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Security in Locally Repairable Storage
Abhishek Agarwal and Arya MazumdarSenior Member, IEEE

Abstract—In this paper we extend the notion of locally re-
pairable codes tosecret sharing schemes. The main problem that
we consider is to find optimal ways to distribute shares of a
secret among a set of storage-nodes (participants) such that the
content of each node (share) can be recovered by using contents
of only few other nodes, and at the same time the secret can
be reconstructed by only some allowable subsets of nodes. As
a special case, an eavesdropper observing some set of specific
nodes (such as less than certain number of nodes) does not get
any information. In other words, we propose to study a locally
repairable distributed storage system that is secure against a
passive eavesdropper that can observe some subsets of nodes.

We provide a number of results related to such systems
including upper-bounds and achievability results on the number
of bits that can be securely stored with these constraints. In
particular, we provide conditions under which a locally repairable
code can be turned into a secret sharing scheme and extend the
results of secure repairable storage to cooperative repairand
storage on networks. Additionally, we consider perfect secret
sharing schemes over general access structures under locality
constraints and give an example of a perfect secret sharing
scheme that can have small locality. Lastly, we provide a lower
bound on the size of a share compared to the size of the secret
that shows how locality affects the sizes of shares in a perfect
scheme.

I. I NTRODUCTION

Secret sharing schemes were proposed by Shamir and
Blakley [3], [22] to provide security against an eavesdropper
with unbounded computational capability. Consider the secret
as a realization of a (uniform) random vectorS over some
support. Define[n] := {1, 2, . . . , n} and let 2A denote the
power set for setA. Suppose that shares of the secret are to
be distributed amongn participants (storage nodes) such that
a set of shares belonging toAs ⊆ 2[n], is able to determine
the secret.As is called the access structure of the secret
sharing scheme. Denote the random variable corresponding
to the share of a participant (or node)i ∈ [n] by Ci and
let C = (C1C2 . . . Cn). Let xA denote the projection of the
vectorx ∈ Fn to the co-ordinates inA ⊆ [n]. For a singleton
setA = {i} let xi := x{i}. A secure scheme has the property
that a subset of shares in the block-listBs ⊆ 2[n] are unable to
determine anything about the secret. Thus,H(S|CB) = H(S)
for any B ∈ Bs andH(S|CA) = 0 for any A ∈ As, where
H(·) denotes the entropy1. For a standardmonotonesecret
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1The unit of entropy in this paper isq-ary, whereq is an integer that will
be clear from context.

sharing scheme the classesAs andBs must have the following
properties,

A′ ⊇ A,A ∈ As =⇒ A′ ∈ As

B′ ⊆ B,B ∈ Bs =⇒ B′ ∈ Bs

and

Bs ⊆ 2[n] \ As.

For a perfect secret sharing scheme we have the above
monotone property andBs = 2[n] \ As. Perfect schemes for
access structures of the formAs = {A ⊆ [n] : |A| ≥ m} are
called thresholdsecret sharing schemes. We refer to [2] for a
comprehensive survey of secret sharing schemes.

A convenient property of schemes that need to store data
in a distributed storage system is local repairability [8] i.e.
any storage node can be repaired by accessing a small subset
of other nodes, much smaller than is required for decoding
the complete data. Error-correcting codes with the local repair
property – locally repairable codes (LRC) – have been the
center of a lot of research activities lately [4], [8], [16], [24].
Consider ann length code over aq-ary alphabet,C ⊆ Fn

q

of size |C| = qk. The code is said to havelocality r, if for
every i, 1 ≤ i ≤ n, there exists a setRi ⊆ [n] \ {i} with
|Ri| ≤ r such that for any two codewordsu,u′ ∈ C satisfying
ui 6= u′

i, we haveuRi
6= u′

Ri
. In a code with localityr,

any symbol of a codeword can be deduced by reading only
at mostr other symbols of the codeword. For application in
distributed storage, the code is further required to have a large
minimum distanced, since that helps recovery in the event of
a catastrophic failures (i.e., up tod − 1 node failures). It is
known that [8] for such a code,

d ≤ n− k − ⌈k/r⌉+ 2, (1)

which is also achievable [16], [24]. A q-ary code of lengthn,
sizeqk and localityr will be called an(n, k, r)q-optimal LRC
if it’s minimum distance satisfies (1) with equality.

Security in distributed storage has recently been considered
in a number of papers, for example [9], [17], [20], [25]
and references therein. In these papers the main objective is
to secure stored or downloaded data against an adversary.
Threshold secret sharing protocols over a network under
some communication constraint has been considered in [21].
Problems most closely related to this paper perhaps appear in
[18] where a version of threshold secret sharing scheme with
locality has been studied. Motivated by the above applications
in distributed storage, we analyze secret sharing schemes with
different access structures such that shares of each partici-
pant/node can be repaired with localityr.

http://arxiv.org/abs/1503.04244v2
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A. Contributions and organization

Our contributions in this paper are summarized in the
following list.

1) Distributed storage.We provide bounds and achievability
results for a locally repairable scheme for access structure
and block-list, As = {A ⊆ [n] : |A| ≥ m} and
Bs = {B ⊆ [n] : |B| ≤ ℓ}, respectively. As evident
from definition 1, this access and block structures model
a simple distributed storage scenario. We assume that the
shares of the secrets are locally recoverable and at the
same time an adversary observing up toℓ shares does
not get any information. A more general version of this
model that also considers repair bandwidth as a parameter
appears in [18]. In sectionII we also address the conditions
under which a locally repairable error-correcting code can
be converted into a secret sharing scheme with the above
access structure.
Comparison of this part with results of [18]: In [18],
bounds on secrecy capacity for regenerating and locally
recoverable codes have been derived using information
theoretic inequalities, and achievability of these bounds
using schemes that require Gabidulin precoding technique
has been shown.
Our method to prove the converse result is different from
that used in [18]. One advantage of our technique for
the bound in sectionII is that it can be easily applied
to cooperative repair (sectionIII ) and repairable codes on
graphs (sectionIV).
We provide a random coding argument using network flow
graphs to show the existence of an achievability scheme
for the bound, and also adapt the method of [18] for
more general scenarios mentioned above (i.e., cooperative
repair and repairable codes on graphs). For these scenarios,
we use lemma6 and Gabidulin precoding to construct
transformations to form secure schemes from existing non-
secure locally repairable codes.

2) Maximal recoverability.The Gabidulin precoding described
above can be used to construct optimal codes but requires
an exponentially large (inn) alphabet size. A simple
construction of secret sharing schemes from LRCs is
provided in eq. (14). We specify in lemma6 the additional
constraints that an optimal LRC would have to satisfy
to be able to construct optimal secret sharing schemes
in this method. This shows that to construct an optimal
secure scheme with small share size we essentially need
a maximally recoverable codeover small alphabet (see
theorem8).

3) Perfect secret sharing with small locality.In section V,
we consider perfect secret sharing schemes over general
access structures under locality constraints. While we show
that for threshold secret sharing schemes, there cannot exist
any non-trivial local repairability, we give an example of a
perfect secret sharing scheme that can have small locality.

4) Lower bound on the size of shares in terms of the size of
the secret.Furthering the result of [5] to locally repairable
schemes we provide an analogous lower-bound on the size
of a share compared to the size of the secret. We further

show how locality effects the sizes of shares in a perfect
scheme as they relate to the size of the secret. These results
are presented in sectionV (see theorem14).

5) Extension.We extend the notion of security to cooperative
local repair [19] where a Distributed Storage System can
deal with simultaneous multiple node failures. We provide
upper-bounds on the secrecy capacity and construct achiev-
able schemes for this scenario in sectionIII .

6) Extension. A different and practical generalization for
secret sharing scheme is made in which the Distributed
Storage System is represented by a graphG such that a
node can only connect to its neighbors inG for repair.
This scenario has been considered in sectionIV.

II. A SECRET-SHARING SCHEME FOR DISTRIBUTED

STORAGE

We start this section by formally defining a secret sharing
scheme for a particular, common access structure and block-
list: As = {A ⊆ [n] : |A| ≥ m} andBs = {B ⊆ [n] : |B| ≤
ℓ}. For a codeC ⊂ Fn

q and setI ⊂ [n] defineCI := {xI ∈

F
|I|
q : x ∈ C}.

Definition 1. An (n, k, ℓ,m, r)q-secret sharing scheme con-
sists of a randomized encoderf that maps a uniform secret
S ∈ Fk

q randomly toC = f(S) ∈ Fn
q , and must have the

following three properties.
1) (Recovery) Given anym symbols ofC, the secretS is

completely determined. This guarantees that the secret is
recoverable even with the loss of anyn−m shares.

H(S|CI) = 0, ∀I ⊆ [n], |I| = m (2)

2) (Security) Any set ofℓ shares ofC does not reveal
anything about the secret.

H(S|CJ) = H(S), ∀J ⊆ [n], |J | = ℓ (3)

A scheme satisfying this condition is calledℓ-secure. An
eavesdropper that can observeℓ nodes is called anℓ-
strength eavesdropper.

