
Proof: Let x = ¢qr + w, w < r. Then, we have.

: e+ 2] -1
I
B w gr+w+qg+ 2] -1
_x+q+[r]—1—{ p— (10b)
R e (10¢)
- r r+1
. (10d)

. w+ (ﬂ]—l
where eq. {0d follows since[%| — | — 25— | —1 =0 for
w € [0,r—1]. Now, substitutingy = z+ [£] —1 in eq. (109
we have, eq.9). [ ]

Proof of theoren®: Let A; = {R;U{i}}. Recall that we
can recover the secré& from anym symbols in then length
word f(S) = C. We construct am-subsetM C [n] such that
{i : A; € M}| is maximized. SupposeVt’ = | ] R..

:A; CM
We have H(Cp|Car) = 0. Moreover H(S|C ) = 0.
This implies,
H(S|Cnm) =0.

Now we can select any-subset{ of M’ and assume
that the eavesdropper observes that set. Therefd(&,) =
H(S|C ) mustbe less than or equal to the number of symbols
in M’ \ L. Formally,

k=H(S)=H(S|C) < H({Cam/|Cp) < M\ L
— M| -t (11)

This observation will lead us to eqg)( We describe below,
the only remaining task: the method for constructing the set
M described above, and show that it gives us &). The
construction forM is given in algorithmi.

Note that algorithml may not actually give the set con-
taining the maximum number of; but it would suffice to
prove the bound in eq8J. Let v denote number of set§;
added toM°. We have,|A;| < 7 + 1,Vi. So the maximum
size of the set added in each steprig- 1. Since|M| =m



Data: R; for all i An intuitive construction of/-secure schemes comes by

Result M C [n], [M| = m containing at least replacing some inputs to a LRC with uniform random vari-
[m/(r +1)] recovery sets ables. Formally, consider a linear co@ewith code-lengthn

1j=0, M/ =0 and dimension(k + ¢). Let G = [G* G?] € F2**9 pe
2 chqose any € [n] the generator matrix of this code such ti@t < F7** and
3 while [M7 U {A¢}| <m do G? € F*k. Let a € Fi** be the input to the encoder of
4 MITL = MI UA, C (i.e., the codeword is generated by multiplyingwith the
5 chooset ¢ M7+ generator matrix of). Denote bys € ]Ff; the input we want to
6 | j=J+1 store securely. We construct &secure secret sharing scheme
7end usingC by taking,
8 if M7 U A, <m then r
o | MItl=MIUA, a= [s} (14)
10 else
11 T = any (m — |M7|)-subset offn] \ M’ wherer € Fg is an instance of uniformly distributed random
12 MITL = MIUT vector. This scheme i&secure if and only if for any linearly
13 end independent rows of G the corresponding rows of' are
1“j=j5+1 linearly independent.
15 M = M/

Lemma 6. Let g; = [gigia---Gikrn),i € [¢] be any’
linearly independent rows of/. The secret sharing scheme
constructed in eq(14) is ¢-secure if and only if the corre-
sponding row vectorg;! = [gi1gi2 - - - gie),i € [¢] of G! are

] ] ] linearly independent.

by construction, when the algorithm ends at lfheve have 110 proof of lemmab is given in AppendixA. Note that

v = [%1 If the algorithm ends at liné0 we must have, ysing lemmas we can add the security property to any linear

Algorithm 1: Constructing a setM C {1,2,...,n} to
maximize|{i : A; C M}

v > VLJ' Evidently we have constructed a skt such that code_; we do no_t assume any chality property for theT generato
matrix G. But, it is clear that if the generator matri¥ has
M| =|M|-v<m-— L%J From eq. {1) we have, locality , then so would the scheme constructed in dd).(
The construction of an optima(n, k, ¢, m,r), scheme is
E<m— {ﬂJ ) (12) described in the following.
r+1 Gabidulin precoding constructiorl.et N be an integer. The

B pointso; € Fyv,i € [n] can be represented as vectors in
Using eq. (1) we can show the following, ]FéV and are said to bé,-linearly independentwhen the
corresponding vectors ovef, are linearly independent. A
Gabidulin code fromF’;N — IFZN, forinput(fife... fr), fi €
F,~, is obtained by evaluating the linearized polynomial
" O(y) = X7, fiy? ! at n F,-linearly independent points
H(S|Cj)<m-— L—J —|J|. (13) «; € F,~,i € [n]. The linearized polynomia®(y) has the

r+l following linearity property,
Equation (3) gives an upper-bound on the maximum am-

biguity of the secret of ar(n, k, ¢, m,)-scheme when the O(az + by) = aO(x) + bO(y) (15)
eavesdropper has access to more thahares.

Corollary 4. There exists a seff C [n] with ¢ < |J| <

m— L—TIJ such that,

for all z,y € F,~ anda,b € F,. Note that, we needv > n
to obtainn [ -linearly independent points iR~ .

B. Constructions Consider the generator matri&, = [g, ...g,,]* of a linear
It is possible to show matching achievability results t§ + ¢, r)q-optimal LRC, wh.eregl- = [gil---gi(k{rl)]T-
theorem?2 by a number of different methods. Considera = (s r), wherer is an instance of uniformly

_ ~ distributed random variable ifiY, ands € Ffy, N > n,
Theorem 5. There exists a(n,k,{,m,r)-secret sharing denotes the secret. First, is precoded using a Gabidulin
scheme such that e€) is satisfied with equality. code,I" : F¥E* — FYE which is obtained by evaluating the

