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Abstract—MAXCUT defines a classical NP-hard problem for
graph partitioning and it serves as a typical case of the symmetric
non-monotone Unconstrained Submodular Maximization (USM)
problem. Applications of MAXCUT are abundant in machine
learning, computer vision and statistical physics. Greedy algo-
rithms to approximately solve MAXCUT rely on greedy vertex
labelling or on an edge contraction strategy. These algorithms
have been studied by measuring their approximation ratios in
the worst case setting but very little is known to characterize
their robustness to noise contaminations of the input data in
the average case. Adapting the framework of Approximation Set
Coding, we present a method to exactly measure the cardinality
of the algorithmic approximation sets of five greedy MAXCUT
algorithms. Their information contents are explored for graph
instances generated by two different noise models: the edge
reversal model and Gaussian edge weights model. The results
provide insights into the robustness of different greedy heuristics
and techniques for MAXCUT, which can be used for algorithm
design of general USM problems.

I. INTRODUCTION

Algorithms are mostly analyzed by measuring their run-
time and memory consumption for the worst possible input
instance. In many application scenarios, algorithms are also
selected according to their “robustness” to noise perturbations
of the input instance and their insensitivity to randomization
during algorithm execution. How should this “robustness”
property be measured? Machine learning requires that algo-
rithms with random variables as input generalize over these
fluctuations. The algorithmic answer has to be stable w.r.t.
this uncertainty in the input instance. Approximation Set
Coding (ASC) quantifies the impact of input randomness
on the solution space of an algorithm by measuring the
attainable resolution for the algorithm’s output. We employ
this framework in an exemplary way by estimating the ro-
bustness of MAXCUT algorithms to specific input instances.
Thereby, we effectively perform an average case analysis of
the generalization properties of MAXCUT algorithms.

A. MAXCUT and Unconstrained Submodular Maximization

Given an undirected graph G = (V,E) with vertex set
V = {v1, v2, · · · , vn} and edge set E with nonnegative
weights wij ,∀(i, j) ∈ E, the MAXCUT problem aims to find
a partition of vertices into two disjoint subsets S1 and S2,
such that the cut value cut(S1, S2) :=

∑
i∈S1

∑
j∈S2

wij is
maximized. MAXCUT is emlpoyed in various applications,
such as in semisupervised learning ([1]), in social network
([2]), in statistical physics and in circuit layout design ([3]).

MAXCUT is considered to be a typical case of the USM
problem because its objective can be formulated as a set
function: f(S) := cut(S, V \S), S ⊆ V , which is submodular,
nonmonotone, and symmetric (f(S) = f(V \S)). Beside
MAXCUT, USM captures many practical problems such as
MAXDICUT ([4]), variants of MAXSAT and the maximum
facility location problem ([5], [6]).

B. Greedy Heuristics and Techniques

The five algorithms investigated here (as summarized in
Table I) belong to two greedy heuristics: double greedy and
backward greedy. The double greedy algorithms exploit the
symmetric property of USM, and conducts classical forward
greedy and backward greedy simultaneously: it works on two
solutions initialized as ∅ and the ground set V , respectively,
then processes the elements (vertices for MAXCUT problem)
one at a time, for which it determines whether it should
be added to the first solution or removed from the second
solution. The backward greedy algorithm removes the smallest
weighted edge in each step. The difference of the four double
greedy algorithms lies in the greedy techniques they use:
sorting, randomization and the way to initialize the first two
vertices.

C. Approximation Set Coding for Algorithm Analysis

In analogy to Shannon’s theory of communication, the ASC
framework ([7], [8], [9]) determines distinguishable sets of
solutions and, thereby, provides a general principle to conduct
model validation ([10], [11]). As an algorithmic variant of
the ASC framework, [12], [13] defines the algorithmic t-
approximation set of an algorithm A at step t as the set
of feasible solutions after t steps, CA

t (G) := At(G), where
At(G) is the solution set which are still considered as viable
by A after t computational steps.

