
Distributed Storage Allocations for
Neighborhood-based Data Access

Dus̆an Jakovetić, Aleksandar Minja, Dragana Bajović, and Dejan Vukobratović

Abstract— We introduce a neighborhood-based data access
model for distributed coded storage allocation. Storage nodes
are connected in a generic network and data is accessed locally:
a user accesses a randomly chosen storage node, which subse-
quently queries its neighborhood to recover the data object. We
aim at finding an optimal allocation that minimizes the overall
storage budget while ensuring recovery with probability one.
We show that the problem reduces to finding the fractional
dominating set of the underlying network. Furthermore, we
develop a fully distributed algorithm where each storage node
communicates only with its neighborhood in order to find its
optimal storage allocation. The proposed algorithm is based
upon the recently proposed proximal center method–an efficient
dual decomposition based on accelerated dual gradient method.
We show that our algorithm achieves a (1 + ε)-approximation
ratio in O(d

3/2
max/ε) iterations and per-node communications,

where dmax is the maximal degree across nodes. Simulations
demonstrate the effectiveness of the algorithm.

I. INTRODUCTION

With distributed (coded) storage allocation problems [1],
[2], one aims to store a data object over N storage nodes,
such that the tradeoff between redundancy (total amount of
storage) and reliability of accessing the object is balanced
in an optimal way. A standard instance of the problem is
as follows. Store a unit size data object D over N nodes,
such that each node i stores an amount of xi storage encoded
from object D. At a later time, a data collector–user accesses
a fixed number r, r < N , of randomly chosen nodes,
and attempts to recover D. Assuming a maximum distance
separable (MDS) coding is used, the recovery is successful
if the overall amount of storage across the selected nodes is
at least equal in size to D. Then, the goal is to optimize the
xi’s such that the total storage

∑N
i=1 xi is minimized, while

the recovery probability exceeds a prescribed level.
In this paper–motivated by applications like cloud storage

systems, peer-to-peer (P2P) networks, sensor networks or
caching in small-cell cellular networks–we introduce a new,
neighborhood-based data access model in the context of
distributed coded storage allocation. We assume that the N
storage nodes are interconnected with links and constitute
a generic network. A user (e.g., smartphone, sensor, P2P
client application) accesses a randomly chosen node i. Subse-
quently, node i contacts its one-hop neighbors, receives their
coded storage, and, combined with its own storage, passes

D. Jakovetić and D. Bajović are with University of Novi Sad, BioSense
Center, Novi Sad, Serbia. A. Minja and D. Vukobratović are with Depart-
ment of Power, Electronics, and Communications Engineering, University
of Novi Sad, Novi Sad, Serbia. Authors’ emails: djakovet@uns.ac.rs,
sale.telekom@gmail.com, [dbajovic,dejanv]@uns.ac.rs.

the aggregate storage to the user, which finally attempts the
recovery. Then, our goal is to minimize

∑N
i=1 xi such that

the recovery probability is one.

We show that the resulting problem is a fractional dom-
inating set (FDS) linear program (LP), e.g., [3], and hence
can be efficiently solved via standard LP solvers. However,
we are interested in solving FDS in a fully distributed way,
whereby nodes over iterations exchange messages with their
neighbors in the network with the aim of finding their optimal
local allocations. Several distributed algorithms to solve
FDS, and, more generally, fractional packing and covering
LPs, have been proposed, e.g., [4]-[7]. However, advanced
dual decomposition techniques based on the Lagrangian dual,
proved useful in many distributed applications, have not been
sufficiently explored. In this paper, to solve FDS in a fully
distributed way, we apply and modify the proximal center
method proposed in [8]–an efficient dual decomposition
based on accelerated Nesterov gradient method. We show
that the resulting method is competitive with existing, primal-
based approaches. Assuming that all nodes know dmax and
ε beforehand (dmax the maximal degree across nodes, and ε
the required accuracy), we show that the algorithm achieves
a (1+ε)-approximation ratio in O(d