In particular this theorem can be proved by constructiri'ynomial, ot
2p?::(;)i)r(nal|near network code. We delegate that proof to Ualy) = Zaiyqul (16)
The achievability result also follows fromL.{], that gives =t
a construction for optimal secure LRC employing Gabiduligt theF,-linearly independent points; € Fy~,i € [k + /.
codes to satisfy the security constraint. In the subsequent Now, representind’(a) € F’;# as a matrix of size(k +
describe their method, adapted for our scenario, becaise #) x N in F,, each column of the matrix can be encoded
will be useful later in our paper when we consider moridependently using the generator matéxfor the optimal
general secret sharing schemes. LRC to get(c;)y = c € Fon. It is easy to show that this



construction is¢-secure. The optimality of the scheme then We will need the following definition of maximally recov-
follows from the optimality of the initial linear LRC. The pof erable codes/].
of security of this construction is given below. - . [ -
Proof of theorem5 with the Gabidulin construction: Definition 2. Qon3|der an(n, k, r)g-optimal LRC. Letg; :
) . Qi =r+1,7 € [n/(r +1)] denote a partition ofn] such
Assume without loss of generality (wlog) that the eaves: . : .
at the recovery set ath coordinate is,

dropper observe§ = [{] C [n] symbolsc;,i € . Let

G = [gy...g,)". Further assume that thesnk(G) = /, R; = Qi) \ {i}, Vi € [n], (18)

since otherwise thé-strength eavesdroppli;s equivalent t%hereQ(z‘) c {Qj}j is the partition containing node Denote

anrank(Q)-strength eavesdropper. L&t = Zgijaj,i c g. suchan LRC byn k1 {Q;};)e The(n,k,7,{Q;};)q LRC
o is called maximally recoverable if the code obtained by

puncturing any one symbol from eaglj is maximum distance
separable (MDS).
Note that, in B], it was pointed out that an optimal linear
LRC must have the recovery structure as in é@).(
G = Zgiﬂ'\l’a(o‘j) The main objective of this section is to show that the im-
=1 mediate construction ofn, k, ¢, m, r)-secret-sharing scheme

Then since? is full-rank {&;}, . areF,-linearly independent.
Therefore, using eq16) we have,

k+2

A from an optimal LRC is effective if and and only if the code

= \IJ“(Z 9ij) = Val@),i € €. is maximally recoverable.
j=1
Let R, S, C be the random variables corresponding to thleemma 7. For any linear (n, k + £, r, {XQ&}&))‘I -optimal LRC
vector , the secrets, and the node share8 = (C;);. To Code with a generator matrix; € Fy considerS <
prove security we use the secrecy lemmaif, [Lemma 4], [?] : [S| = £and|SN Q;| < r,j € [n/(r +1)]. Then, the
to show thatH (C¢) < H(R) and H(R|S,Cg) = 0 imply Tows corresponding taS in G are linearly independent for

H(S|C¢) = H(S). Indeed,H (S|C¢) < H(S), and any ¢ such that
H(S)+ H(R) = H(S|R) + H(R) (<r—1+ (r{ i 1J — k) (19)
P

— H(S,R) = H(S,C¢, R)
=H(C¢)+ H(S,R|C¢) Proof: PartitionS as follows,S = U,/ (41y Sj With
— H(C¢) + H(R|S,C¢) + H(S|C¢) ?} :SS ?3/%;6}:3 életAd a:f_{g/ S; 72 /%}-QCZHSIder atﬁe:
B 0S8 < and defineS’; := ;. Suppose tha
= H(C¢) + H(S|C¢) (178) e can construcs’ with S) < r,V¥j € [n/(r +1)] such that
< H(R)+ H(S|C¢) (17b)  the number of partition, that containr co-ordinates ofs’

where egs. 179 and (L7h follow from the assumptions IS at1€ast/(k +¢)/r] —1. Let ¥ := {j: &; = r}. Thus,
H(R|S,C¢) =0and H(C¢) < H(R) respectively. On the |@| > [(k+0)/r] -1 (20)
other hand, assuming that the eavesdropper also kgofivs

1" / H / _ i
addition toeg), she/he has Construct a sef” 2 S’ by addingk + ¢ —|S’| co-ordinates

to S’ such that|S" N Q,| <r,Vj € [n/(r+1)]. Now at least
k ; ; |¥| more co-ordinates are recoverable fréif. Note that the

~ _gtti—1 e
Ci =Ci — Z $;0; = era;? ek input a for (n,k + ¢,7,{Q;},),-optimal LRC is recoverable
i=1 i=1 from anym = (k + ¢) + [(k + ¢)/r] — 1 co-ordinates and
o . . .
Since B — [dfj 1]1‘65,3’6[@] is full rank, the eavesdropper can®’ | +[¥[ = m. Thus,a is recoverable fronzs.. Now, since

|S”| = k+¢ the rows ofG corresponding t&” (and henceS)

must be L.I. We are now left with the task of constructing a set

S’ satisfying eq. 20) for the givenS with |S| = ¢ satisfying

eg. (L9). The construction is given below.

) ] ] ) . For |A] < k/(r — 1) we can easily construcs’. Since

C. Constructions with small alphabet size: equwalencehqu < k/(r—1) = |Alr < k+(, we can choosa(D

maximal recoverability A) : || = [E£]. Now to each of the partition$sS;}; .y
Note that, the size of the alphabet/shares in the constructadd » — |S;| co-ordinates fromQ; to get a setS’ of size

of optimal secure scheme using Gabidulin codes is expaenti| (k + £)/r| < k + £. It is easy to see that this set satisfies

in the number of nodes. In this section, our aim is to shoeq. R0).

that the construction of an optimal secure scheme with smallNow assume thatA| > k/(r — 1). Choose anyl C A :

alphabet size will amount to findingrmaximally recoverable |¥| = |k/(r — 1)]. Select anyr — |S;| co-ordinates fromQ;

codeover that alphabet. We use the construction in éd) ( for all ; € ¥. Adding these co-ordinates 8, we getS’

to form a secure scheme from an optimal LRCs with a smahtisfying|S’| < |k/(r —1)|(r — 1) + ¢ < k + £. Thus, from

alphabet and analyze the conditions for that construction e¢q. (L9) we have,

satisfy lemmas. We assumér +1)|n i.e. r + 1 dividesn for k+¢
simplicity in this subsection. U|+1—[(k+£€)/r] > |k/(r—1)] -

compute[éy ...¢] B~ = [r1...7). Thus,H(R|S,C¢) = 0.
Now H(C¢) < H(R), since|&| < £. Therefore, we have an
(n, k,£,m,r),~-secret sharing scheme.

r



> |k/(r—1)] — k_ (1+ |k/(r—1)] —k/r—1/r) Definition 3. AsetC C Fy is said to be(r, §)-repairable if for
r everyA C [n] : |A] < § there exists a seR(A) C [n]\ A :

=—-(1-1/r) IR(A)] < r such that for alle, ¢ € C,
Since|{Q; : |9, NS'| =7} +1—[(k+1)/r] is an integer, ca #ca = cra) # R (21)
m' +1—[(k+1)/r] >0, S satisfies eq.20). [

For ¢ < r, the construction (in eq.1¢)) using an optimal
LRC code is¢-secure since any rows of G; form an/ x ¢
Vandermonde matrix. Fat > r, we have the following result,
using definition2 and lemmar.