ASC utilizes the two instance-scenario to investigate the
information content of greedy MAXCUT algorithms. Since we
investigate the average case behavior of algorithms, we have to
specify the probability distribution of the input instances. We
generate graph instances in a two step process. First, generate
a “master graph” G, e.g., a complete graph with Gaussian
distributed weights. In a second step, we generate two input
graphs G′, G′′ by independently applying a noise process to
edge weights of the master graph G.
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TABLE I: Summary of Greedy MAXCUT Algorithms

Name Greedy Techniques
Heuristic Sort. Rand. Init. Vertices

D2Greedy

DoubleRDGreedy X
SG X
SG3 X X
EC Backward X

The algorithmic analogy of information content ([7]), i.e.
algorithmic information content IA , is computed as the max-
imum stepwise information IA

t :

IA := max
t
IA
t = max

t
E
[
log
( |C| ∆A

t (G′, G′′)

|CA
t (G′)||CA

t (G′′)|

)]
(1)

The expectation is taken w.r.t. (G′, G′′); ∆A
t (G′, G′′) :=

|CA
t (G′)∩CA

t (G′′)| denotes the intersection of approximation
sets, and C is the solution space, i.e., all possible cuts.
The information content IA

t measures how much information
is extracted by algorithm A at iteration t from the input
distribution that is relevant to the output distribution.

II. GREEDY MAXCUT ALGORITHMS

We investigate five greedy algorithms (Table I) for MAX-
CUT. According to the type of greedy heuristic, they can
be divided into two categories: I) Double Greedy: SG, SG3,
D2Greedy, RDGreedy; II) Backward Greedy: Edge Contrac-
tion. Besides the type of greedy heuristic, the difference
between the algorithms are mainly in three techniques: sorting
the candidate elements, randomization and the way initializing
the first two vertices. In the following, we briefly introduce one
typical algorithm in each category and we present the others
by showing the difference (details are in the Supplement VI-A
because of space limit).

A. Double Greedy Algorithms

D2Greedy (Alg. 1) is the Deterministic double greedy,
RDGreedy is the Randomized double greedy, they were
proposed by [14] to solve the general USM problem with
1/3 and 1/2 worst-case approximation guarantee, respectively.
They use the same double greedy heuristic as SG ([15]) and
SG3 (variant of SG), which are classical greedy MAXCUT
algorithms. We prove in Supplement VI-B that, for MAXCUT,
SG and D2Greedy use equivalent labelling criteria except for
initializing the first two vertices.

As shown in Alg. 1, D2Greedy maintains two solution sets:
S initialized as ∅, T initialized as the ground set V . It labels
all the vertices one by one: for vertex vi, it computes the
objective gain of adding vi to S and the gain of removing vi
from T , then labels vi to have higher objective gain.

SG and D2Greedy differ in the initialization of the first
two vertices: SG picks first of all the maximum weighted
edge and distributes its two vertices to the two active subsets.
Compared to D2Greedy, the RDGreedy uses randomization

Algorithm 1: D2Greedy ([14])
Input: Complete graph G = (V,E) with nonnegative edges
Output: A disjoint cut and the cut value

1 S0 := ∅, T 0 := V ;
2 for i = 1 to n do
3 ai := f(Si−1 ∪ {vi})− f(Si−1);
4 bi := f(T i−1\{vi})− f(T i−1);
5 if ai ≥ bi then
6 Si := Si−1 ∪ {vi}, T i := T i−1 ; //expand S

7 else
8 Si := Si−1, T i := T i−1\{vi} ; //shrink T

9 return Sn, V \Sn, and cut(Sn, V \Sn)

technique when labelling each vertex: it labels each vertex
with probability proportional to the objective gain. Compared
to SG, SG3 sorts the unlabelled vertices according to a certain
score function (which is proportional to the possible objective
gains), and selects the vertex with the maximum score to be
the next one to be labelled.