3) (Locality) For any share, there exist at mostr other shares
that completely determine this. For alli, there existsRi ⊆
[n] \ {i} : |Ri| ≤ r, such that

H(Ci|CRi
) = 0 (4)

Ri is called the recovery set of sharei.

The maximum amount of secret that can be stored as
a function of n, ℓ,m and r is called the capacity of the
secret sharing scheme and in the following we provide exact
characterization of this quantity. We can define the security
condition above in a modified way where the eavesdropper is
allowed to see any setJ ⊆ [n] of shares and we calculate
the amount of information revealed, i.e.I(S;CJ ), in terms
of n, k, |J |,m andr in an optimal scheme. This extension is
easy from our result and somewhat summarized in corollary4.

Note that, for locally repairable schemes with no security
requirement i.e.ℓ = 0 the following lower-bound onm is
apparent from (1),

m ≥ k + ⌈k/r⌉ − 1, (5)
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This lower bound follows from the definition of the minimum
distance of a coded = n−m+1. In the subsequent, we provide
the fundamental limit on secrecy capacity and constructions
achieving that limit.

As mentioned in the introduction, a generalized version
of this type of secret-sharing scheme that include repair-
bandwidth and other parameters was studied in [18]. Our
theorems2 and 5 can be obtained as a consequence of
results of that paper. We still provide different proofs of these
results as the concepts introduced will be useful for later
developments.

A. Bounds

Let us first prove an immediate and naive upper bound on
the capacity of a locally repairable secret sharing scheme that
follows as a consequence of Eq. (5).

Proposition 1. For any(n, k, ℓ,m, r)q-secret sharing scheme,

k ≤ m− ℓ−

⌊

m− ℓ

r + 1

⌋

Proof: Consider the randomized encodingf of any
(n, k, ℓ,m, r)-secret sharing scheme. For any secrets ∈ Fk

q ,
define the support of the mapf(s) to besupp(f(s)) = {x ∈
Fn
q : Pr(f(s) = x) 6= 0}. Clearly for any pairs, s′ ∈ Fk

q

s 6= s′, supp(f(s)) ∩ supp(f(s′)) = ∅.
Suppose, for somes ∈ Fk

q , x ∈ supp(f(s)). Let I ⊆ [n]
and |I| = ℓ. Note that, for eachs′ ∈ Fk

q \ s, there must
exist z ∈ supp(f(s′)) such thatzI = xI (from the Security
property). LetC ⊆ {z ∈ supp(f(s′)) : s′ ∈ Fk

q andzI = xI}
such that|C ∩ supp(f(s′))| = 1∀s′ ∈ Fk

q . We haveC ⊆ Fn
q

and |C| = qk. Moreover, from the Recovery property, anym
coordinates of a vector inC must be unique, which impliesC
has minimum distance at leastn−m+ 1.

Since{f(s) : s ∈ Fk
q} has localityr any setC ⊂ {f(s) :

s ∈ Fk
q} must have localityr. Since, all the codewords inC

have fixed value on the co-ordinatesI, C[n]\I ∈ Fn−ℓ
q must

be a code of lengthn− ℓ and localityr. Moreover,C[n]\I has
minimum distance at leastn−m+1 (same asC). Now from
eq. (1) we have,

n−m+ 1 ≤ (n− ℓ)− k − ⌈k/r⌉+ 2

⇐⇒ k + ⌈k/r⌉ − 1 ≤ m− ℓ (6a)

⇐⇒ k ≤ m− ℓ −

⌊

m− ℓ

r + 1

⌋

(6b)

where eq. (6b) follows by replacing both sides of eq. (6a) by
Incr0(k + ⌈k/r⌉ − 1) andIncr0(m− ℓ) respectively, where
Incr0(.) denotes the increasing functionIncr0(x) := x −
⌊

x
r+1

⌋

.
This naive bound in eq. (6a) is not the best possible: it can

be further improved to

k + ℓ+

⌈

k + ℓ

r

⌉

− 1 ≤ m. (7)

To prove (7), instead of trying to use eq. (1) as a black-box,
we follow its proof method [4], [8].

Theorem 2. Any (n, k, ℓ,m, r)q-secret sharing scheme must
satisfy,

k + ℓ ≤ m−

⌊

m

r + 1

⌋

. (8)

The upper-bound in eq. (8) can also be obtained from [18,
Theorem 33] where the authors use a different method. It
should be noted that eq. (8) is equivalent to eq. (7). We see
that eq. (7) =⇒ eq. (8) by replacing both sides in eq. (8) by
the increasing functionIncr0(x) := x−⌊x/(r+1)⌋. Similarly
eq. (8) =⇒ eq. (7) by replacing each side with the increasing
function Incr1(x) := x+ ⌈x/r⌉ − 1. This follows because of
the following fact,

Claim 3. For x, y, r ∈ Z+,

y = x+
⌈x

r

⌉

− 1 ⇐⇒ x = y −

⌊

y

r + 1

⌋

(9)

Proof: Let x = qr + w, w < r. Then, we have.

x+
⌈x

r

⌉

− 1−

⌊

x+
⌈

x
r

⌉

− 1

r + 1

⌋

(10a)

= x+ q +
⌈w

r

⌉

− 1−

⌊

qr + w + q +
⌈

w
r

⌉

− 1

r + 1

⌋

(10b)

= x+
⌈w

r

⌉

−

⌊

w +
⌈

w
r

⌉

− 1

r + 1

⌋

− 1 (10c)

= x (10d)

where eq. (10d) follows since
⌈

w
r

⌉

−

⌊

w+⌈w
r ⌉−1

r+1

⌋

−1 = 0 for

w ∈ [0, r− 1]. Now, substitutingy = x+
⌈

x
r

⌉

− 1 in eq. (10a)
we have, eq. (9).

Proof of theorem2: Let Λi = {Ri∪{i}}. Recall that we
can recover the secretS from anym symbols in then length
wordf(S) = C. We construct anm-subsetM ⊆ [n] such that
|{i : Λi ⊆ M}| is maximized. Suppose,M′ =

⋃

i:Λi⊆M

Ri.

We haveH(CM|CM′) = 0. MoreoverH(S|CM) = 0.
This implies,

H(S|CM′) = 0.

Now we can select anyℓ-subsetL of M′ and assume
that the eavesdropper observes that set. Therefore,H(S) =
H(S|CL) must be less than or equal to the number of symbols
in M′ \ L. Formally,

k = H(S) = H(S|CL) ≤ H(CM′ |CL) ≤ |M′ \ L|

= |M′| − ℓ. (11)

This observation will lead us to eq. (8). We describe below,
the only remaining task: the method for constructing the set
M described above, and show that it gives us eq. (8). The
construction forM is given in algorithm1.

Note that algorithm1 may not actually give the set con-
taining the maximum number ofΛi but it would suffice to
prove the bound in eq. (8). Let ν denote number of setsΛi

added toM0. We have,|Λi| ≤ r + 1, ∀i. So the maximum
size of the set added in each step isr + 1. Since|M| = m
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Data: Ri for all i
Result: M ⊆ [n], |M| = m containing at least

⌊m/(r + 1)⌋ recovery sets
1 j = 0; Mj = ∅
2 choose anyt ∈ [n]
3 while |Mj ∪ {Λt}| < m do
4 Mj+1 = Mj ∪ Λt

5 chooset /∈ Mj+1

6 j = j + 1
7 end
8 if |Mj ∪ Λt| ≤ m then
9 Mj+1 = Mj ∪ Λt

10 else
11 I = any (m− |Mj |)-subset of[n] \Mj

12 Mj+1 = Mj ∪ I
13 end
14 j = j + 1
15 M = Mj

Algorithm 1: Constructing a setM ⊆ {1, 2, . . . , n} to
maximize|{i : Λi ⊆ M}|

by construction, when the algorithm ends at line9 we have
ν ≥

⌈

m
r+1

⌉

. If the algorithm ends at line10 we must have,

ν ≥
⌊

m
r+1

⌋

. Evidently we have constructed a setM such that

|M′| = |M| − ν ≤ m−
⌊

m
r+1

⌋

. From eq. (11) we have,

k ≤ m−

⌊

m

r + 1

⌋

− ℓ. (12)

Using eq. (11) we can show the following,

Corollary 4. There exists a setJ ⊆ [n] with ℓ ≤ |J | ≤

m−
⌊

m
r+1

⌋

such that,

H(S|CJ ) ≤ m−

⌊

m

r + 1

⌋

− |J |. (13)

Equation (13) gives an upper-bound on the maximum am-
biguity of the secret of an(n, k, ℓ,m, r)-scheme when the
eavesdropper has access to more thanℓ shares.

B. Constructions

It is possible to show matching achievability results to
theorem2 by a number of different methods.

Theorem 5. There exists a(n, k, ℓ,m, r)-secret sharing
scheme such that eq.(7) is satisfied with equality.

In particular this theorem can be proved by constructing
a random linear network code. We delegate that proof to
AppendixB.

The achievability result also follows from [18], that gives
a construction for optimal secure LRC employing Gabidulin
codes to satisfy the security constraint. In the subsequentwe
describe their method, adapted for our scenario, because this
will be useful later in our paper when we consider more
general secret sharing schemes.