Using definition 3 we can generalize the notion of an
(n, k, €, m,r)q-secret sharing scheme. For this system we de-
rive an upper bound on the capackyivenn,m, ¢,r, andJ.

Definition 4. An (n,k, ¢, m,(r,d)),-secret sharing scheme
consists of a randomized encodgr) that stores a files € F%
in n separate shares, such that the schemg-,i§)-repairable
(definition3), satisfies the recovery condition (cf. €8)) and

Theorem 8. Consider a linear(n, k +¢,7,{Q;},), -optimal
LRCC. Then the construction in eq14) using codeC is ¢-
secure if there exist®’ C C of dimensior? such thatC’ is max-
imally recoverable. Conversely, if the construction in €fy)
is (-secure then there must exist a maximally recoverable Co{jéecure (cf. eq(3)).
C' C C of dimensior¢, for £ <r —1+ (r|k/(r—1)| — k)

Proof: Let G = [G! G?] € F2** pe the generator A- The case of m =n
matrix of C whereG! ¢ ]Fg“. Let G! be the generator matrix — Error-correcting codes wittv, §)-repairability were consid-
of a maximally recoverable cod&. Consider a seD C [n] ered in [L9 (¢ = 0 or no security) and the following upper-
of any/ linearly dependent rows @¥*. SinceC’ is maximally bound on the rate of such codes has been proposed, for the
recoverableQ; C D for at least ong € [n/(r + 1)]. Hence, case ofm = n.

the corresponding rows i must also be linearly dependent. R= k < T (22)
Thus, from lemmab the secret sharing construction in et) noor+o
must bel-secure. For the case of-secure codes we give an analogous upper

Now, suppose that does not contain any subcode ofound on the rate of a secret sharing scheme in the following.
dimension? which is maximally recoverable. Then, the codq-heorem 9. The rateR — k/n of an(n, k, £, n, (r, 5)), secret
generated byG! is not maximally recoverable. Thus, thereSharing scheme is bounded as P I AT
would exist anS C [n] : |S| = fand|SN Q;| < nVj € ’

[n/(r 4+ 1)] such that the rows irG' corresponding taS R< I _ f (23)
are linearly dependent. Now from lemniave know that the Tr+d on

rows corresponding t& in G are not linearly dependent for

¢ <r—1+(rlk/(r—1)] —k). Hence, from lemmé the Proof: For an (n,k,¢, (r,d)), scheme we construct a
secret sharing scheme cannot/secure. m set of sizem = n similar to algorithml except instead of

Recently an optimal construction of locally repairable esd ch0osing a set of sizé in steps 2 and 5, we find a set of
was proposed in [] by Tamo and Barg for genera' values O§i266. Then Using the same argumentS we must have at least
the parameters, k, and r and alphabet size of(n). Our ¥ =m/(r+0) number of steps. Hence, subtracting the number
theorems implies that the secret sharing scheme constructigFoverable symbolé. from the m symbols we must have,

in eq. (L4) using such code i&secure if and only if the Tamo- Eil<m—ov—=mn—24 n

Barg codes are maximally recoverable. In general thesescode - r+0

are not maximally recoverable. It should be noted that, it is N k+1 < T

quite a nontrivial open problem to construct maximally reco n —r+4d

erable codes with linear or even polynomial (in blocklength m
alphabet size . Construction: Note that, any linearg-ary (r,d)-repairable

In the next two sections we extend the notions and resuéigor-correcting code of length and dimensiork will give
of sectionll to other generalized repair conditions related tase to a(n, k, 0, (r, §))-secret sharing scheme. Ind, Sec. 6],

distributed storage. an (r, ) repairable code has been constructed using bipartite
graphs of large girth. In particular, that constructiorutesin

IIl. SECURITY FORSCHEMES WITH COOPERATIVE REPAIR parameters such that

. . . k —
Cooperative repair for a locally repairable scheme address - > !

simultaneous multiple failures in a distributed storagstem nTor+d ] .

[192. To this end, we extend the definition in ed) fo a It can also be seen from the discussion of sectioB

(r,5) scheme where any—instead of just one— shares can bi1at Gabidulin precoding (eq16)) would give an(-secure

recovered from other shares. construction with alphabeF,~, N > n, from any optimal
linear(n, k+¢,0, (r, §)),-secret sharing scheme. Thus, for any

2There is a related notion of cooperative recovery in regimgy codes (n, k+£,0, (r, 8)), secret sharing scheme achieving the upper-

[23] and security in such systemsZ]. In this paper we are concerned with bound ?n €g. 22) we can aChie.VG the correspf)pding upper-
only the local recovery problem, and not the regeneratirgplpm. bound in theoren®. Hence, using the code of §, Sec. 6]

4]

>




in conjunction with the Gabidulin precoding, it is possiltee The lower bound onn for an ¢-secure scheme on a gragh

obtain a rate of 50 is given in the following.
r—
-2

nSr+e n Theorem 10. For any (n, k, £, m, G),-secret sharing scheme

_ . s , on a directed graply, m satisfies the following lower bound,
which is an additive term of%- away from the optimum

T+0
possible. m>k+{¢+ max |U] (26)
UeZ(G):
|N(U)|<l+k—1
B. The case ofn < n. whereZ(G) denotes the set of induced acyclic graphszin
The bound for general case ef < n can be deduced Proof: Since anym co-ordinates in the share€ =

from the same arguments as above. In fact, by slightly geft-;);c},,) can recover the secré& we must have,
eralizing algorithm1, we get the following result: for any
(n,k,€,m,(r,d)),-secret sharing scheme , m 2 [W[+1 (27)

m for all W C [n] such that theH (S|Cw) > 0. Let U be an
k+&<m-— {mJ d—h (24) acyclic subgraptU/ € Z(G), such thatN(U) < £+ k — 1.
Construct a se¥V O {UUN(U)} by adding any + k — 1 —
N 0 2<0, [N(U)|nodestoUVUN(U).Thus,|V|=Fk+{(+|U|-1. We
whereh = (m mod (r +4) —r)" anda™ := v z>p0  ShowthatH(S|Cy) > 0 for any suchV.
Note that, this results in slightly weaker bound for theat'gte that for any three rando, Y, Z variables we must