3/2
max/ε) iterations k–more

precisely–O(d
3/2
max/ε) per-node scalar communications and

O(d
5/2
max/ε) per-node elementary operations (computational

cost). This matches the best dependence on ε among existing
solvers [4]-[7], [5], [10], proposed for FDS (or fractional
packing/covering). Furthermore, the algorithm’s iterates are
feasible (satisfy problem constraints) at all iterations. Simu-
lations demonstrate that our algorithm converges much faster
than a state-of-the-art distributed solver [6] on moderate-size
networks (N = 100 − 400.) With respect to [8] (which
considers generic convex programs), we introduce here a
novel, simple way of maintaining feasibility along iterations
by exploiting the FDS problem structure. Further, exploiting
structure, the results in [11], and primal-dual solution bounds
derived here, we improve the dependence on the underlying
network (on N, dmax) with respect to a direct application of
the generic results in [8].

Summarizing, our main contributions are two-fold. First,
we introduce a new, neighborhood-based data access model
for distributed coded storage allocation–the model well-
suited in many user-oriented applications for distributed
networked storage–and we show that the corresponding
optimization problem reduces to FDS. Second, we solve the
coded storage allocation problem (FDS) where storage nodes

ar
X

iv
:1

41
1.

27
46

v1
 [

cs
.I

T
]

 1
1

N
ov

 2
01

4

search for their optimal local allocations in a fully distributed
way by applying and modifying the dual-based proximal
center method. We establish the method’s convergence and
complexity guarantees and show that it compares favorably
with a state-of-the art method on moderate-size networks.

A. Literature review, paper organization, and notation

We now briefly review the literature to further contrast our
paper with existing work. Neighborhood-based data access
has been previously considered in the context of replica
placement, e.g., [12]. Therein, one wants to replicate the raw
object D across network such that it is reliably accessible
through a neighborhood of any node. In contrast, we consider
here the coded storage. Mathematically, replica placement
corresponds to the integer dominating set problem (known
to be NP hard), while coded allocation studied here translates
into FDS (solvable in polynomial time).

We now contrast our distributed algorithm for FDS with
existing methods. The literature usually considers more
general fractional packing/covering problems, , e.g., [4]-
[7], [5], [10], and we hence specialize their results to
FDS.1 References [4]-[7] develop distributed algorithms,
with the required number of iterations (per-node commu-
nications) that depends on ε (at least) as 1/ε4, and on N
as (logN)O(1) (poly-logarithmically). The algorithm in [6]
enjoys a stateless property (see [6] for the definition of
the property), while our algorithm is not stateless (e.g.,
it requires a global clock). References [9], [10] develop
algorithms with a better dependence on ε than 1/ε4. They are
not concerned with developing fully distributed algorithms.
The algorithm in [10] requires O(N logN/ε2) iterations,
while [9] takes O(

√
Ndmax logN/ε) iterations. In summary,

among existing solvers [4]-[7], [5], [10], our algorithm
matches the best dependence on ε, is fully distributed, can
achieve arbitrary accuracy, is not stateless, and has in general
worse dependence on N .2

The remainder of the paper is organized as follows.
The next paragraph introduces notation. Section II gives
the system model with neighborhood-based data access and
formulates the distributed coded storage allocation problem
as a FDS. Section III presents the proximal center distributed
algorithm to solve FDS and states our results on its perfor-
mance. Section IV gives the algorithm derivation and proofs.
Section V shows simulation examples. Finally, we conclude
in Section VI.

Throughout, we use the following notation. We denote
by: RN the N -dimensional real space; RN+ the set of N -
dimensional vectors with non-negative entries; ai the i-th
entry of vector a; Aij the (i, j)-th entry of matrix A; 0
and 1 the column vector with, respectively, zero and unit
entries; hi the i-th canonical vector;‖ · ‖ = ‖ · ‖2 the
Euclidean norm of a vector; ∇g(y) the gradient at point
y of a differentiable function g : RN → R; |S| cardinality

1The constraint matrix A is in our case square, N ×N , and it has 0/1
entries, so that the width of the problem (largest entry of A) is one.