An intuitive construction ofℓ-secure schemes comes by
replacing some inputs to a LRC with uniform random vari-
ables. Formally, consider a linear codeC with code-lengthn
and dimension(k + ℓ). Let G = [G1 G2] ∈ F

n×(k+ℓ)
q be

the generator matrix of this code such thatG1 ∈ Fn×ℓ
q and

G2 ∈ Fn×k
q . Let a ∈ Fk+ℓ

q be the input to the encoder of
C (i.e., the codeword is generated by multiplyinga with the
generator matrix ofC). Denote bys ∈ Fk

q the input we want to
store securely. We construct anℓ-secure secret sharing scheme
usingC by taking,

a =

[

r

s

]

(14)

wherer ∈ Fℓ
q is an instance of uniformly distributed random

vector. This scheme isℓ-secure if and only if for anyℓ linearly
independent rows of G the corresponding rows ofG1 are
linearly independent.

Lemma 6. Let gi = [gi1gi2 . . . gi(k+ℓ)], i ∈ [ℓ] be any ℓ
linearly independent rows ofG. The secret sharing scheme
constructed in eq.(14) is ℓ-secure if and only if the corre-
sponding row vectorsg1

i = [gi1gi2 . . . giℓ], i ∈ [ℓ] of G1 are
linearly independent.

The proof of lemma6 is given in AppendixA. Note that
using lemma6 we can add the security property to any linear
code; we do not assume any locality property for the generator
matrix G. But, it is clear that if the generator matrixG has
locality r, then so would the scheme constructed in eq. (14).
The construction of an optimal(n, k, ℓ,m, r)q scheme is
described in the following.
Gabidulin precoding construction:Let N be an integer. The
points αi ∈ FqN , i ∈ [n] can be represented as vectors in
FN
q and are said to beFq-linearly independentwhen the

corresponding vectors overFq are linearly independent. A
Gabidulin code fromFk

qN → Fn
qN , for input(f1f2 . . . fk), fi ∈

FqN , is obtained by evaluating the linearized polynomial
Θ(y) =

∑k
i=1 fiy

qi−1 at n Fq-linearly independent points
αi ∈ FqN , i ∈ [n]. The linearized polynomialΘ(y) has the
following linearity property,

Θ(ax+ by) = aΘ(x) + bΘ(y) (15)

for all x, y ∈ FqN anda, b ∈ Fq. Note that, we needN ≥ n
to obtainn Fq-linearly independent points inFqN .

Consider the generator matrix,G = [g1 . . .gn]
T of a linear

(n, k + ℓ, r)q-optimal LRC, wheregi = [gi1 . . . gi(k+ℓ)]
T .

Considera = (s r), wherer is an instance of uniformly
distributed random variable inFℓ

qN and s ∈ Fk
qN , N ≥ n,

denotes the secret. First,a is precoded using a Gabidulin
code,Γ : Fk+ℓ

qN → Fk+ℓ
qN which is obtained by evaluating the

polynomial,

Ψa(y) =

k+ℓ
∑

i=1

aiy
qi−1 (16)

at theFq-linearly independent pointsαi ∈ FqN , i ∈ [k + ℓ].
Now, representingΓ(a) ∈ Fk+ℓ

qN
as a matrix of size(k +

ℓ) × N in Fq, each column of the matrix can be encoded
independently using the generator matrixG for the optimal
LRC to get (ci)ni=1 = c ∈ Fn

qN . It is easy to show that this



5

construction isℓ-secure. The optimality of the scheme then
follows from the optimality of the initial linear LRC. The proof
of security of this construction is given below.

Proof of theorem5 with the Gabidulin construction:
Assume without loss of generality (wlog) that the eaves-
dropper observesE = [ℓ] ⊆ [n] symbols ci, i ∈ E . Let
G̃ = [g1 . . . gℓ]

T . Further assume that therank(G̃) = ℓ,
since otherwise theℓ-strength eavesdropper is equivalent to

an rank(G̃)-strength eavesdropper. Letα̃i =

k+ℓ
∑

j=1

gijαj , i ∈ E .

Then sinceG̃ is full-rank{α̃i}i∈E areFq-linearly independent.
Therefore, using eq. (15) we have,

ci =

k+ℓ
∑

j=1

gijΨa(αj)

= Ψa(
k+ℓ
∑

j=1

gijαj) = Ψa(α̃i), i ∈ E .

Let R,S,C be the random variables corresponding to the
vector r, the secrets, and the node sharesC = (Ci)i. To
prove security we use the secrecy lemma in [18, Lemma 4],
to show thatH(CE) ≤ H(R) andH(R|S,CE) = 0 imply
H(S|CE) = H(S). Indeed,H(S|CE) ≤ H(S), and

H(S) +H(R) = H(S|R) +H(R)

= H(S,R) = H(S,CE ,R)

= H(CE) +H(S,R|CE)

= H(CE) +H(R|S,CE) +H(S|CE)

= H(CE) +H(S|CE) (17a)

≤ H(R) +H(S|CE) (17b)

where eqs. (17a) and (17b) follow from the assumptions
H(R|S,CE) = 0 andH(CE) ≤ H(R) respectively. On the
other hand, assuming that the eavesdropper also knowss (in
addition tocE ), she/he has

c̃i = ci −
k
∑

j=1

sjα̃
qℓ+j−1

i =

ℓ
∑

j=1

rjα̃
qj−1

i , i ∈ E .

SinceB = [α̃qj−1

i ]i∈E,j∈[ℓ] is full rank, the eavesdropper can
compute[c̃1 . . . c̃ℓ]B−1 = [r1 . . . rℓ]. Thus,H(R|S,CE) = 0.
Now H(CE) ≤ H(R), since|E| ≤ ℓ. Therefore, we have an
(n, k, ℓ,m, r)qN -secret sharing scheme.

C. Constructions with small alphabet size: equivalence with
maximal recoverability

Note that, the size of the alphabet/shares in the construction
of optimal secure scheme using Gabidulin codes is exponential
in the number of nodes. In this section, our aim is to show
that the construction of an optimal secure scheme with small
alphabet size will amount to finding amaximally recoverable
codeover that alphabet. We use the construction in eq. (14)
to form a secure scheme from an optimal LRCs with a small
alphabet and analyze the conditions for that construction to
satisfy lemma6. We assume(r+1)|n i.e. r+1 dividesn for
simplicity in this subsection.

We will need the following definition of maximally recov-
erable codes [7].

Definition 2. Consider an(n, k, r)q-optimal LRC. LetQj :
|Qj | = r + 1, j ∈ [n/(r + 1)] denote a partition of[n] such
that the recovery set ofith coordinate is,

Ri = Q(i) \ {i}, ∀i ∈ [n], (18)

whereQ(i) ∈ {Qj}j is the partition containing nodei. Denote
such an LRC by(n, k, r, {Qj}j)q. The(n, k, r, {Qj}j)q LRC
is called maximally recoverable if the code obtained by
puncturing any one symbol from eachQj is maximum distance
separable (MDS).

Note that, in [8], it was pointed out that an optimal linear
LRC must have the recovery structure as in eq. (18).

The main objective of this section is to show that the im-
mediate construction of(n, k, ℓ,m, r)-secret-sharing scheme
from an optimal LRC is effective if and and only if the code
is maximally recoverable.

Lemma 7. For any linear(n, k+ ℓ, r, {Qj}j)q -optimal LRC

code with a generator matrixG ∈ F
n×(k+ℓ)
q considerS ⊆

[n] : |S| = ℓ and |S ∩ Qj | ≤ r, j ∈ [n/(r + 1)]. Then, the
rows corresponding toS in G are linearly independent for
any ℓ such that

ℓ ≤ r − 1 +

(

r

⌊

k

r − 1

⌋

− k

)

(19)

Proof: PartitionS as follows,S =
⋃

j∈[n/(r+1)] Sj with
Sj = S ∩ Qj and letΛ := {j : Sj 6= 0}. Consider a set
S ′ ⊃ S : |S ′| ≤ k+ℓ and defineS ′

j := S ′∩Qj . Suppose that
we can constructS ′ with S ′

j ≤ r, ∀j ∈ [n/(r + 1)] such that
the number of partitionsQj that containr co-ordinates ofS ′

is at least⌈(k + ℓ)/r⌉ − 1. Let Ψ := {j : S ′
j = r}. Thus,

|Ψ| ≥ ⌈(k + ℓ)/r⌉ − 1 (20)

Construct a setS ′′ ⊇ S ′ by addingk+ ℓ−|S ′| co-ordinates
to S ′ such that,|S′′ ∩Qj | ≤ r, ∀j ∈ [n/(r+1)]. Now at least
|Ψ| more co-ordinates are recoverable fromS ′′. Note that the
input a for (n, k + ℓ, r, {Qj}j)q-optimal LRC is recoverable
from anym = (k + ℓ) + ⌈(k + ℓ)/r⌉ − 1 co-ordinates and
|S ′′|+ |Ψ| ≥ m. Thus,a is recoverable fromcS′′ . Now, since
|S′′| = k+ℓ the rows ofG corresponding toS ′′ (and henceS)
must be L.I. We are now left with the task of constructing a set
S ′ satisfying eq. (20) for the givenS with |S| = ℓ satisfying
eq. (19). The construction is given below.