case ofm = n than eq. 23). In general form < n and
arbitrary values of, we do not have any good constructionthat 7 x|y, z) = H(X, Z|Y) — H(Z|Y)
will be close to the bound. While the expander-graph based

constructions of(r, ¢)-locally repairable codes fromL§] can = H(X|Y)+ H(Z|X,Y) - H(Z]Y)
be generalized, their performance is very far from the bound > H(X|Y) - H(Z). (28)
of eq. €4). Assume that the eavesdropper selectd-aabsets C [n]
in the setV. Then, since the eavesdropper must not get any
V. SECURITY FOR REPAIRABLE CODES ON GRAPHS information about the secret,
Another extension of local repair property for distributed H(S|C¢) = H(S) 29)

storage has recently been proposedifi,[[14]. Consider a

Distributed Storage System as a directed grépuch that a Since the sub-grapl is acyclic the nodes i/ must be a
node of the graph represents a node of the Distributed Stordgnction of the leaf nodes and the nodesNi{U). Now, the
System and each node can connect to only its out-neighborsléaf nodes must also be a function &f(U/) since their out-
repair. We define a-secure code in this scenario as followsneighbors can only be iV (U). Therefore,

H(S|Cv) = H(S|Cnw)) = H(S|C¢s,Cnwe)

A. Repairable Codes on Graph (@)

Definition 5. Let G = ([n], E) be a graph onn nodes. = H(S|Cs) — H(Cnw)\e)
An (n,k, £, m,G),-secret sharing scheme consists of a ran- ®)
. ) b ) B = H - H
domized encodef that can store a uniformly random secret () (Crnwne)
S € F% onn shares/nodesC = f(S),C € F7, such that the @ 0

system ig-secure (cf. eq(3)) and the data can be recovered
from anym shares (cf. eq(2)). In addition the share of any Where(a) and (b) follow from eq. ¢8) and eq. £9) respec-

node can be recovered from its neighbors i.e. tively, and(c) is is true sincg N (U) \ & = k — 1. m
Whenm = n, i.e. when the scheme does not need to protect
H(C;|Cngy) =0 against catastrophic failures, we can formulate a converse

bound for repairable codes on graphs that does not follow

here N(i) = {j : (i,7) € E} denotes th ighb
where N(i) = {j € [n] : (i,j) € E} denotes the neig Orsdirectlyfrom the above theorem.

(out-neighbors in the case of a directed graph) of nada

the graphG = ([n], E). Theorem 11. Consider an (n,k,¢,n,G), secret sharing
A bound on the capacity of such a scheme in directed grapdsheme. The secrecy capacity of the scheme satisfies the
for £ = 0 (no security) was derived inlf], following upper-bound.
m>k+ max |U| (25) kE<n-—|Ul-|{ (30)
UeZ(G):
IN(U)|<k—1

whereU is the largest acyclic induced subgraphgnwheng
whereZ(G) denotes the set of induced acyclic subgraphs is a directed graph, and it is the largest independent setrwhe
G, andN(U) := U;ey N (i) \ U denotes the neighbors &f. G is undirected.

For undirected graphs we have the same bound W{i) Proof: We will show the proof forG directed. Consider
denoting the collection of all independent sets of the grapthe share<C; corresponding to the nodes i C [n]. The



recovery set of any node it can contain its children i/ or are an additive term of at mo&% away from what is the
co-ordinates inn] \ U. SinceU is ayclic, all the leaf nodes maximum possible.
of U have recovery sets ifn] \ U. Thus, we can recover For directed graphg = ([n], E) we use the repairable
all the leaf nodes from the co-ordinates[i] \ U. Now, we codes presented irlf] below to construct a secure scheme.
can recursively recover all the co-ordinateslbfrom the co- Suppose that the graph h&s:= k + ¢ vertex disjoint cycles.
ordinates in[n] \ U. Thus, Then it is easy to see that we can form a locally repairable
scheme capable of storing + ¢ symbols (one symbol per
H(Cu|Cppw) =0 (31) cycle) by repeating the same symbol on every vertex in a
Equation B81) is true because all the leaf nodeslinmust cycle. Hence, it is possible to store as many symbols as the
have their recovery sets jn]\ U. And by recovering the leaf maximum number of vertex disjoint cycles in the graph. In

nodes we can recover all nodesin Now, sinceH (S|C) = 0 [19], it was shown that we can do better by using vector codes.
we must have from eq3(), We describe below the vector linear LRC codes constructed
in [15].
H(S|Cpmpv) =0 (32) Consider the seP of all cycles inG([n], E). Suppose]l :
Now, suppose that the ea\/esdropper selectg-subsete ¢ P—-Q a.SSignS a rational number to every directed CyCle. Let
[n]\ U. Then, we must have, V(C),C € P denote the vertices of the cydlé Let K denote
the maximum value op |, II(C), over all such mappings
H(S) = H(S|C¢) (33) 11, under the following constraint,
Therefore, using eqs3p) and @3) we have, Z I(C) < 1, Vi€ [n].
H(Clupv|Ce) = H(Cpyup\u|Ce) + H(S|Cppv, Ce) V(@)
= H(S,Cpy\v|Ce) Let the optimal assignmerl on P be denoted a3I(C) =
— H(S|C¢) + H(C S, Ce) @, wheren(C),p € Z*. It is possible to find this optimum
(U= by solving a linear program. Then] constructs a vector
= H(S) + H(Cpu\ulS; Ce) LRC for the graphG in F, with storage capability op K

(CppvlCe) — H(CppulS,Ce) symbols and per node storage equaptsymbols.

(Cpp\w|Ce) <n—|U|—¢. Let s € FP* r < FL‘ represent the secret and an in-
stance of a uniform random vector, respectively. We obtain

Note that the bound in eq3() lels the feedback .t x e FPX K = k+/( byx =G x[s r], whereG is

ote that the bound in e parallels the feedback vertex, . .- * 1 \/and d i = [~ with {aut.

set upper-bound inl[5, Prop. 11]. Here, a feedback vertex segi *D andermonde matr log g with {a},

. . tinct elements iff,.  is then stored in the graph using the
of a graph is a set of nodes such that every cycle in the 9" heme described above. Since/atrength eavesdropper can
has a vertex in the set.

only observe at mogt/ co-ordinates ira, we can use lemma

to see that the scheme dssecure as well as recoverable.
B. Achievable Schemes for Secure Repairable Codes on s known (cf. [L5]) that, 4K In4K Inlog, 4K > n—|U|,

T T

H
= H(S) <

Graphs for U being the maximum acyclic induced subgraph. Hence,
In this section we consider construction (of, k, ¢,m,G),- We must have,

secret sharing scheme only when= n. We do not have any n— |U|

nontrivial construction for the case af < n. = m -

Consider a secret sharing scheme for the case of undire
graphs (definition5). A maximum matchingM (G) of the
graphg is defined as the set of edges of maximum cardinali
such that no two edges have a vertex in common. To CONStrucy PerEECTSECRET SHARING AND GENERAL ACCESS
a recoverable scheme for this code, with inpug FIM@)1 STRUCTURES
we assign a coordinate af to both vertices for every edge in
M(G). For recoverability, we note that a symbol in vertex
can be recovered from, where(v,u) € M(G).