B. Edge Contraction (EC)

EC ([16], Alg. 2) contracts the smallest edge in each step.
The two vertices of this contracted edge become one “super”
vertex, and the weight of an edge connecting this super vertex
to any other vertex is assigned as the sum of weights of the
original two edges. EC belongs to the backward greedy in the
sense that it tries to remove the least expensive edge from the
cut set in each step. We can easily derive a heuristic for the
MAX-K-CUT problem by using n− k steps instead of n− 2
steps.

Algorithm 2: Edge Contraction (EC) ([16])
Input: Complete graph G = (V,E) with nonnegative edge
Output: A disjoint cut S1, S2 and cut value cut(S1, S2)

1 for i = 1 : n do
2 ContractionList(i) := {i};
3 for i = 1 : n− 2 do
4 Find a minimum weight edge (x, y) in G;
5 v := contract(x, y), V := V ∪ {v}\{x, y} ; //contract
6 for j ∈ V \{v} do
7 wvj := wxj + wyj ;

8 ContractionList(v) :=
ContractionList(x) ∪ ContractionList(y);

9 Denote by x and y the only 2 vertices in V ;
10 return S1 := ContractionList(x),

S2 := ContractionList(y), cut(S1, S2) := wxy

III. COUNTING SOLUTIONS IN APPROXIMATION SETS

To compute the information content according to Eq. 1,
we need to exactly compute the cardinalities of four different
solution sets. For MAXCUT problem, the solution space has
the cardinality |C| = 2n−1−1. In the following we will present
guaranteed methods for exact counting |CA

t (G′)|, |CA
t (G′′)|

and ∆A
t (G′, G′′) (sub-/superscripts omitted for notational

clarity).



A. Counting Methods for Double Greedy Algorithms

The counting methods for the double greedy algorithms are
similar, so we only discuss the method for SG3 here; details
about other methods and the corresponding proofs are in the
Supplement VI-C and VI-D, respectively.

For the SG3 (Alg. 6, see Supplement), after step t (t =
1, · · · , n− 1) there are k = n− t− 1 unlabelled vertices, and
it is clear that |C(G′)| = |C(G′′)| = 2k.

To count the intersection set ∆(G′, G′′), assume the solution
set pair of G′ is (S′1, S

′
2), the solution set pair of G′′ is

(S′′1 , S
′′
2 ), so the unlabelled vertex sets are T ′ = V \{S′1∪S′2},

T ′′ = V \{S′′1 ∪ S′′2 }, respectively. Denote L := T ′ ∩ T ′′ be
the common vertices of the two unlabelled vertex sets, so
l = |L| (0 ≤ l ≤ k) is the number of common vertices in
the unlabelled k vertices. Denote M ′ := T ′\L, M ′′ := T ′′\L
be the sets of different vertex sets between the two unlabelled
vertex sets. Then,

∆(G′, G′′) =

 2l
if (S′′1 \M ′, S′′2 \M ′) is matched by
(S′1\M ′′, S′2\M ′′) or (S′2\M ′′, S′1\M ′′)

0 otherwise

B. Counting Method for Edge Contraction Algorithm

For EC (Alg. 2), after step t (t = 1, · · · , n − 2) there
are k = n − t “super” vertices (i.e. contracted ones). It is
straightforward to see that |C(G′)| = |C(G′′)| = 2k−1 − 1.

To count the intersection ∆(G′, G′′), suppose there are l
(0 ≤ l ≤ k) common super vertices in the unlabelled k ver-
tices. Remove the l common super vertices from each set, then
there are h = k − l distinct super vertices in each set, denote
them by P := {p1,p2, · · · ,ph}, Q := {q1,q2, · · · ,qh},
respectively. Notice that p1∪p2∪· · ·∪ph = q1∪q2∪· · ·∪qh,
so after some contractions in both P and Q, there must be
some common super vertices between P and Q. Assume the
maximum number of common super vertices after all possible
contractions is c∗, then it holds

∆(G′, G′′) = 2c
∗+l−1 − 1 . (2)

To compute c∗, we propose a polynomial time algorithm (Alg.
3) with a theoretical guarantee in Theorem 1 (for the proof see
Supplement VI-E). The algorithm finds the maximal number
of common super vertices after all possible contractions, that
is used to count ∆(G′, G′′) for EC.