For |Λ| ≤ k/(r − 1) we can easily constructS ′. Since
|Λ| ≤ k/(r − 1) =⇒ |Λ|r ≤ k + ℓ, we can chooseΨ(⊇
Λ) : |Ψ| = ⌊k+ℓ

r ⌋. Now to each of the partitions{Sj}j∈Ψ

add r − |Sj | co-ordinates fromQj to get a setS ′ of size
r⌊(k + ℓ)/r⌋ ≤ k + ℓ. It is easy to see that this set satisfies
eq. (20).

Now assume that|Λ| > k/(r − 1). Choose anyΨ ⊆ Λ :
|Ψ| = ⌊k/(r − 1)⌋. Select anyr − |Sj | co-ordinates fromQj

for all j ∈ Ψ. Adding these co-ordinates toS, we getS ′

satisfying|S ′| ≤ ⌊k/(r − 1)⌋(r − 1) + ℓ ≤ k + ℓ. Thus, from
eq. (19) we have,

|Ψ|+ 1− ⌈(k + ℓ)/r⌉ ≥ ⌊k/(r − 1)⌋ −
k + ℓ

r
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≥ ⌊k/(r − 1)⌋ −
k

r
− (1 + ⌊k/(r − 1)⌋ − k/r − 1/r)

= −(1− 1/r)

Since|{Qj : |Qj ∩ S ′| = r}|+ 1− ⌈(k + l)/r⌉ is an integer,
m′ + 1− ⌈(k + l)/r⌉ ≥ 0, S ′ satisfies eq. (20).

For ℓ < r, the construction (in eq. (14)) using an optimal
LRC code isℓ-secure since anyℓ rows of G1 form an ℓ × ℓ
Vandermonde matrix. Forℓ > r, we have the following result,
using definition2 and lemma7.

Theorem 8. Consider a linear(n, k + ℓ, r, {Qj}j)q -optimal
LRC C. Then the construction in eq.(14) using codeC is ℓ-
secure if there existsC′ ⊆ C of dimensionℓ such thatC′ is max-
imally recoverable. Conversely, if the construction in eq.(14)
is ℓ-secure then there must exist a maximally recoverable code
C′ ⊆ C of dimensionℓ, for ℓ ≤ r − 1 + (r⌊k/(r − 1)⌋ − k)

Proof: Let G = [G1 G2] ∈ F
n×(k+ℓ)
q be the generator

matrix ofC whereG1 ∈ Fn×ℓ
q . LetG1 be the generator matrix

of a maximally recoverable codeC′. Consider a setD ⊆ [n]
of anyℓ linearly dependent rows ofG1. SinceC′ is maximally
recoverable,Qj ⊆ D for at least onej ∈ [n/(r + 1)]. Hence,
the corresponding rows inG must also be linearly dependent.
Thus, from lemma6 the secret sharing construction in eq. (14)
must beℓ-secure.

Now, suppose thatC does not contain any subcode of
dimensionℓ which is maximally recoverable. Then, the code
generated byG1 is not maximally recoverable. Thus, there
would exist anS ⊆ [n] : |S| = ℓ and |S ∩ Qj | ≤ r, ∀j ∈
[n/(r + 1)] such that the rows inG1 corresponding toS
are linearly dependent. Now from lemma7 we know that the
rows corresponding toS in G are not linearly dependent for
ℓ ≤ r − 1 + (r⌊k/(r − 1)⌋ − k). Hence, from lemma6 the
secret sharing scheme cannot beℓ secure.

Recently an optimal construction of locally repairable codes
was proposed in [24] by Tamo and Barg for general values of
the parametersn, k, and r and alphabet size ofO(n). Our
theorem8 implies that the secret sharing scheme constructed
in eq. (14) using such code isℓ-secure if and only if the Tamo-
Barg codes are maximally recoverable. In general these codes
are not maximally recoverable. It should be noted that, it is
quite a nontrivial open problem to construct maximally recov-
erable codes with linear or even polynomial (in blocklength)
alphabet size [7].

In the next two sections we extend the notions and results
of sectionII to other generalized repair conditions related to
distributed storage.

III. SECURITY FORSCHEMES WITH COOPERATIVE REPAIR

Cooperative repair for a locally repairable scheme addresses
simultaneous multiple failures in a distributed storage system
[19]2. To this end, we extend the definition in eq. (4) to a
(r, δ) scheme where anyδ –instead of just one– shares can be
recovered fromr other shares.

2There is a related notion of cooperative recovery in regenerating codes
[23] and security in such systems [12]. In this paper we are concerned with
only the local recovery problem, and not the regenerating problem.

Definition 3. A setC ⊆ Fn
q is said to be(r, δ)-repairable if for

every∆ ⊆ [n] : |∆| ≤ δ there exists a setR(∆) ⊆ [n] \∆ :
|R(∆)| ≤ r such that for allc, c′ ∈ C,

c∆ 6= c′∆ =⇒ cR(∆) 6= c′R(∆) (21)

Using definition 3 we can generalize the notion of an
(n, k, ℓ,m, r)q-secret sharing scheme. For this system we de-
rive an upper bound on the capacityk givenn,m, ℓ, r, andδ.

Definition 4. An (n, k, ℓ,m, (r, δ))q-secret sharing scheme
consists of a randomized encoderf(.) that stores a files ∈ Fk

q

in n separate shares, such that the scheme is(r, δ)-repairable
(definition3), satisfies the recovery condition (cf. eq.(2)) and
ℓ-secure (cf. eq.(3)).

A. The case of m =n

Error-correcting codes with(r, δ)-repairability were consid-
ered in [19] (ℓ = 0 or no security) and the following upper-
bound on the rate of such codes has been proposed, for the
case ofm = n.

R =
k

n
≤

r

r + δ
. (22)

For the case ofℓ-secure codes we give an analogous upper
bound on the rate of a secret sharing scheme in the following.

Theorem 9. The rateR = k/n of an(n, k, ℓ, n, (r, δ))q secret
sharing scheme is bounded as,

R ≤
r

r + δ
−

ℓ

n
. (23)

Proof: For an (n, k, ℓ, (r, δ))q scheme we construct a
set of sizem = n similar to algorithm1 except instead of
choosing a set of size1 in steps 2 and 5, we find a set of
sizeδ. Then using the same arguments we must have at least
ν = m/(r+δ) number of steps. Hence, subtracting the number
recoverable symbolsδν from them symbols we must have,

k + ℓ ≤ m− δν = n− δ
n

r + δ

=⇒
k + ℓ

n
≤

r

r + δ
.

Construction: Note that, any linearq-ary (r, δ)-repairable
error-correcting code of lengthn and dimensionk will give
rise to a(n, k, 0, (r, δ))-secret sharing scheme. In [19, Sec. 6],
an (r, δ) repairable code has been constructed using bipartite
graphs of large girth. In particular, that construction results in
parameters such that

k

n
≥

r − δ

r + δ
.

It can also be seen from the discussion of sectionII-B
that Gabidulin precoding (eq. (16)) would give anℓ-secure
construction with alphabetFqN , N ≥ n, from any optimal
linear(n, k+ℓ, 0, (r, δ))q-secret sharing scheme. Thus, for any
(n, k+ℓ, 0, (r, δ))q secret sharing scheme achieving the upper-
bound in eq. (22) we can achieve the corresponding upper-
bound in theorem9. Hence, using the code of [19, Sec. 6]
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in conjunction with the Gabidulin precoding, it is possibleto
obtain a rate of

k

n
≥

r − δ

r + δ
−

ℓ

n
,

which is an additive term of δ
r+δ away from the optimum

possible.

B. The case ofm < n.

The bound for general case ofm < n can be deduced
from the same arguments as above. In fact, by slightly gen-
eralizing algorithm1, we get the following result: for any
(n, k, ℓ,m, (r, δ))q-secret sharing scheme ,

k + ℓ ≤ m−

⌊

m

r + δ

⌋

δ − h (24)

whereh = (m mod (r + δ)− r)
+ andx+ :=

{

0 x ≤ 0,

x x > 0.
Note that, this results in slightly weaker bound for the

case ofm = n than eq. (23). In general form < n and
arbitrary values ofℓ, we do not have any good construction that
will be close to the bound. While the expander-graph based
constructions of(r, δ)-locally repairable codes from [19] can
be generalized, their performance is very far from the bound
of eq. (24).

IV. SECURITY FOR REPAIRABLE CODES ON GRAPHS

Another extension of local repair property for distributed
storage has recently been proposed in [13], [14]. Consider a
Distributed Storage System as a directed graphG such that a
node of the graph represents a node of the Distributed Storage
System and each node can connect to only its out-neighbors for
repair. We define anℓ-secure code in this scenario as follows.

A. Repairable Codes on Graph

Definition 5. Let G = ([n], E) be a graph onn nodes.
An (n, k, ℓ,m,G)q-secret sharing scheme consists of a ran-
domized encoderf that can store a uniformly random secret
S ∈ Fk

q on n shares/nodes,C = f(S),C ∈ Fn
q , such that the

system isℓ-secure (cf. eq.(3)) and the data can be recovered
from anym shares (cf. eq.(2)). In addition the share of any
node can be recovered from its neighbors i.e.