Supposg M (G)| = k + £. Consider the vector input €
F*+¢ to the above scheme. We set= G x [s 7],s €
Fk r € ¢, wheres is the secrety is an instance of a uniform
random vector, and- is the (k 4 ¢) x (k + £) Vandermonde
71,5 with {a;}, distinct elements iff,. Thus,

matrix G = [o; : A. Perfect access structures with locality
from lemmas6, we see that this schemedssecure as well as :
recoverable. To make the(n, k, ¢, m,r) secret sharing scheme perfect,

The capacity of this schemefis= |M(G)|—¢ > nfz\U\ _y, Wwe must haven = ¢ + 1. This results in a threshold secret-

wherel is the maximum independent set. This is true since $12iNg scheme. Now, from ecg)(we have,
we remove both end-vertices of the edges of the matching then b<— V + 1J

CIEFOQ/vever this achievability result is quite far away from the
pyound of eq. 80).

So far in this paper we were concentrating on a secret
sharing scheme that is not perfect, i.e., the access steuctu
and the block-list are not complementary. In this section we
provide results regarding existence of locally repairabie
perfect secret sharing schemes and the relation betwees siz
of shares and secret in those schemes.

we are left with an independent set. Compared to &4, (ve r+1



Thus, for storing any secret we must have /41 = m. Since to generateBT| shares{cp} g3+ — One share corresponding
any secret sharing scheme works when m (local repair in to each maximal set if5. The shares are distributed such that
this case imply full revelation of secret) only trivial ldga each user gets the shares corresponding to the subset it does
repairable codes are possible for threshold secret sharimaj belong to, i.e. participant nogegets the shares

schemes. This implies the following statement. {cn:p¢ B,BcB (34)

Proposition 12. A threshold secret sharing scheme is not Now, suppose that share of a nqds lost in a secure code

locally repairable. with participantsP and block-list3. To recover the share of

Notel_th?t, pefrftehct st:eclrdet st:larlng S:Eﬁ mesh ?re tr"’: Er;\]tur e access the shares of participants in the7dgt) where
generalization of threshold schemes. ough for thr vb/e optimal sefR(p) is

schemes the locality cannot be small/nontrivial, we sho
that this is not true for general access structures and gierfe R(p) = min |R|. (35)

. . - . T
schemes. Indeed, the following is true. R:VBEBT p¢B RLE

" ) _ To have non-trivial locality, one must haveax, |R(p)| to be
Proposition 13. There exists an access structute, for which strictly less than the maximal sets in the block-list.

a perfect secret sharing scheme is possible with arbitranmy-n
trivial locality r i.e. r < minaeca,|A|.

B. Size of a share for perfect secret sharing with localit
Proof: Let n, x be such that|x and (r + 1)|n. Consider P g Y

an (n, x,r,{Q;} ) maximally recoverable LRC (definitio?) We know that, for perfect secret sharing schemes, the size of
We know thajt éuch codes exist fromi][ Now, we use the the secret cannot be Ia_rger than the _size of a shareemma
Gabidulin precoding method described above to construch L6t Us see why this statement is true. Let the sesret

(nk = 1,6 = x — 1,m = s(1 + 1/r),r) secret sharing belong to a domaiC and the share of nodgbelong tokC;.
scheme fr7om this cod’e ’ Assume that there exists a perfect secret sharing scheneé whi

Define the access structure to be, — {A C [n] realizes the access structuewhen |K| < |K;|. Let B C [n]

: - . , A .
Zn/(r+1) min{|A N Q;|,r} > x}. Now given anyA ¢ A,, be a minimal set in4 such thatj € B. DefineB’ = B\ {j}.

a d;ér accessing the shares corresponding ¢an determine Then, since the secret sharing scheme is perfect, for every
g P value of the the shares iB; all secrets inK must have the

the secrets, because the set always containshares of a same probability. Thus, since the value of the shared3of

punctured(nr/(r + 1), ﬁ)'MD.S code, ... determine the secret completely there must exist an infecti
For a perfect secret sharing scheme the block-list is glv?r?apping fromK to K. But since|K;| < | K] this cannot be
by B = {B : YUV min{|BNQy|,r} < r}. Assume d- i

possible.
that the e-avesdroppgr has access to aiset 5. Construct In [5] the minimum node storage required for arbitrary
the following set of size at most — 1 from B,

monotone access structures is analyzed. In that paper, an
B =Mt N B c B access structure was constructed for which the sizes of the

=t 7 N shares has to be/log(n) times the size of the secret for
where N} C N;, N; = BN Q; is obtained by removing any any perfect scheme. For secret sharing schemes with local
one co-ordinate if N;| > r, otherwiseN; = N;. Note that repairability and fixed recovery sets, all monotone access
|B’| < . Since all the shares iB are recoverable fron’ C  structures are not feasible. The minimal sets of the access
B, an eavesdropper with access to the nodds is equivalent structure cannot include any recovery set. Here, we extend

to an eavesdropper with accessB6. And since|B’| < ¢ = the result in §] to the restricted class of monotone access
k — 1, the eavesdropper does not get any information abaituctures.
the secret. [ | Assume(r 4 1)|n. Suppose that the secret denoted by the

Can the above proposition be made general? Is it possibidom variableS is stored om shares a<’;,i € [n] and
to characterize the locality for general secret sharingses? the shares have locality(eq. @)). Consider a partition ofi],
Shamir's P7] perfect threshold secret sharing scheme for th@; : Q;,j € [n/(r +1)] such that the recovery sets are given
access structurel, = {A C [n] : |A| > k} is one of the first by eq. (L8). For a perfect secret sharing scheme[ohwith
general construction of secret sharing protocols. Thersehemonotone access structus, the minimal setsA; of A,
is defined for a scalar secretc F and a set of: participating must satisfy,
nodes P. The scheme uses am,k) Reed Solomon code AcA; = A2 Q;. (36)