Theorem 1. Given two distinct super vertex sets P :=
{p1,p2, · · · ,ph}, Q := {q1,q2, · · · ,qh} (any 2 super ver-
tices inside P or Q do not intersect, and there is no common
super vertex between P and Q), such that p1∪p2∪· · ·∪ph =
q1 ∪ q2 ∪ · · · ∪ qh, Alg. 3 returns the maximum number of
common super vertices between P and Q after all possible
contractions.

IV. EXPERIMENTS

We conducted experiments on two exemplary models: the
edge reversal model and the Gaussian edge weights model.
Each model involves the master graph G and a noise type used
to generate the two noisy instances G′ and G′′. The width of

Algorithm 3: Common Super Vertex Counting
Input: Two distinct super vertex sets P , Q
Output: Maximum number of common super vertices after all

possible contractions
1 c := 0;
2 while P 6= ∅ do
3 Randomly pick pi ∈ P ;
4 Find qj ∈ Q s.t. pi ∩ qj 6= ∅;
5 if qj\pi 6= ∅ then
6 For pi, find pi′ ∈ P\{pi} s.t. pi′ ∩ (qj\pi) 6= ∅;
7 pii′ := pi ∪ pi′ , P := P ∪ {pii′}\{pi,pi′} ;

8 if pi\qj 6= ∅ then
9 For qj , find qj′ ∈ Q\{qj} s.t. qj′ ∩ (pi\qj) 6= ∅;

10 qjj′ := qj ∪ qj′ , Q := Q ∪ {qjj′}\{qj ,qj′} ;

11 if pii′ == qjj′ then
12 Remove pii′ , qjj′ from P , Q, respectively;
13 c := c+ 1;

14 return c

the instance distribution is controlled by the strength of the
noise model. These models provide the setting to investigate
the algorithmic behavior.

A. Experimental Setting

Edge Reversal Model: To obtain the master graph, we
generate a balanced bipartite graph Gb with disjoint vertex
sets S1, S2. Then we assign uniformly distributed weights in
[0, 8

n2 ] to all edges inside S1 or S2 and we assign uniformly
distributed weights in [1− 8

n2 , 1] to all edges between S1 and
S2, thus generating graph G′b. Then randomly flip edges in
G′b to generate the master graph G. Here, flip edge eij means
changing its weight wij to 1 − wij with probability pm, and
(flip eij) ∼ Ber(pm); pm = 0.2 is used to generate the
master graph G. Noisy graphs G′, G′′ are generated by flipping
the edges in G with probability p, ((flip eij) ∼ Ber(p)).

Gaussian Edge Weights Model: The master graph G
is generated with Gaussian distributed edge weights wij ∼
N(µ, σ2

m), µ = 600, σm = 50, negative edges are set to be
µ. Noisy graphs G′, G′′ are obtained by adding Gaussian
distributed noise nij ∼ N(0, σ2), negative noisy edges are
set to be 0.

For both noise models, we conducted 1000 experiments on
i.i.d. generated noisy graphs G′ and G′′, and then we aggregate
the results to estimate the expectation in Eq. 1.

B. Results

We plot the information content and stepwise information
per node in Fig. 1 and 2, respectively. For the edge reversal
model, we also investigate the number of equal edge pairs be-
tween G′ and G′′: d = 0, · · · ,m (m is the total edge number),
d measures the consistency of the two noisy instances. The
expected fraction of equal edge pairs is Ed = p2 + (1 − p)2,
and it is plotted as the dashed magenta line in Fig. 1(a).