2Note that, for general networks, our algorithm’s worst-case complexity
is O(N3/2/ε).

of set S; and IE the indicator of event E . For two vectors
a, b ∈ RN , the inequality a ≤ b is understood component-
wise. For a vector a, [a]+ is a vector with the i-th entry equal
to max{0, ai} (Similarly, for a scalar c, [c]+ = max{0, c}.)
Next, P[0,1](c) is the projection of scalar c on the interval
[0, 1], i.e., P[0,1](c) = c, for c ∈ [0, 1]; P[0,1](c) = 0, for
c < 0; and P[0,1](c) = 1, for c > 1. Finally, for two
positive sequences ηn and χn, ηn = O(χn) means that
lim supn→∞

ηn
χn

<∞.
II. PROBLEM MODEL

We consider coded distributed storage of a unit-size data
object D over a network of N storage nodes. Each storage
node i stores a coded portion of D of size xi, xi ∈ [0, 1]. For
example, nodes can utilize random linear coding, where D is
divided into M disjoint parts; node i stores xi×M random
linear combinations of the parts of D, e.g., [1] (ignoring
the rounding of xi ×M to closest integer). We assume that
storage nodes constitute an arbitrary undirected network G =
(N , E), where N is the set of N storage nodes, and E is the
set of communication links between them. Denote by Ωi the
one-hop closed neighborhood set of node i (including i), and
by di = |Ωi| its degree. Also, let A be the N×N symmetric
adjacency matrix associated with G: Aii = 1, ∀i; and, for
i 6= j, Aij = 1 if {i, j} ∈ E, and Aij = 0, else.

A user accesses node i with probability pi > 0. Upon the
user’s request, node i contacts its neighbors j ∈ Ωi \ {i},
and they transmit their coded storage to i. Hence, after-
wards, node i has available the amount of storage equal to∑
j∈Ωi

xj . If a MDS coding scheme is used, the recovery of
object D is successful if

∑
j∈Ωi

xj ≥ 1. Thus, the probability
of successful recovery equals:

∑N
i=1 pi I{∑j∈Ωi

xj≥1}. We

aim at minimizing the total storage
∑N
i=1 xi such that the

probability of recovery is one:
∑N
i=1 pi I{∑j∈Ωi

xj≥1} = 1.
This translates into FDS, which, letting x := (x1, ..., xN)>,
in compact form, can be written as:

minimize 1>x
subject to Ax ≥ 1

x ≥ 0.
(1)

Clearly, (1) has a non-empty constraint set (e.g., take x = 1),
and a solution exists. Denote by x? a solution to (1).

In this paper, for simplicity, we focus on one-hop neigh-
borhood data access model. Our framework straightforwardly
generalizes to `-hop neighborhood data access, ` > 1, where
a user attempts the recovery based on the `-hop neighborhood
of the queried node. Formally, in (1) we replace A with
the adjacency matrix A` of graph G` = (N , E`), where E`
contains all pairs {i, j} such that there exists a path of length
not greater than ` between them.

We are interested in developing a distributed, iterative
algorithm, where nodes exchange messages with their one-
hop neighbors in the network, so that the allocation x
produced by the algorithm satisfies a (1 + ε) approximation
ratio: 1>x

1>x?
≤ 1 + ε, where ε > 0 is given beforehand.

In this paper, we focus on how to determine the (nearly
optimal) amount of coded storage xi at each node i. Once the

amounts xi’s are determined, in an actual implementation,
nodes perform coding and actually store the coded content;
this is not considered here.3

III. DISTRIBUTED ALGORITHM FOR CODED STORAGE
ALLOCATION

A. The algorithm

We apply the proximal center method [8] to solve the
coded storage allocation problem (1). The algorithm is based
on the dual problem of a regularized version of (1), and
on the Nesterov gradient algorithm. With respect to [8], we
choose the dual step-size differently; the step-size choice
arises from the analysis here and in [11]. Also, we modify the
method to produce feasible primal updates at every iteration.
(See Section IV for the algorithm derivation.)