: . . - k—1 . _ .
defined using thefpol;_/fnomla#(azo)l =5 +_Zt:;i:émml, Where  peanote this class of monotone access structures MithWe
ri are instances of unilorm random variablesiin have the following result for the minimum size of a share for

Ito, .Shaito, and Nishizeki1[1] defing a generalization of go.rat sharing schemes with access structlre M, .
Shamir's scheme that works for arbitrary monotone access
structures. Define a maximal elemeBt € B as a set such Theorem 14. Consider distribution of shares of secrétto

thatA 2 B = A ¢ A. Similarily, define a minimal set » nodes with localityr, recovery sets as in eq1§). Then,
A€ Aasasetsuchthdd C A = B ¢ A. Consider the there is an access structuré; < M (eq.(36)), such that any
set of maximal elements of the block-li8t denoted3!. The perfect scheme fad,, if exists, must satisfy,

IBf -1
scheme uses the generator polynomigt) = s+ > 2 a > MH(S). (37)
=1

rlogn
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whereq is the average entropy of the shares. Let N = {b1,...,b,_1}. Define another sequence of sets
N; = {b1,...,b;},i € [v—1] and Ny = (. Consider a
monotone access structurg, that contains the set§; :=
M; U N;,i € {0,...,v — 2}. Let the minimal sets in this

Proof: First, let us define aolymatroid(Q = {[n], S}, ¢)
as follows,

H(ca) access structure be

A - A n ’
. e - o Al {ACU AN Q| in{|AN Q,|,r}, Vi { n ]}
_H(CA,S) s — = Ui j| = min LTy, Vi€ | ——— .

A polymatroid function must satisfy the following propesi Thus,A_S € M. _
P1 $(A) >0 forall A C Q, (0) =0 Consider the following set® = N;UM and@Q = M;,1 U

P2 ¢ is monotone i.,eA C B C @, theng(A) < ¢(B) Niy1. SinceP 2 U; and@Q 2 Uit P,Q € As. Now, P

. ) @ = N;UM,;,,. From conditionC1 and eq. 41), we see that
) > :
P3 ﬁ):sasnl;bE(gilgacrgl 8(A4)+(B) 2 $(AUB)+¢(ANB) there exists a setl* € A%, A* C U, such thatPnN @ C A*.

Therefore,P N As. Applying eqg. @9 on P, Q, we have,
Note that, the definition in eq3g) satisfies all the conditions Pneg Pplying eq. ¢9) @

above. In addition, the definition satisfies the followingpr [p(N; UM) — ¢p(N; U Myy1)]
erties, — [B(Nis1 UM) = §(Nips UMig1)] 2 1. (42)
Pa ¢(A,S) = ¢(A), for every A € A, .

Pb ¢(A,S) = ¢(A) + 1, for every A ¢ A, Using property(P3) we have,

which easily follow from the recovery and the security prop-¢(N; 1 U M; 1) — ¢(N; U M;11) > ¢(Niv1) — ¢(N;). (43)
erties i.e.H(S|cg) = H(S) and H(S|ca) =0, A € A, and

B € B, = 2"l — A, and the definition in eq.3). Thus, combining eqs4@) and @4) we have,
Using propertiegP1)to (P3) and propertiegPa) and (Pb) _ _ NEE _ _ _
we have the following result, for anyl, B € A, such that [G(N: U M) = §(N)] = [9(Niws UM) = §(Nia)] 2 %44)
ANB ¢ As,
Adding eq. @4) for i € {0,...,v — 3} we have,
¢(A,5) +¢(B,S) = ¢((AU B),5) + ¢((AN B),S)
= ¢(A)+¢(B) > p(AUB) +p(ANB)+1  (39) (M) = [p(Ny—2 UM) — ¢(Ny—2)] = v — 2. (45)

Consider the seM of size n such that(r + 1)|y and it 11US: from the recoverability property we haveM) <

containsy/(r + 1) partitionsQ;. Another setN' C [n]\ M : 7"/(r + 1)a. Since,M € As and Ny—z ¢ A, ¢(Ny—2 U
IN| = v == 27 — (r + 2)C+D 4 1 is chosen such that M) — ¢(Nv—2) = 1. Thus, we have from eq4g),

INNQ;| <r, Vj. The parameten for the size of the sets 91 — (p + 2)7/(r+1D)
M, N is chosen to be the largest possible, i.e. the maximum a>(r+1) p” H(S). (46)
7 satisfying,

Since,n = Q(logn) and (r + 2)/(+1) < 2 from eq. @0),
- { .7_1J 2T (2D 1 < n_:_ - (40) eq. ¢6) asympototically (withn) gives,
T T

r+1 n
Now, construct a_sequ_echi}fgol, for M; € 2M of o= ( " )lognH(S)'
length v, such that it satisfies the following conditions for
all setsM; in the sequence, u
C1 If for any partitionQ;, Q,; N (M; — M, 41) # 0 and|Q; N
APPENDIXA

Mz| >, then|Qj N Mi+1| <r
C2 M; & My,i<i PROOF OF LEMMA6
To construct the sequené@/; }, of lengthy satisfying con-  Consider the submatrix/,, ., of G corresponding to
ditions C1 and C2, we first construct a sequen({Mi’}flgl, ¢ rows, I, C [n]. Assume that the eavesdropper observes
M} C M : |M]| < |M],,| Itis easy to see that all subse¢- W_Iog assume thatank(H) = ¢, since the eavesdropper
quences off A/} satisfy conditionC2. From this sequence we effectively observesank(H) shares. _
remove all setsV/,i > 1 such that|(M, — M!) N Q;] < 1. " <" Assume that any rows of G* corresponding _td
Note that, the number of the sets removed is, L.l. rows of G are L.I. Thus,rank(H7) = ¢ by assumption.
Letc=Ga andH = [H,; H,] whereH; is ¢ x ¢ and H; is
3 (n/(r.—i— 1)> (r+1)f = (r+2)7/0+D) _ 1, ¢ x k. Then,
(3

1<i<n/r+1 Hir =cy, — Hss 47

The sequencé)M; }, thus constructed has length To see that Now, givenc;,, for everys there is a unique solution to =

this sequence satisfies conditi@i note that|(M, — M;) N H, '(cr, — Hzs). Since, each of those vectors are equally
Q,| > 1,vi > 1 implies that{}M,}, satisfies conditiorC1. probable the eavesdropper does not get any informationtabou
Thus the constructed sequence satisfies condiidrendC2.  s.
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" = " Conversely, suppose thd{; is not full rank. (but repairability » for this network and the scheme correspond-
rank(H) = ¢ by assumption). If for a given;, there does not ing to the data transmitted on the edg€g™,Y,°*!) is an
exist a solution to eq.4(’) for somes € F¥ then H(s|cy,) <  (n, ko,0,m,r)-secret sharing scheme.