C. Analysis

Before discussing these results, let us revisit the stepwise in-
formation and information content. From the counting methods
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(b) Gaussian Edge Weights Model, n: 100

Fig. 1: Information Content per Node

in Section III, we derive the analytical form of |C|, |CA
t (G′)|

and |CA
t (G′′)| (e.g., A = SG3), an we insert these values

into the definition of stepwise information,

IA
t = E log

(
|C| ∆A

t (G′, G′′)

|CA
t (G′)||CA

t (G′′)|

)
(3)

= E(log(|C|∆A
t (G′, G′′))− log(|CA

t (G′)||CA
t (G′′)|))

= E log ∆A
t (G′, G′′) + 2t+ log(2n−1 − 1)− 2(n− 1)

The information content is computed as the maxi-
mum stepwise information IA := maxt I

A
t . Notice that

log ∆A
t (G′, G′′) measures the ability of A to find common

solutions for the two noisy instances G′, G′′, given the under-
lying input graph G.

Our results support the following observations and analysis:
• All investigated algorithms reach the maximum infor-

mation content in the noise free limit (G′ = G′′), i.e.,
for p = 0, 1 in the edge reversal model and for σ = 0
in the Gaussian edge weights model. In this circumstance,
E log ∆A

t (G′, G′′) = log |CA
t (G′)| = n − t − 1, so IA

t =
t+log(2n−1−1)−(n−1), and the information content reaches
its maximum log(2n−1 − 1) at the final step t = n− 1.
• Fig. 1(a) demonstrates that the information content qual-

itatively agrees with the consistency between two noisy
instances (the dashed magenta line), which reflects that
log ∆A

t (G′, G′′) is affected by the noisy instances.
• Stepwise information (Fig. 2) of the algorithms increase

initially, but after reaching the optimal step t∗ (the step with
highest information), it decreases and finally vanishes.
• For the greedy heuristics, backward greedy is more infor-

mative than double greedy under both models. EC (backward
greedy) achieves the highest information content. We explain
this behavior by delayed decision making of the backward
greedy edge contraction. With high probability it preserves
consistent solutions by contracting low weight edges that

have a low probability to be included in the cut. The same
phenomena arises for the reverse-delete algorithm to calculate
the minimum spanning tree of a graph (see [13]).

• The information content of the four double greedy al-
gorithms achieve different rank orders for the two models.
SG3 is inferior to other double greedy algorithms under
Gaussian edge weights model, but this only happens when
p ∈ [0.2, 0.87] for the edge reversal model. This results from
that information content of one specific algorithm is affected
by both the input master graph G and the noisy instances
G′, G′′, which are completely different under the two models.

• Different greedy techniques cast different influences on
the information content. The four double greedy algorithms
differ by the techniques they use (Table I). (1) The ran-
domization technique makes RDGreedy very fragile w.r.t.
information content, though it improves the worst-case ap-
proximation guarantee for the general USM problem ([14]).
RDGreedy labels each vertex with a probability proportional
to the objective gain, this randomization makes the consistency
between |CA

t (G′)| and |CA
t (G′′)| very weak, resulting in

small approximation set intersection log ∆A
t (G′, G′′). (2) The

initializing strategy for the first 2 vertices as used in SG
decreases the information content (SG is outperformed by
D2Greedy under both models) due to early decision making.
(3) The situation is similar for the sorting techniquey used in
SG3 under Gaussian edge weights model, it is outperformed
by both SG and D2Greedy. But for the edge reversal model,
this observation only holds when p ∈ [0.2, 0.87].