The algorithm is iterative, and all nodes operate in syn-
chrony. We denote the iterations by k = 0, 1, 2, ... Each
node i maintains over iterations k its current (scalar) solution
estimate x

(k)
i , where x

(k)
i remains feasible to (1), and the

auxiliary (scalar) variables: λ(k)
i , µ(k)

i , x̂(k)
i , and z

(k)
i , and

x
(k)
j , ∀j ∈ Ωi. (Node i also has z(−1)

i = 0.) Let 1 + ε be
the approximation ratio that nodes want to achieve, ε > 0.
Our algorithm has parameters α, δ > 0, set to: δ = ε, and
α = δ

2(dmax+1)2 . (See also Section IV.) The algorithm is
presented in Algorithm 1. We assume that all nodes know
beforehand the quantities dmax and ε.

We can see that, with Algorithm 1, each node i: 1)
performs two broadcast, scalar transmissions to all neighbors,
per k; 2) maintains O(di) scalars over iterations k in its
memory; and 3) performs O(di) floating point operations
per k. Here, di is the degree of node i.

When the generalized, `-neighborhood based data access
is considered, Algorithm 1 generalizes in a simple way:
the structure remains the same, except that the one-hop
neighborhood Ωi is replaced with the `-hop neighborhood
in all steps of the algorithm. Physically, this translates into
requiring that nodes exchange messages with all their `-hop
neighbors during execution.

B. Performance guarantees

We now present our results on the convergence and
convergence rate of Algorithm 1. We establish the following
Theorem, proved in Section IV.

Theorem 1 Consider Algorithm 1 with arbitrary δ > 0 and
α = δ

2(dmax+1)2 . The iterates x(k) are feasible to (1), ∀k =
0, 1, ..., and, for any solution x? of (1), ∀k = 0, 1, ..., there
holds:

1>x(k) − 1>x?

1>x?
≤ 32(dmax + 1)3(1 + 1/δ)

1

(k + 1)2

+ δ/2. (8)

3A simple way to achieve this, assuming each node i knows xi, is as
follows. A data source passes the raw data object D (partitioned into M
portions) to a randomly chosen node i. Then, node i generates xi ×M
random linear combinations, stores them, broadcasts the raw object D to all
its neighbors j ∈ Ωi\{i}, and erases D. Afterwards, each neighbor j stores
xj×M random linear combinations, passes D to all its neighbors unvisited
so far, and erases D. The process continues iteratively and terminates after
all nodes have been visited; e.g., it can stop after N iterations.

Algorithm 1: Distributed algorithm for solving (1)

1: (Initialization) Each node i sets k = 0, λ(0)
i = 0, z(−1)

i = 0,
δ = ε, and α = δ

2(dmax+1)2
.

2: For k = 0, 1, 2, ..., perform steps 3–6:
3: If k ≥ 1, each node i transmits λ(k)

i to all j ∈ Ωi \ {i}, and
receives λ(k)

j , ∀j ∈ Ωi \ {i} (if k = 0 this step is skipped.)
4: Each node i computes:

x̂
(k)
i = P[0,1]

1

δ
(
∑
j∈Ωi

λ
(k)
j − 1)

 (2)

5: Each node i transmits x̂(k)
i to all j ∈ Ωi \ {i}, and receives

x̂
(k)
j , ∀j ∈ Ωi \ {i}.

6: Each node i computes:

z
(k)
i = z

(k−1)
i +

k + 1

2

1−
∑
j∈Ωi

x̂
(k)
j

 (3)

µ
(k)
i =

λ(k)
i + α

1−
∑
j∈Ωi

x̂
(k)
j

+

(4)

λ
(k+1)
i =

k + 1

k + 3
µ

(k)
i +

2

k + 3
α
[
z

(k)
i

]
+

(5)

x
(k)
j =

k

k + 2
x

(k−1)
j +

2

k + 2
x̂

(k)
j , ∀j ∈ Ωi (6)

x
(k)
i = x

(k)
i +

 1−
∑
j∈Ωi

x
(k)
j

+

(7)

An immediate corollary of Theorem 1 is the following result.
It can be easily proved by setting both summands on the right
hand side of (8) to ε/2.

Corollary 2 Algorithm 1 with δ = ε and α = δ
2(dmax+1)2

achieves the (1 + ε)-approximation ratio: 1>x(Kε)−1>x?

1>x?
≤ ε

in Kε = O
(
d3/2

max

ε

)
iterations.