H(s). This happens iff for some € FE**, In the following we show that the netwo(n, ko, m, )

Ha — colspan(Hy) Z colspan(Hy) (48) has multicast capacityy.

where colspan(.) denotes the column span of a matrix an
Ha — colspan(Hz) = {Ha — v : v € colspan(H3)}. Now,
colspan(Hsz) ¢ colspan(H;) sincedim(colspan(Hy, Hz)) =

¢ and dim(colspan(H;)) < ¢ by assumption. Thus, eg4&)
is satisfied fora = 0 which implies that in this case the
eavesdropper does get some information alsout

gefinition 6. A min-cut for any two nodesv,u in

(n, ko, m,r), denotedMinCut(v, u), is defined as a subset

of directed edges of minimum aggregate capacity such that if
these edges are removed, then there does not exist a path from
v to w in the graphG(n, ko, m,r). Let|MinCut(v, u)| denote

the aggregate capacity of the edgesMinCut(v, ).

It has been shownl], [1(] that the minimum of the min-
APPENDIXB cuts between a single source and multiple sinks corresponds
ACHIEVABILITY USING LINEAR NETWORK CODES to the multicast capacityof the source. We show that for
In this appendix, we show that the limit derived in theor2m G (n, ko, m, r) this quantity,min, ¢ [MinCut(X, DC,,)|, is
is achievable using a randdimear network codéLNC). The equal toko.
rest of this section is devoted to the proof of theotewmia the

technique provided in1[f]. We assume that, is such that, Lemma 16. For G(n, ko, m, 7) the multicast capacity iso.

That is,
m = ko +ko/r —1 (49) min [MinCut(X, DC,,)| = ko. (50)
For simplicity, further assume that divides ky and (r + 1) pelt
dividesn. Proof: For kq satisfying eq. 49 we have,
Our roadmap for the proof is the following. We analyze ko
the network flow graph in figl, that has been adapted and m=ko+-—=—1=(ko/r=1)(r+1)+r.  (51)

modified from [L6]. We first show that this graph has multicast o ) )
capacityko. Further there exists an LNC for this graph whiciPUPPose that the minimum in eq5( only contains an
corresponds to afm, ko, 0, m, )-secret sharing scheme. Then?1-Subsete of edges in{(X, F)}, .- Assume wlog that
we impose additional constraints on the LNC for the graph fn = {(X,F1),..., (X, Fy,)}. Consider the data collector
fig. 1to get aré-secure scheme, i.e., &n, k = ko—(, £, m,r)- DCu thatconnects ta,, p € [n/(r+1)] nodes in each of the
scheme. Clearly this satisfies eq).( repair groups. Ify, > r—n, the min-cut sh_oulq include all the

We start by describing the graph in fig(Left). This graph, €d9es{(Fn,+1,T,),..., (F,T))}. Otherwise ify, <r —mny
G(n, ko, m,r) consists of a source nod¥ that transmitss, the min-cut includes all the,, edges(Y;™,Y;”"") in the Pth_
g-ary symbols tal’ = (") data collectorsDC,,, uu € [T]. We epair group connected tOC,,. Therefore, the minimum in
assume thaf{ transmit the secre¢ € F*. The unit for the €d- ©60) would correspond to the data_collector that covers
edge capacity is taken to be opa@ry symbol per channel use.entirely as many repair groups as possible. From &f). e
The nodesF,, v € [r] connect to the sourc& through links S€€ that for a such data collectgy > (r — n,) for all p for
with capacity ko/r. The edges that connett,,p € [;2;] Which+, >0 and for all0 < n, < r. Therefore,

to Y",i € [n], has capacityr. All the rest of the edges o ko ko

have unit capacity. Each df,, p € [-%;] haver incoming mﬁn|M'”CUt(Xa D)l = —~(r—m) +n1—= = ko
edges fromF,,v € [r]. The edges(X,F,) are broken

into ko /r unit capacity edges and labelled, so, . .., sy, as u

shown in the subgraph in figl (Right). NodeF,, connects ~We know therefore that a random LNC achieves the
ko/r
to the sourceX through edges{syﬁ»()\fl)r})\[):/lay e [r]. multicast capacityky for this network. This random LNC

Let us denote the subset of no yin At corresponds to a secret-sharing scheme withhqres such
you 1 hepth @p,{ (-1 1+ 5=1 that the secret irFf> can be recovered by looking at any
{ G razey j=11 as thep™ repair group. m shares. Now to satisfy the local repairability constraint

single r_1etyvork use corresponds to a sequence of sm_%(? this LNC, consider the subgraph containing the nodes
data transmission on every edge. Assume that, data traedmlrn the p™ repair group. Another set of local decoding re-

in outy i i
on the edé;es(YF»] ’Yih ), ef[rﬂ in a smgle netwl(j)rll< usfe quirements are imposed on this subgraph. For eastbset
correspond to the: shares of the secret (i.es, symbols o of nodes in any local repair group, a local data collector

f(s), where f is the randomized encoding). Note t_hat, thfLDi,z‘ € [n] connecting to these nodes should be able to
data collectors connect ta nodes (shares) and obtain all ofye o e the input tb',. There are in totak such local decoding
what X transmits: this must be satisfied for ail-subsets (all requirements. These decoding requirements are simildreto t
data collectors). We use the netwagKn, ko, m,r) 10 ShOW 1o reairapility requirements for the network flow graph
the existence of a linedn, ko, 0, m, r)-secret sharing scheme.Consiolered in T6]. Let =, € F7, denote the data received by
Lemma 15. Given that the networl(n, ko, m,r) has mul- I',. Let N; denote ther x r local encoding matrix, for the
ticast capacityko, there exists a linear network code withedges{(T,,Y7" 1. 1), )} jciryip iy COrresponding ta*”
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Fig. 1: Left: The information flow-graplg(n, ko, m,r) adapted from J6]. The left-most vertex is the source node The
T = (:1) vertices DG, are the destination nodes (referred to as the data coligctBach DC is connected to a different

m-tuple of Y2 nodes. Each of the intermediate nodésv € [r] have out-going edges to all the nodes p € { } Right:
Equivalent representation for the subgraph containingead¢l and the sourcex.