• SG and D2Greedy behave very similar under both models,
which is caused by an equivalent processing sequence apart
from initializing of the first two vertices (proved in Supplement
VI-B).
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Fig. 2: Stepwise Information per Node

V. DISCUSSION AND CONCLUSION

This work advocates an information theoretically guided
average case analysis of the generalization ability of greedy
MAXCUT algorithms. We have contributed to the foundation
of approximation set coding by presenting provably correct
methods to exactly compute the cardinality of approximation
sets. The counting algorithms for approximate solutions enable
us to explore the information content of greedy MAXCUT al-
gorithms. Based on the observations and analysis, we propose
the following conjecture:
• Different greedy heuristics (backward, double) and differ-

ent processing techniques (sorting, randomization, intilization)
sensitively influence the information content. The backward
greedy with its delayed decision making consistently outper-
forms the double greedy strategies for different noise models
and noise levels.

Since EC demonstrated to achieve the highest robustness,
it is valuable to develop the corresponding algorithm for the
general USM.

In this work ASC has been employed as a descriptive
tool to compare algorithms. We could also use the method
for algorithm design. A meta-algorithm modifies the algo-
rithmic steps of a MAXCUT procedure and measures the
resulting change in information content. Beneficial changes
are accepted and detrimental changes are rejected. It is also
imaginable that design principles like delayed decision making
are systematically identified and then combined to improve the
informativeness of novel algorithms.

ACKNOWLEDGMENT

This work was partially supported by SNF Grant # 200021 138117.
The authors would like to thank Andreas Krause, Matús Mihalák and
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VI. SUPPLEMENTARY MATERIAL

A. Details of Double Greedy Algorithms

Algorithm 4: SG ([15])
Input: A complete graph G = (V,E) with nonnegative edge

weights wij , ∀i, j ∈ V, i 6= j
Output: A disjoint cut and the cut value

1 Pick the maximum weighted edge (x, y);
2 S1 := {x},S2 := {y}, cut(S1, S2) := wxy;
3 for i = 1 : n− 2 do
4 If w(i, S1) > w(i, S2), then add i to S2, else add it to S1;

//w(i, Sk) :=
∑

j∈Sk
wij , k = 1, 2

5 cut(S1, S2) := cut(S1, S2) + max{w(i, S1), w(i, S2)};
6 return S1, S2, and cut(S1, S2)

Algorithm 5: RDGreedy ([14])
Input: A complete graph G = (V,E) with nonnegative edge

weights wij , ∀i, j ∈ V, i 6= j
Output: A disjoint cut and the cut value

1 S0 := ∅, T 0 := V ;
2 for i = 1 to n do
3 ai := f(Si−1 ∪ {vi})− f(Si−1);
4 bi := f(T i−1\{vi})− f(T i−1);
5 a′i := max{ai, 0}, b′i := max{bi, 0};
6 With probability a′i

a′i+b′i
do: Si := Si−1 ∪ {vi},

T i := T i−1//If a′i = b′i = 0, assume
a′i

a′i+b′i
= 1

7 Else (with the compliment probability b′i
a′i+b′i

) do:
Si := Si−1, T i := T i−1\{vi};

8 return 2 subsets: Sn, V \Sn, and cut(Sn, V \Sn)

Algorithm 6: SG3
Input: A complete graph G = (V,E) with nonnegative edge

weights wij , ∀i, j ∈ V, i 6= j
Output: A disjoint cut S1, S2 and the cut value cut(S1, S2)

1 Pick the maximum weighted edge (x, y);
2 S1 := {x},S2 := {y},V := V \{x, y}, cut(S1, S2) := wxy;
3 for i = 1 : n− 2 do
4 for j ∈ V do
5 score(j) := |w(j, S1)− w(j, S2)| ; //

w(j, Sk) :=
∑

j′∈Sk
wjj′ , k = 1, 2

6 Choose the vertex j∗ with the maximum score;
7 If w(j∗, S1) > w(j∗, S2), then add j∗ to S2, else add it to

S1;
8 V := V \{j∗};
9 cut(S1, S2) := cut(S1, S2) + max{w(j∗, S1), w(j∗, S2)};

10 return S1, S2, and cut(S1, S2)

B. Equivalence Between Labelling Criterions of SG and
D2Greedy

Claim: Except for processing the first 2 vertices,
D2Greedy and SG conduct the same labelling strategy for each
vertices.