IV. ALGORITHM DERIVATION AND ANALYSIS

A. Algorithm derivation

In this Subsection, we explain how Algorithm 1 is derived.
A derivation for generic cost and prox functions can be
found in [8], but we include the derivation specific to (1)
for completeness. We apply the Nesterov gradient method
in the Lagrangian dual domain. We first add the constraint
x ≤ 1 in (1). Note that this can be done without changing
the solution set. Next, we introduce the l2-regularization, by
adding the term δ

2‖x‖
2 to the cost function. The regular-

ization allows for certain nice properties of the Lagrangian
dual, e.g., Lipschitz continuous gradient od the dual function.
Hence, we consider the regularized problem:

minimize 1>x+ δ
2‖x‖

2

subject to Ax ≥ 1
0 ≤ x ≤ 1.

(9)

By dualizing the constraint 1−Ax ≤ 0, we obtain the dual
function: D : RN+ → RN :

D(λ) = min
0≤x≤1

{
1>x+

δ

2
‖x‖2 + λ> (1−Ax)

}
. (10)

The dual problem is then to maximize D(λ) over λ ∈ RN+ .
We apply the Nesterov gradient method on the dual

function with zero initialization; set λ(0) = 0, and, for
k = 0, 1, ..., perform:

µ(k) =
[
λ(k) + α∇D(λ(k))

]
+

(11)

λ(k+1) =
k + 1

k + 3
µ(k) +

2

k + 3
α

[
k∑
s=0

(s+ 1)

2
∇D(λ(s))

]
+

Next, it can be shown that, for any λ ∈ RN+ , ∇D(λ) =
1−Ax̂(λ), where:

x̂(λ) = arg min0≤x≤1

{
1>x+

δ

2
‖x‖2 + λ> (1−Ax)

}
.

It is easy to show that x̂(λ) = (x̂1(λ), ..., x̂N (λ))> admits a
closed form solution, with:

x̂i(λ) = P[0,1]

1

δ
(
∑
j∈Ωi

λj − 1)

 , ∀i. (12)

Next, note that z(k) = (z
(k)
1 , ..., z

(k)
N)> in (3) is a recursive

implementation of the sum
∑k
s=0

(s+1)
2 ∇D(λ(s)). Also, note

that x̂(k) in (2) equals x̂(λ(k)). Hence, we have derived
the updates (2), (3), (4), and (5), for x̂(k), z(k), µ(k), and
λ(k), respectively. It remains to explain the updates for x(k)

and x(k). Regarding the quantity x(k), we introduce it, as
reference [11] demonstrates that good optimality guarantees
can be obtained for x(k) (while such guarantees may not be
achieved for x̂(k).) Finally, as x(k) may be infeasible for (1)
at certain iterations, we introduce x(k) in (7) that are feasible
by construction (See also the proof of this in Subsection IV-
B.) This completes the derivation.

B. Auxiliary results and proof of Theorem 1

We first derive certain properties of (1) and (9). Recall
that the network maximal degree is dmax and let dmin be the
minimal degree. Further, let x• be the solution to (9), and
λ• be an arbitrary solution to the dual of (9) (maximization
of D(λ) over λ ∈ RN+). Also, recall that x? is an arbitrary
solution to (1). We have the following Lemma.

Lemma 3 There holds:
N

dmax + 1
≤ 1>x? ≤ N

dmin + 1
(13)

‖x•‖ ≤ ‖x?‖ ≤
√
N (14)

‖λ•‖ ≤ 2δ‖x•‖+ 2
√
N (15)

1>x• +
δ

2
‖x•‖2 ≤ (1 + δ/2)1>x?. (16)

Note that (16) means that x• is a (1 + δ/2)-approximate
solution to (1).