H(Ci|CN(i)) = 0

whereN(i) = {j ∈ [n] : (i, j) ∈ E} denotes the neighbors
(out-neighbors in the case of a directed graph) of nodei in
the graphG = ([n], E).

A bound on the capacity of such a scheme in directed graphs
for ℓ = 0 (no security) was derived in [15],

m ≥ k + max
U∈I(G):

|N(U)|≤k−1

|U | (25)

whereI(G) denotes the set of induced acyclic subgraphs in
G, andN(U) := ∪i∈UN(i) \ U denotes the neighbors ofU .
For undirected graphs we have the same bound withI(G)
denoting the collection of all independent sets of the graph.

The lower bound onm for an ℓ-secure scheme on a graphG
is given in the following.

Theorem 10. For any (n, k, ℓ,m,G)q-secret sharing scheme
on a directed graphG, m satisfies the following lower bound,

m ≥ k + ℓ+ max
U∈I(G):

|N(U)|≤ℓ+k−1

|U | (26)

whereI(G) denotes the set of induced acyclic graphs inG.
Proof: Since anym co-ordinates in the sharesC =

(Ci)i∈[n] can recover the secretS we must have,

m ≥ |W |+ 1 (27)

for all W ⊆ [n] such that theH(S|CW ) > 0. Let U be an
acyclic subgraphU ∈ I(G), such thatN(U) ≤ ℓ + k − 1.
Construct a setV ⊇ {U ∪N(U)} by adding anyℓ+ k− 1−
|N(U)| nodes toU ∪N(U). Thus,|V | = k+ ℓ+ |U | − 1. We
show thatH(S|CV ) > 0 for any suchV .

Note that for any three randomX,Y, Z variables we must
have,

H(X |Y, Z) = H(X,Z|Y )−H(Z|Y )

= H(X |Y ) +H(Z|X,Y )−H(Z|Y )

≥ H(X |Y )−H(Z). (28)

Assume that the eavesdropper selects anℓ-subsetE ⊆ [n]
in the setV . Then, since the eavesdropper must not get any
information about the secret,

H(S|CE) = H(S) (29)

Since the sub-graphU is acyclic the nodes inU must be a
function of the leaf nodes and the nodes inN(U). Now, the
leaf nodes must also be a function ofN(U) since their out-
neighbors can only be inN(U). Therefore,

H(S|CV ) = H(S|CN(U)) = H(S|CE ,CN(U)\E)

(a)

≥ H(S|CE)−H(CN(U)\E)

(b)
= H(S)−H(CN(U)\E)

(c)
> 0

where(a) and (b) follow from eq. (28) and eq. (29) respec-
tively, and(c) is is true since|N(U) \ E| = k − 1.

Whenm = n, i.e. when the scheme does not need to protect
against catastrophic failures, we can formulate a converse
bound for repairable codes on graphs that does not follow
directly from the above theorem.

Theorem 11. Consider an (n, k, ℓ, n,G)q secret sharing
scheme. The secrecy capacity of the scheme satisfies the
following upper-bound.

k ≤ n− |U | − |ℓ| (30)

whereU is the largest acyclic induced subgraph inG whenG
is a directed graph, and it is the largest independent set when
G is undirected.

Proof: We will show the proof forG directed. Consider
the sharesCU corresponding to the nodes inU ⊆ [n]. The
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recovery set of any node inU can contain its children inU or
co-ordinates in[n] \ U . SinceU is ayclic, all the leaf nodes
of U have recovery sets in[n] \ U . Thus, we can recover
all the leaf nodes from the co-ordinates in[n] \ U . Now, we
can recursively recover all the co-ordinates ofU from the co-
ordinates in[n] \ U . Thus,

H(CU |C [n]\U ) = 0 (31)

Equation (31) is true because all the leaf nodes inU must
have their recovery sets in[n]\U . And by recovering the leaf
nodes we can recover all nodes inU . Now, sinceH(S|C) = 0
we must have from eq. (31),

H(S|C [n]\U ) = 0 (32)

Now, suppose that the eavesdropper selects anℓ-subsetE ∈
[n] \ U . Then, we must have,

H(S) = H(S|CE) (33)

Therefore, using eqs. (32) and (33) we have,

H(C [n]\U |CE) = H(C [n]\U |CE) +H(S|C[n]\U ,CE)

= H(S,C [n]\U |CE)

= H(S|CE) +H(C[n]\U |S,CE)

= H(S) +H(C [n]\U |S,CE)

=⇒ H(S) = H(C [n]\U |CE)−H(C[n]\U |S,CE)

=⇒ H(S) ≤ H(C [n]\U |CE) ≤ n− |U | − ℓ.

Note that the bound in eq. (30) parallels the feedback vertex
set upper-bound in [15, Prop. 11]. Here, a feedback vertex set
of a graph is a set of nodes such that every cycle in the graph
has a vertex in the set.

B. Achievable Schemes for Secure Repairable Codes on
Graphs

In this section we consider construction of(n, k, ℓ,m,G)q-
secret sharing scheme only whenm = n. We do not have any
nontrivial construction for the case ofm < n.

Consider a secret sharing scheme for the case of undirected
graphs (definition5). A maximum matchingM(G) of the
graphG is defined as the set of edges of maximum cardinality
such that no two edges have a vertex in common. To construct
a recoverable scheme for this code, with inputx ∈ F|M(G)|,
we assign a coordinate ofx to both vertices for every edge in
M(G). For recoverability, we note that a symbol in vertexv
can be recovered fromu, where(v, u) ∈ M(G).

Suppose|M(G)| = k + ℓ. Consider the vector inputx ∈
Fk+ℓ to the above scheme. We setx = G × [s r], s ∈
Fk, r ∈ Fℓ, wheres is the secret,r is an instance of a uniform
random vector, andG is the (k + ℓ) × (k + ℓ) Vandermonde
matrixG = [αj−1

i ]ij with {αi}i distinct elements inFq. Thus,
from lemma6, we see that this scheme isℓ-secure as well as
recoverable.

The capacity of this scheme isk = |M(G)|−ℓ ≥ n−|U|
2 −ℓ,

whereU is the maximum independent set. This is true since if
we remove both end-vertices of the edges of the matching then
we are left with an independent set. Compared to eq. (30), we

are an additive term of at mostn−|U|
2 away from what is the

maximum possible.
For directed graphsG = ([n], E) we use the repairable

codes presented in [15] below to construct a secure scheme.
Suppose that the graph hasK := k+ ℓ vertex disjoint cycles.
Then it is easy to see that we can form a locally repairable
scheme capable of storingk + ℓ symbols (one symbol per
cycle) by repeating the same symbol on every vertex in a
cycle. Hence, it is possible to store as many symbols as the
maximum number of vertex disjoint cycles in the graph. In
[15], it was shown that we can do better by using vector codes.
We describe below the vector linear LRC codes constructed
in [15].

Consider the setP of all cycles inG([n], E). Suppose,Π :
P → Q assigns a rational number to every directed cycle. Let
V (C), C ∈ P denote the vertices of the cycleC. LetK denote
the maximum value of

∑

C∈P Π(C), over all such mappings
Π, under the following constraint,

∑

C:i∈V (C)

Π(C) ≤ 1, ∀i ∈ [n].

Let the optimal assignmentΠ on P be denoted asΠ(C) =
n(C)
p , wheren(C), p ∈ Z+. It is possible to find this optimum

by solving a linear program. Then [15] constructs a vector
LRC for the graphG in Fq with storage capability ofpK
symbols and per node storage equal top symbols.

Let s ∈ Fpk
q , r ∈ Fpℓ

q represent the secret and an in-
stance of a uniform random vector, respectively. We obtain
x ∈ FpK

q ,K := k + ℓ, by x = G × [s r], whereG is
a pK × pK Vandermonde matrixG = [αj−1

i ]ij with {αi}i
distinct elements inFq. x is then stored in the graph using the
scheme described above. Since anℓ-strength eavesdropper can
only observe at mostpℓ co-ordinates ina, we can use lemma6
to see that the scheme isℓ-secure as well as recoverable.

It is known (cf. [15]) that, 4K ln 4K ln log2 4K ≥ n− |U |,
for U being the maximum acyclic induced subgraph. Hence,
we must have,

k ≥
n− |U |

c logn log logn
− ℓ.

However this achievability result is quite far away from the
bound of eq. (30).

V. PERFECTSECRET SHARING AND GENERAL ACCESS

STRUCTURES

So far in this paper we were concentrating on a secret
sharing scheme that is not perfect, i.e., the access structure
and the block-list are not complementary. In this section we
provide results regarding existence of locally repairableof
perfect secret sharing schemes and the relation between sizes
of shares and secret in those schemes.