Proof. To verify this, assume in the beginning of a certain
step i, the solution set pair of SG is (S1, S2), of D2Greedy is
(S, T ) (for simplicity omit the step index here).

Note that the relationship between solution sets of SG and
D2Greedy is: S1 ↔ S and S2 ↔ (V \T ).

For SG, the labelling criterion for vertex i is:

w(i, S2)− w(i, S1) =
∑

i,j∈S2

wij −
∑

i,j∈S1

wij (4)

For D2Greedy, the labelling criterion for vertex i is:

ai − bi = [f(S ∪ {vi})− f(S)]− [f(T\{vi})− f(T )]

=

 ∑
i∈S∪{vi},j∈V \S\{vi}

wij −
∑

i∈S,j∈V \S

wij

−
 ∑

i∈T\{vi},j∈V \T∪{vi}

wij −
∑

i∈T,j∈V \T

wij

 (5)

=

 ∑
i,j∈V \S\{vi}

wij −
∑

i∈S,j=i

wij

−
 ∑

i∈T\{vi},j=i

wij −
∑

i,j∈V \T

wij

 (6)

=

 ∑
i,j∈(V \T )∪(T\S\{vi})

wij −
∑
i,j∈S

wij

−
 ∑

i,j∈(S)∪(T\S\{vi})

wij −
∑

i,j∈V \T

wij

 (7)

= 2

 ∑
i,j∈V \T

wij −
∑
i,j∈S

wij


= 2

 ∑
i,j∈S2

wij −
∑

i,j∈S1

wij

 (8)

= 2[w(i, S2)− w(i, S1)]

where Eq. 8 comes from the relationship between solution sets
of SG and D2Greedy.

So the labelling criterion for SG and D2Greedy is equivalent
with each other.

C. Counting Methods for Double Greedy Algorithms
D2Greedy: summarized in Alg. 1, we have proved that

it has the same labelling criterion with SG, the relationship
between solution sets of SG and D2Greedy is: S1 ↔ S and
S2 ↔ (V \T ), we will use S1 and S2 in the description of its
counting methods.

In step t (t = 1, · · · , n) there are k = n − t unlabelled
vertices, it is not difficult to know that the number of possible
solutions for each instance is

|C(G′)| = |C(G′′)| =
{

2k if S1 6= ∅ and S2 6= ∅
2k − 1 otherwise



To count the intersection set (i.e. |C(G′)∩C(G′′)|), assume
the solution sets of G′ is (S′1, S

′
2), the solution sets of G′′ is

(S′′1 , S
′′
2 ), so the unlabelled vertex sets are T ′ = V \S′1\S′2,

T ′′ = V \S′′1 \S′′2 , respectively. Denote L := T ′ ∩ T ′′ be the
common vertices of the two unlabelled vertex sets, so l =
|L| (0 ≤ l ≤ k) is the number of common vertices in the
unlabelled k vertices. Denote M ′ := T ′\L, M ′′ := T ′′\L be
the sets of different vertex sets between the two unlabelled
vertex sets. Then,

1) if (S′1\M ′′, S′2\M ′′) or (S′2\M ′′, S′1\M ′′) matches
(S′′1 \M ′, S′′2 \M ′).
Assume w.l.o.g. that (S′1\M ′′, S′2\M ′′) matches
(S′′1 \M ′, S′′2 \M ′):

|C(G
′
) ∩ C(G

′′
)| ={

2l if S′1 ∪ S′′1 6= ∅ and S′2 ∪ S′′2 6= ∅
2l − 1 otherwise

2) otherwise, |C(G
′
) ∩ C(G

′′
)| = 0

SG3: presented in Section III-A.
SG: summarized in Alg. 4, the methods to count its approx-

imation sets is the same as that of SG3.
RDGreedy: summarized in Alg. 5, the methods to count its

approximation sets is the same as that of D2Greedy.