local data collector. Therefore, the data received byitfie need to consider the eavesdroppers that observe a maximum
local decoder is, of r shares in a repair group. Let us denote this sub-set of

, eavesdropper a8D., 7 € W, W' C [(})].
zZpNii € {(p—1)(r+1)+1,....p(r + 1)} (52) If (c1,...,c,) are then shares for the secret, we must
have the data transmitted on the edgggs", Y,°*!) with the

We see that, for any local data collectbD; to recover the . -
following linear form,

data from the nodd’, matrix N; must be full rank. Since
we know that for a large enough alphabet sizeve can

ai1  ai2 ot Alkg

satisfy these constraints §, lemma 4], there must exist an ! az1 Gg2 - Ao 51
LNC that satisfies the local repair requirements. Therefore | : | = ) : i i i | =A4s. (53)
we can construct afw, ko, 0, m, r)-secret-sharing scheme. en : : E : Sho

Suppose we write the secret &as= (s1,. .., sk, ), and term an,1 An2  *°r Gnkg
S1,..., Sk, as the information symbols. Now for the randomye claim that the security against an eavesdrogpbr., r €
LNC obtalned above that sat|sfy the repairability and recpv 1, jg equivalent to a full-rank requirement onfax ¢ sub-
requirements, we relabdl = ko — ¢ information symbols atrix of A.
{s¢41,---,8k } from the sourceX as secure information
symbols and the choose each of the festmbols{sy,...,s,} Lemma 17. Let &7 = {e],e3,...,ej} C [n] denotes the

according to a uniformly random distribution#,. For such a shares an eavesdroppéfD; can observe. We have,
random LNC to be-secure any eavesdropp€D.,, 7 € [(})]

connecting to any nodesY;”** may be able to recover at cer = A1sp + A3 8o (g- (54)
most the redundant symbols{s, ..., s,} and should have |f for all eavesdroppers?D.., 7 € W' the ¢ x ¢ matrix A7 is
full ambiguity about{s;1,... Sko} We show that these fy|l-rank then the LNC ig-secure.

additional security constraints can be satisfied for a rendo

. HH /
LNC with large enough alphabet and hence we have an Proof: Suppose for some specifice W',

(n, k, £, m,r)-secret-sharing scheme satisfying €q. ( Qeq, 1 Geq,2 00 Gegp Aey 041 70 ey kg
Note that if a code is secure against an eavesdropper wﬁyo Gep, 1 Gep2 *'0 Geyyt ar Qeg,b+1  **°  Geg kg

can observe any of théshares, it must be secure against any' : S : : -

adversary who can only observe less tliahares. Therefore, Geg,l Geg,2 *00 Gegye Qeg,0+1  *7°  Gegikg

for £ > r we can ignore all eavesdroppers who choose alk;ce AT is full rank, there must be a unique solution

the (r + 1) shares of the same repair group. Since one of the s1,89,...,5. for every value ofce- and every value of
shares in a repair group can be recovered from the other{sé . sk} € FRo. Hence, we have
)t 0 q ) 1

shares, an eavesdropper who readmtire repair groups is
observing effectively onlyy — ¢ shares. Therefore, we only H(sglcer, S g) =0



We therefore have the following chain of inequalities that3s]
establishes that the eavesdropper does not get any informat

about the secret from his observation. 4]

I(sionjgicer) = H(eer) — H(eer|Spopng) <
t — H(eer|spong) +  Hlcerlsp, Spopg) = &
= Icerssplspong) = € — H(sglsmopng) +
H(S[g”Cgﬂ-,S[ko]\[g]) =/ - H(S[g]) ={—(=0 | [6]

We also have the following lemma.

Lemma 18. Consider the subgraply. formed by removing [7]
the edges;1, . . ., sk, from the graptG(n, ko, m, ). For this
modified network graph the multicast capacity between thg]
source and the eavesdroppeD.., 7 € W' is { i.e.
min [MinCut(X, ED,)| = /.
TEW'

Proof: It is easy to see from the network structure that
min-cut for every eavesdroppé& D, € W’ corresponds to [10]
all the edgegY;, Y,°“!) to which an eavesdropper connects
in each repair group. Since, every eavesdropp&yirconnects
to ¢ nodes, the minimum mincut is algo m [11]

Consider the eavesdroppé&iD.,,7 € W which connects 12
to ti,t2,...,t,/(r+1) NOdes in each of the repair groups.
Therefore, we have

El

[13]
n/(r+1)
t, =1 [14]
p=1

where0 < t, < r,Vp € [n/(r +1)]. Let N),p € [n/(r + [15]

1)] denote thel, x r local encoding sub-matrix oN, (see, [ig]
eq. 62)) for the edgesT’,, Y;™) connecting the eavesdropper
to the p*" repair group. Also, leD,, p € [n/(r + 1)] denote 17
ther x £ matrix corresponding to the local encoding vectors for
(F,,T,),v € [r], for the induced graplg. described above.
The matrix A] from lemmal? can be written as, [18

!
N }D 1 [19]
N4 Ds
7= . (55)
. [20]
N'w Dn_

1 Tl

We need all of the matricesl],r € W’ to be full-rank
simultaneously. Now using lemmE8 we can see that these
constraints on the matricd3,s can all be satisfied simultane{22]
ously —with the local repairability and multicast capaeifpr 23]
all 7 € W for a large enough alphabet siz&J[, [6, Lemma
4]. Therefore, a random LNC satisfies the full rank constgain[24]
of lemmal?.

Therefore, for the random LNC obtained above, for anys)
eavesdroppeE D, observingE™ C [n], I(sp\; cer) = 0.
Since the data collectors can recowerfrom any m nodes
and H (spx,\j¢]8) = 0, the secret is recoverable from any
shares. Therefore, we have @n k, ¢, m, r)-scheme achieving
the upper bound in eq7).

[21]
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