A. Perfect access structures with locality

To make the(n, k, ℓ,m, r) secret sharing scheme perfect,
we must havem = ℓ + 1. This results in a threshold secret-
sharing scheme. Now, from eq. (8) we have,

k ≤ 1−

⌊

ℓ+ 1

r + 1

⌋

.
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Thus, for storing any secret we must haver ≥ ℓ+1 = m. Since
any secret sharing scheme works whenr ≥ m (local repair in
this case imply full revelation of secret) only trivial locally
repairable codes are possible for threshold secret sharing
schemes. This implies the following statement.

Proposition 12. A threshold secret sharing scheme is not
locally repairable.

Note that, perfect secret sharing schemes are a natural
generalization of threshold schemes. Although for threshold
schemes the locality cannot be small/nontrivial, we show
that this is not true for general access structures and perfect
schemes. Indeed, the following is true.

Proposition 13. There exists an access structureAs, for which
a perfect secret sharing scheme is possible with arbitrary non-
trivial locality r i.e. r < minA∈As

|A|.
Proof: Let n, κ be such thatr|κ and(r+1)|n. Consider

an (n, κ, r, {Qj}j) maximally recoverable LRC (definition2).
We know that such codes exist from [7]. Now, we use the
Gabidulin precoding method described above to construct a
(n, k = 1, ℓ = κ − 1,m = κ(1 + 1/r), r) secret sharing
scheme from this code.

Define the access structure to beAs = {A ⊆ [n] :
∑n/(r+1)

j=1 min{|A ∩ Qj |, r} ≥ κ}. Now given anyA ∈ As,
a user accessing the shares corresponding toA can determine
the secrets0 because the set always containsk shares of a
punctured(nr/(r + 1), κ)-MDS code.

For a perfect secret sharing scheme the block-list is given
by Bs = {B :

∑n/(r+1)
j=1 min{|B ∩ Qj |, r} < κ}. Assume

that the eavesdropper has access to a setB ∈ Bs. Construct
the following set of size at mostκ− 1 from B,

B′ = ∪
n/(r+1)
j=1 N ′

j , B
′ ⊆ B

whereN ′
j ⊆ Nj, Nj = B ∩ Qj is obtained by removing any

one co-ordinate if|Nj | > r, otherwiseN ′
j = Nj . Note that

|B′| < κ. Since all the shares inB are recoverable fromB′ ⊆
B, an eavesdropper with access to the nodes inB is equivalent
to an eavesdropper with access toB′. And since|B′| ≤ ℓ =
κ − 1, the eavesdropper does not get any information about
the secret.

Can the above proposition be made general? Is it possible
to characterize the locality for general secret sharing schemes?
Shamir’s [22] perfect threshold secret sharing scheme for the
access structureAs = {A ⊆ [n] : |A| ≥ k} is one of the first
general construction of secret sharing protocols. The scheme
is defined for a scalar secrets ∈ F and a set ofn participating
nodesP . The scheme uses an(n, k) Reed Solomon code
defined using the polynomialσ(x) = s +

∑k−1
i=1 rix

i, where
ri are instances of uniform random variables inF.

Ito, Shaito, and Nishizeki [11] define a generalization of
Shamir’s scheme that works for arbitrary monotone access
structures. Define a maximal elementB ∈ B as a set such
that A ) B =⇒ A /∈ A. Similarily, define a minimal set
A ∈ A as a set such thatB ( A =⇒ B /∈ A. Consider the
set of maximal elements of the block-listB, denotedB†. The

scheme uses the generator polynomialσ(x) = s+
|B†|−1
∑

i=1

rix
i

to generate|B†| shares{cB}B∈B† – one share corresponding
to each maximal set inB. The shares are distributed such that
each user gets the shares corresponding to the subset it does
not belong to, i.e. participant nodep gets the shares

{cB : p /∈ B,B ∈ B†} (34)

Now, suppose that share of a nodep is lost in a secure code
with participantsP and block-listB. To recover the share of
p we access the shares of participants in the setR(p) where
the optimal setR(p) is

R(p) = min
R:∀B∈B†,p/∈B R 6⊆B

|R|. (35)

To have non-trivial locality, one must havemaxp |R(p)| to be
strictly less than the maximal sets in the block-list.

B. Size of a share for perfect secret sharing with locality

We know that, for perfect secret sharing schemes, the size of
the secret cannot be larger than the size of a share [2, Lemma
2]. Let us see why this statement is true. Let the secrets

belong to a domainK and the share of nodej belong toKj .
Assume that there exists a perfect secret sharing scheme which
realizes the access structureA when |K| < |Kj |. Let B ⊆ [n]
be a minimal set inA such thatj ∈ B. DefineB′ = B \ {j}.
Then, since the secret sharing scheme is perfect, for every
value of the the shares inBj all secrets inK must have the
same probability. Thus, since the value of the shares ofB
determine the secret completely there must exist an injective
mapping fromK to Kj. But since|Kj | < |K| this cannot be
possible.

In [5] the minimum node storage required for arbitrary
monotone access structures is analyzed. In that paper, an
access structure was constructed for which the sizes of the
shares has to ben/log(n) times the size of the secret for
any perfect scheme. For secret sharing schemes with local
repairability and fixed recovery sets, all monotone access
structures are not feasible. The minimal sets of the access
structure cannot include any recovery set. Here, we extend
the result in [5] to the restricted class of monotone access
structures.

Assume(r + 1)|n. Suppose that the secret denoted by the
random variableS is stored onn shares asCi, i ∈ [n] and
the shares have localityr (eq. (4)). Consider a partition of[n],
Qj : Qj , j ∈ [n/(r+1)] such that the recovery sets are given
by eq. (18). For a perfect secret sharing scheme on[n] with
monotone access structureAs, the minimal setsA⋆

s of As,
must satisfy,

A ∈ A⋆
s =⇒ A 6⊇ Qj . (36)

Denote this class of monotone access structures withMs. We
have the following result for the minimum size of a share for
secret sharing schemes with access structureAs ∈ Ms.

Theorem 14. Consider distribution of shares of secretS to
n nodes with localityr, recovery sets as in eq.(18). Then,
there is an access structureAs ∈ Ms (eq.(36)), such that any
perfect scheme forAs, if exists, must satisfy,

α ≥
(r + 1)n

r logn
H(S). (37)
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whereα is the average entropy of the shares.

Proof: First, let us define apolymatroid(Q = {[n], S}, φ)
as follows,

φ(A) =
H(cA)

H(S)
, A ⊆ [n] (38a)

φ(A,S) =
H(cA, S)

H(S)
, A ⊆ [n] (38b)

A polymatroid function must satisfy the following properties,

P1 φ(A) ≥ 0 for all A ⊆ Q, φ(∅) = 0
P2 φ is monotone i.e.A ⊆ B ⊆ Q, thenφ(A) ≤ φ(B)
P3 φ is submodular i.e.φ(A)+φ(B) ≥ φ(A∪B)+φ(A∩B)

for anyA,B ⊆ Q

Note that, the definition in eq. (38) satisfies all the conditions
above. In addition, the definition satisfies the following prop-
erties,

Pa φ(A,S) = φ(A), for everyA ∈ As

Pb φ(A,S) = φ(A) + 1, for everyA /∈ As

which easily follow from the recovery and the security prop-
erties i.e.H(S|cB) = H(S) andH(S|cA) = 0, A ∈ As and
B ∈ Bs = 2[n] −As and the definition in eq. (38).

Using properties(P1) to (P3) and properties(Pa) and(Pb)
we have the following result, for anyA,B ∈ As such that
A ∩B /∈ As,

φ(A,S) + φ(B,S) ≥ φ((A ∪B), S) + φ((A ∩B), S)

=⇒ φ(A) + φ(B) ≥ φ(A ∪B) + φ(A ∩B) + 1 (39)

Consider the setM of size η such that(r + 1)|η and it
containsη/(r + 1) partitionsQj. Another setN ⊆ [n] \M :
|N | = ν := 2η − (r + 2)η/(r+1) + 1 is chosen such that
|N ∩ Qj | ≤ r, ∀j. The parameterη for the size of the sets
M,N is chosen to be the largest possible, i.e. the maximum
η satisfying,

η −

⌊

η

r + 1

⌋

+ 2η − (r + 2)η/(r+1) + 1 ≤ n
r

r + 1
(40)

Now, construct a sequence{Mi}
ν−1
i=0 , for Mi ∈ 2M of

length ν, such that it satisfies the following conditions for
all setsMi in the sequence,

C1 If for any partitionQj ,Qj∩ (Mi−Mi+1) 6= ∅ and|Qj ∩
Mi| ≥ r, then |Qj ∩Mi+1| < r

C2 Mi 6⊆ Mi′ , i < i′

To construct the sequence{Mi}i of lengthν satisfying con-
ditions C1 and C2, we first construct a sequence{M ′

i}
2η−1
i=0 ,

M ′
i ⊆ M : |M ′

i | ≤ |M ′
i+1|. It is easy to see that all subse-

quences of{A′
i} satisfy conditionC2. From this sequence we

remove all setsM ′
i , i ≥ 1 such that|(M0 −M ′

i) ∩ Qj | ≤ 1.
Note that, the number of the sets removed is,

∑

1≤i≤η/r+1

(

η/(r + 1)

i

)

(r + 1)i = (r + 2)η/(r+1) − 1.