D. Proof of the Correctness of Method to Count |C(G′) ∩
C(G′′)| of SG3

Proof. First of all, notice that M ′ must be included in S′′1 ∪S′′2
and M ′′ must be included in S′1 ∪ S′2, because M ′ has no
intersection with M ′′, and we know that S′′1 ∪ S′′2 ∪M ′′ =
S′1 ∪ S′2 ∪M ′. After removing M ′ from S′′1 ∪ S′′2 , and M ′′

from S′1 ∪ S′2, the vertices in the pairs, (S′1\M ′′, S′2\M ′′)
and (S′′1 \M ′, S′′2 \M ′), can not be changed by distributing any
other unlabelled vertices , so if they can not match with each
other, there will be no common solutions.

If they can match, in the following, there is only one way
to distribute M ′ and M ′′ to have common solutions. And the
vertices in the common set L = T ′ ∩ T ′′ can be distributed
consistently in the two instances, so in this situation |C(G′)∩
C(G′′)| = 2l.

E. Proof of Theorem 1

Proof. First of all, We will prove the following claim, then
use the claim to prove Theorem 1.

Claim: In each step t (t = 0, · · · , n − 2), the following
conditions hold:

1) The remained super vertices in P,Q are distinct with each
other, that means any 2 super vertices inside P or Q do
not have intersection, and there are no common super
vertex between P and Q.

2) The common super vertex removed from P,Q, i.e., pii′ =
qjj′ , is the smallest common super vertex containing pi

or pi′ (respectively, qj or qj′ )
3) The common super vertex removed from P,Q, i.e., pii′ =

qjj′ , are “unique” (i.e., there does not exist pii′′ = qjj′′ ,

such that pii′′ 6= pii′ ). That means, there is only one
possible way to construct the removed common super
vertex.

We will use inductive assumption to prove the claim. First
of all, in the beginning (step 0), the conditions hold. Assume
the conditions hold in step t. In step t+1, there are 2 possible
situations:
• There are no common super vertex removed.

Condition 1 holds because the contracted super vertices
pair do not equal. Condition 2, 3 hold as well because
there are no contracted super vertices removed.

• There are common super vertex removed.
Condition 1 holds because the only common super
vertices pair have been removed from P,Q, respectively.

To prove condition 2, notice that the smaller vertices for
pii′ are pii′\pi = pi′ and pii′\p′i = pi, respectively, for
qjj′ are qjj′\qj = qj′ and qjj′\q′j = qj, according to
Condition 1, they can not be common super vertices, so
there are no smaller common super vertices.

To prove condition 3, assume there exists pii′′ = qjj′′ ,
such that pii′′ 6= pii′ (respectively, qjj′′ 6= qjj′ ), so pi′′ 6=
pi′ (pj′′ 6= pj′ ). From Alg. 3 we know that pi ∪ pi′′ =
pii′′ ⊇ qj\pi and pi ∪ pi′ = pii′ ⊇ qj\pi (respectively,
qj∪qj′′ = qjj′′ ⊇ pi\qj and qj∪qj′ = qjj′ ⊇ pi\qj), so
that pi′′ ⊇ qj\pi and pi′ ⊇ qj\pi (respectively, qj′′ ⊇
pi\qj and qj′ ⊇ pi\qj), that contradicts the known truth
that pi′ and pi′′ (respectively, qj′ and qj′′ ) must be totally
different with each other (from Condition 1).

Then we use the Claim to prove that the c returned by Alg.
3 is exactly the maximum number of common super vertices
after all possible contractions. Because the 3 conditions hold
for each step, we know that finally all the common super
vertices are removed out from P and Q. From Condition 2
we know that all the removed common super vertices are the
smallest ones, from Condition 3 we get that there is not a
second way to construct the common super vertices, so the
resulted c is the maximum number of common super vertices
after all possible contractions.
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