The sequence{Mi}i thus constructed has lengthν. To see that
this sequence satisfies conditionC1 note that|(M0 − Mi) ∩
Qj | > 1, ∀i ≥ 1 implies that{Mi}i satisfies conditionC1.
Thus the constructed sequence satisfies conditionsC1 andC2.

Let N = {b1, . . . , bν−1}. Define another sequence of sets
Ni = {b1, . . . , bi}, i ∈ [ν − 1] and N0 = ∅. Consider a
monotone access structureAs that contains the setsUi :=
Mi ∪ Ni, i ∈ {0, . . . , ν − 2}. Let the minimal sets in this
access structure be,

A⋆
s =

{

A ⊆ Ui : |A ∩ Qj | = min{|A ∩ Qj |, r}, ∀i ∈

[

n

r + 1

]}

.

(41)
Thus,As ∈ Ms.

Consider the following setsP = Ni ∪M andQ = Mi+1 ∪
Ni+1. SinceP ⊇ Ui andQ ⊇ Ui+1, P,Q ∈ As. Now, P ∩
Q = Ni∪Mi+1. From conditionC1 and eq. (41), we see that
there exists a setA⋆ ∈ A⋆

s, A
⋆ ⊆ Ui such thatP ∩ Q ( A⋆.

Therefore,P ∩Q /∈ As. Applying eq. (39) on P,Q, we have,

[φ(Ni ∪M)− φ(Ni ∪Mi+1)]

− [φ(Ni+1 ∪M)− φ(Ni+1 ∪Mi+1)] ≥ 1. (42)

Using property(P3) we have,

φ(Ni+1 ∪Mi+1)−φ(Ni ∪Mi+1) ≥ φ(Ni+1)−φ(Ni). (43)

Thus, combining eqs. (43) and (44) we have,

[φ(Ni ∪M)− φ(Ni)]− [φ(Ni+1 ∪M)− φ(Ni+1)] ≥ 1.
(44)

Adding eq. (44) for i ∈ {0, . . . , ν − 3} we have,

φ(M)− [φ(Nν−2 ∪M)− φ(Nν−2)] ≥ ν − 2. (45)

Thus, from the recoverability property we haveφ(M) ≤
ηr/(r + 1)α. Since,M ∈ As and Nν−2 6∈ As, φ(Nν−2 ∪
M)− φ(Nν−2) ≥ 1. Thus, we have from eq. (45),

α ≥ (r + 1)
2η − (r + 2)η/(r+1)

ηr
H(S). (46)

Since,η = Ω(log n) and (r + 2)1/(r+1) < 2 from eq. (40),
eq. (46) asympototically (withn) gives,

α ≥

(

r + 1

r

)

n

logn
H(S).

APPENDIX A
PROOF OF LEMMA 6

Consider the submatrixHℓ×(k+ℓ) of G corresponding to
ℓ rows, Iℓ ⊆ [n]. Assume that the eavesdropper observes
Iℓ. Wlog assume thatrank(H) = ℓ, since the eavesdropper
effectively observesrank(H) shares.

” ⇐= ” Assume that anyℓ rows ofG1 corresponding toℓ
L.I. rows of G are L.I. Thus,rank(H1) = ℓ by assumption.
Let c = Ga andH = [H1 H2] whereH1 is ℓ× ℓ andH2 is
ℓ× k. Then,

H1r = cIℓ −H2s (47)

Now, givencIℓ , for everys there is a unique solution tor =
H1

−1(cIℓ − H2s). Since, each of those vectors are equally
probable the eavesdropper does not get any information about
s.
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” =⇒ ” Conversely, suppose thatH1 is not full rank. (but
rank(H) = ℓ by assumption). If for a givencIℓ there does not
exist a solution to eq. (47) for somes ∈ Fk

q thenH(s|cIℓ) <
H(s). This happens iff for somea ∈ Fk+ℓ

q ,

Ha− colspan(H2) 6⊆ colspan(H1) (48)

where colspan(.) denotes the column span of a matrix and
Ha − colspan(H2) = {Ha − v : v ∈ colspan(H2)}. Now,
colspan(H2) 6⊆ colspan(H1) sincedim(colspan(H1, H2)) =
ℓ and dim(colspan(H1)) < ℓ by assumption. Thus, eq. (48)
is satisfied fora = 0 which implies that in this case the
eavesdropper does get some information abouts.

APPENDIX B
ACHIEVABILITY USING L INEAR NETWORK CODES

In this appendix, we show that the limit derived in theorem2
is achievable using a randomlinear network code(LNC). The
rest of this section is devoted to the proof of theorem5 via the
technique provided in [16]. We assume thatk0 is such that,

m = k0 + k0/r − 1 (49)

For simplicity, further assume thatr divides k0 and (r + 1)
dividesn.

Our roadmap for the proof is the following. We analyze
the network flow graph in fig.1, that has been adapted and
modified from [16]. We first show that this graph has multicast
capacityk0. Further there exists an LNC for this graph which
corresponds to an(n, k0, 0,m, r)-secret sharing scheme. Then,
we impose additional constraints on the LNC for the graph in
fig. 1 to get anℓ-secure scheme, i.e., an(n, k = k0−ℓ, ℓ,m, r)-
scheme. Clearly this satisfies eq. (7).

We start by describing the graph in fig.1 (Left). This graph,
G(n, k0,m, r) consists of a source nodeX that transmitsk0
q-ary symbols toT =

(

n
m

)

data collectorsDCµ, µ ∈ [T ]. We
assume thatX transmit the secrets ∈ Fk0

q . The unit for the
edge capacity is taken to be oneq-ary symbol per channel use.
The nodesFν , ν ∈ [r] connect to the sourceX through links
with capacityk0/r. The edges that connectΓρ, ρ ∈ [ n

r+1 ]

to Y in
i , i ∈ [n], has capacityr. All the rest of the edges

have unit capacity. Each ofΓρ, ρ ∈ [ n
r+1 ] have r incoming

edges fromFν , ν ∈ [r]. The edges(X,Fν) are broken
into k0/r unit capacity edges and labelleds1, s2, . . . , sk0

as
shown in the subgraph in fig.1 (Right). NodeFν connects
to the sourceX through edges{sν+(λ−1)r}

k0/r
λ=1 , ν ∈ [r].

Let us denote the subset of nodes{Γρ, {Y in
(ρ−1)(r+1)+j}

r+1
j=1,

{Y out
(ρ−1)(r+1)+j}

r+1
j=1} as theρth repair group.

A single network use corresponds to a sequence of single
data transmission on every edge. Assume that, data transmitted
on the edges(Y in

i , Y out
i ), i ∈ [n] in a single network use

correspond to then shares of the secret (i.e.,n symbols of
f(s), where f is the randomized encoding). Note that, the
data collectors connect tom nodes (shares) and obtain all of
whatX transmits: this must be satisfied for allm-subsets (all
data collectors). We use the networkG(n, k0,m, r) to show
the existence of a linear(n, k0, 0,m, r)-secret sharing scheme.

Lemma 15. Given that the networkG(n, k0,m, r) has mul-
ticast capacityk0, there exists a linear network code with

repairability r for this network and the scheme correspond-
ing to the data transmitted on the edges(Y in

i , Y out
i ) is an

(n, k0, 0,m, r)-secret sharing scheme.
In the following we show that the networkG(n, k0,m, r)

has multicast capacityk9.

Definition 6. A min-cut for any two nodesv, u in
G(n, k0,m, r), denotedMinCut(v, u), is defined as a subset
of directed edges of minimum aggregate capacity such that if
these edges are removed, then there does not exist a path from
v to u in the graphG(n, k0,m, r). Let |MinCut(v, u)| denote
the aggregate capacity of the edges inMinCut(v, u).

It has been shown [1], [10] that the minimum of the min-
cuts between a single source and multiple sinks corresponds
to the multicast capacityof the source. We show that for
G(n, k0,m, r) this quantity,minµ∈[T ] |MinCut(X,DCµ)|, is
equal tok0.

Lemma 16. For G(n, k0,m, r) the multicast capacity isk0.
That is,

min
µ∈[T ]

|MinCut(X,DCµ)| = k0. (50)

Proof: For k0 satisfying eq. (49) we have,

m = k0 +
k0
r

− 1 = (k0/r − 1)(r + 1) + r. (51)

Suppose that the minimum in eq. (50) only contains an
n1-subsetE of edges in{(X,Fν)}ν∈[r]. Assume wlog that
E = {(X,F1), . . . , (X,Fn1

)}. Consider the data collector
DCµ that connects toγρ, ρ ∈ [n/(r+1)] nodes in each of the
repair groups. Ifγρ ≥ r−n1 the min-cut should include all the
edges{(Fn1+1,Γρ), . . . , (Fr,Γρ)}. Otherwise ifγρ < r − n1

the min-cut includes all theγρ edges(Y in
i , Y out

i ) in the ρth

repair group connected toDCµ. Therefore, the minimum in
eq. (50) would correspond to the data collector that covers
entirely as many repair groups as possible. From eq. (51) we
see that for a such data collectorγρ ≥ (r − n1) for all ρ for
which γρ > 0 and for all0 ≤ n1 ≤ r. Therefore,

min
µ

|MinCut(X,DCµ)| =
k0
r
(r − n1) + n1

k0
r

= k0

We know therefore that a random LNC achieves the
multicast capacityk0 for this network. This random LNC
corresponds to a secret-sharing scheme withn shares such
that the secret inFk0

q can be recovered by looking at any
m shares. Now to satisfy the local repairability constraint
for this LNC, consider the subgraph containing the nodes
in the ρth repair group. Another set of local decoding re-
quirements are imposed on this subgraph. For eachr-subset
of nodes in any local repair group, a local data collector
LDi, i ∈ [n] connecting to these nodes should be able to
decode the input toΓρ. There are in totaln such local decoding
requirements. These decoding requirements are similar to the
local repairability requirements for the network flow graph
considered in [16]. Let zρ ∈ Fr

q denote the data received by
Γρ. Let Ni denote ther × r local encoding matrix, for the
edges{(Γρ, Y

in
(ρ−1)(r+1)+j)}j∈[r+1]\{i} corresponding toith
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XSource

F1

out-degree = n
r+1

...

Fr

out-degree = n
r+1

k0

r

k
0r

Γ1

in-degree =r Y in
1 Y out

1

Y in
2 Y out

2

Y in
r+1 Y out

r+1

...

r

r

r

...

Γ n
r+1

in-degree =r

Y in
n−r Y out

n−r

Y in
n−r+1 Y out

n−r+1

Y in
n Y out

n

...

r

r

r

DC1

DCT

in-degree =m

...

in-degree =m

X

s1

s1+r...
s1+k0−r

F1

...

sr

s2r

...
sk0

Fr

Fig. 1: Left: The information flow-graphG(n, k0,m, r) adapted from [16]. The left-most vertex is the source nodeX . The
T =

(

n
m

)

vertices DCµ are the destination nodes (referred to as the data collectors). Each DC is connected to a different

m-tuple ofY out
i nodes. Each of the intermediate nodesFν , ν ∈ [r] have out-going edges to all the nodesΓρ, ρ ∈

[

n
r+1

]

. Right:
Equivalent representation for the subgraph containing nodesFν and the sourceX .

local data collector. Therefore, the data received by theith

local decoder is,

zρNi, i ∈ {(ρ− 1)(r + 1) + 1, . . . , ρ(r + 1)} (52)

We see that, for any local data collectorLDi to recover the
data from the nodeΓρ matrix Ni must be full rank. Since
we know that for a large enough alphabet sizeq we can
satisfy these constraints [16, lemma 4], there must exist an
LNC that satisfies the local repair requirements. Therefore,
we can construct an(n, k0, 0,m, r)-secret-sharing scheme.

Suppose we write the secret ass = (s1, . . . , sk0
), and term

s1, . . . , sk0
as the information symbols. Now, for the random

LNC obtained above that satisfy the repairability and recovery
requirements, we relabelk = k0 − ℓ information symbols
{sℓ+1, . . . , sk0

} from the sourceX as secure information
symbols and the choose each of the restℓ symbols{s1, . . . , sℓ}
according to a uniformly random distribution inFq. For such a
random LNC to beℓ-secure any eavesdropperEDτ , τ ∈ [

(

n
ℓ

)

]
connecting to anyℓ nodesY out

i may be able to recover at
most the redundantℓ symbols{s1, . . . , sℓ} and should have
full ambiguity about{sℓ+1, . . . , sk0

}. We show that these
additional security constraints can be satisfied for a random
LNC with large enough alphabet and hence we have an
(n, k, ℓ,m, r)-secret-sharing scheme satisfying eq. (7).

Note that if a code is secure against an eavesdropper who
can observe any of theℓ shares, it must be secure against any
adversary who can only observe less thanℓ shares. Therefore,
for ℓ > r we can ignore all eavesdroppers who choose all
the (r + 1) shares of the same repair group. Since one of the
shares in a repair group can be recovered from the otherr
shares, an eavesdropper who readst entire repair groups is
observing effectively onlyℓ − t shares. Therefore, we only

need to consider the eavesdroppers that observe a maximum
of r shares in a repair group. Let us denote this sub-set of
eavesdropper asEDτ , τ ∈ W ′,W ′ ⊆ [

(

n
ℓ

)

].
If (c1, . . . , cn) are then shares for the secrets, we must

have the data transmitted on the edges(Y in
i , Y out

i ) with the
following linear form,







c1
...
cn






=











a1,1 a1,2 · · · a1,k0

a2,1 a2,2 · · · a2,k0

...
...

. . .
...

an,1 an,2 · · · an,k0

















s1
...

sk0






= As. (53)

We claim that the security against an eavesdropperEDτ , τ ∈
W ′ is equivalent to a full-rank requirement on aℓ × ℓ sub-
matrix of A.

Lemma 17. Let Eτ = {eτ1 , e
τ
2 , . . . , e

τ
ℓ } ⊆ [n] denotes the

shares an eavesdropperEDτ can observe. We have,

cEτ = Aτ
1s[ℓ] +Aτ

2s[k0]\[ℓ]. (54)

If for all eavesdroppersEDτ , τ ∈ W ′ the ℓ× ℓ matrix Aτ
1 is

full-rank then the LNC isℓ-secure.

Proof: Suppose for some specificτ ∈ W ′,

Aτ
1 =











ae1 ,1 ae1,2 · · · ae1,ℓ
ae2 ,1 ae2,2 · · · ae2,ℓ

...
...

. . .
...

aeℓ,1 aeℓ,2 · · · aeℓ,ℓ











;Aτ
2 =











ae1,ℓ+1 · · · ae1 ,k0

ae2,ℓ+1 · · · ae2 ,k0

...
...

. . .
aeℓ,ℓ+1 · · · aeℓ,k0











.

Since Aτ
1 is full rank, there must be a unique solution

to s1, s2, . . . , sℓ for every value ofcEτ and every value of
{sℓ+1, . . . , sk0

} ∈ Fk0
q . Hence, we have,

H(s[ℓ]|cEτ , s[k0]\[ℓ]) = 0
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We therefore have the following chain of inequalities that
establishes that the eavesdropper does not get any information
about the secret from his observation.
I(s[k0]\[ℓ]; cEτ ) = H(cEτ ) − H(cEτ |s[k0]\[ℓ]) ≤

ℓ − H(cEτ |s[k0]\[ℓ]) + H(cEτ |s[ℓ], s[k0]\[ℓ]) =
ℓ − I(cEτ , s[ℓ]|s[k0]\[ℓ]) = ℓ − H(s[ℓ]|s[k0]\[ℓ]) +
H(s[ℓ]|cEτ , s[k0]\[ℓ]) = ℓ−H(s[ℓ]) = ℓ− ℓ = 0.

We also have the following lemma.

Lemma 18. Consider the subgraphGe formed by removing
the edgessℓ+1, . . . , sk0

from the graphG(n, k0,m, r). For this
modified network graph the multicast capacity between the
source and the eavesdroppersEDτ , τ ∈ W ′ is ℓ i.e.

min
τ∈W′

|MinCut(X,EDτ )| = ℓ.

Proof: It is easy to see from the network structure that
min-cut for every eavesdropperEDτ , τ ∈ W ′ corresponds to
all the edges(Y in

i , Y out
i ) to which an eavesdropper connects

in each repair group. Since, every eavesdropper inW ′ connects
to ℓ nodes, the minimum mincut is alsoℓ.

Consider the eavesdropperEDτ , τ ∈ W ′ which connects
to t1, t2, . . . , tn/(r+1) nodes in each of the repair groups.
Therefore, we have

n/(r+1)
∑

ρ=1

tρ = ℓ

where0 ≤ tρ ≤ r, ∀ρ ∈ [n/(r + 1)]. Let N ′
ρ, ρ ∈ [n/(r +

1)] denote thetρ × r local encoding sub-matrix ofNρ (see,
eq. (52)) for the edges(Γρ, Y

in
i ) connecting the eavesdropper

to theρth repair group. Also, letDρ, ρ ∈ [n/(r + 1)] denote
ther×ℓ matrix corresponding to the local encoding vectors for
(Fν ,Γρ), ν ∈ [r], for the induced graphGe described above.
The matrixAτ

1 from lemma17 can be written as,

Aτ
1 =











N ′
1D1

N ′
2D2

...
N ′

n
r+1

D n
r+1











. (55)

We need all of the matricesAτ
1 , τ ∈ W ′ to be full-rank

simultaneously. Now using lemma18 we can see that these
constraints on the matricesDρs can all be satisfied simultane-
ously –with the local repairability and multicast capacity– for
all τ ∈ W ′ for a large enough alphabet size [10], [6, Lemma
4]. Therefore, a random LNC satisfies the full rank constraints
of lemma17.

Therefore, for the random LNC obtained above, for any
eavesdropperEDτ observingEτ ⊆ [n], I(s[k0]\[ℓ]; cEτ ) = 0.
Since the data collectors can recovers from any m nodes
andH(s[k0]\[ℓ]|s) = 0, the secret is recoverable from anym
shares. Therefore, we have an(n, k, ℓ,m, r)-scheme achieving
the upper bound in eq. (7).
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