Proof: We first prove (13). The lower bound (13)
follows from Lemma 4.1 in [3]. The upper bound follows
by noting that xi = 1/(dmin + 1), ∀i, is feasible to (1). We
now prove (14) and (15). The right inequality in (14) holds
because x?i ≤ 1, ∀i. For the left inequality, note that

1>x• +
δ

2
‖x•‖2 ≤ 1>x? +

δ

2
‖x?‖2, (17)

as x• is the solution to (9). The left inequality in (14) now
follows combining the latter with 1>x? ≤ 1>x•, which
holds as x? is a solution to (1). To prove (15), we use
the Karush-Kuhn-Tucker conditions associated with (9). In
particular, they imply that: (1 + δx• −Aλ•)>y ≥ 0, for all
0 ≤ y ≤ 1. Taking y = hi, i = 1, ..., N , we get: Aλ• ≤
1 + δx•, from which the desired claim follows. Finally, we
prove (16). We have: 1>x?+ δ

2‖x
?‖2 =

∑N
i=1 x

?
i

(
1 + δ

2x
?
i

)
≤
(
1 + δ

2

)
1>x?, where the inequality holds because x?i ∈

[0, 1], ∀i. Combining the latter with (17), the result follows.

Consider the dual function D(λ) in (10). An important
condition for (11) (and hence for Algorithm 1) to work
is that the step size α be chosen in accordance with the
Lipschitz constant of ∇D(λ). From Theorem 3.1 in [8], it
follows that ∇D(λ) is Lipschitz continuous with constant
L = (dmax+1)2

δ , i.e., for all λa, λb ∈ RN+ : ‖∇D(λa) −
∇D(λb)‖ ≤ L ‖λa − λb‖. We now borrow Theorems 2.9
and 2.10 in [11] and adapt them to our setting. Denote by
e

(k)
i :=

[
1−

∑
j∈Ωi

x
(k)
j

]
+

, and e(k) := (e
(k)
1 , ..., e

(k)
N)>.

Lemma 4 ([11], Theorems 2.9 and 2.10) Consider
Algorithm 1 with arbitrary δ > 0 and α = δ

2(dmax+1)2 .
Then, for k = 0, 1, ...:

1>x(k) +
δ

2
‖x(k)‖2 ≤ 1>x• +

δ

2
‖x•‖2 (18)

‖e(k)‖ ≤ 16L‖λ•‖
(k + 1)2

, (19)

where L = (dmax+1)2

δ .

As a side comment, fixing arbitrary k and assuming x(k) 6=
x•, (18) means that x(k) does not satisfy at least one of
the constraints

∑
j∈Ωi

x
(k)
j ≥ 1, i = 1, ..., N (though the

constraint violations all converge to zero as k → ∞). We
are now ready to prove Theorem 1.

Proof: [Proof of Theorem 1] Consider Algorithm 1, and
fix arbitrary k ≥ 0. Note that x(k) = x(k) + e(k), and is by
construction feasible to (1). Indeed, for any i, x(k)

i is clearly
non-negative. Also, as e(k)

j ≥ 0, ∀j, we have:
∑
j∈Ωi

x
(k)
j ≥

e
(k)
i +

∑
j∈Ωi

x
(k)
j =

[
1−

∑
j∈Ωi

x
(k)
j

]
+

+
∑
j∈Ωi

x
(k)
j ≥(

1−
∑
j∈Ωi

x
(k)
j

)
+
∑
j∈Ωi

x
(k)
j = 1. Next, adding 1>e(k)

to both sides of (18), and using δ
2‖x

(k)‖2 ≥ 0: 1>x(k)

≤ 1>x• + 1>e(k) + δ
2‖x
•‖2. Subtracting 1>x? from both

sides of this inequality, using 1>e(k) ≤
√
N‖e(k)‖, and (16):

1>x(k)−1>x? ≤ δ2 (1>x?) +
√
N‖e(k)‖. The result now

follows by applying (19), using (14) and (15), dividing the

resulting inequality by 1>x?, and using the left inequality
in (13).

V. SIMULATION EXAMPLE

This Section illustrates the performance of our distributed
algorithm for coded storage allocation and compares it with
the stateless distributed solver proposed in [6]. This is
an efficient, easy to implement representative of existing
distributed methods [4], [5], [7]. We remark that the method
in [6] is stateless, while ours is, like [4], [5], [7], not stateless.

The simulation setup is as follows. The network of stor-
age nodes is a geometric random graph. Nodes are placed
uniformly at random over unit square, and the node pairs
within distance 0.4 are connected with edges. We consider
two different values of N : N = 100; 400, and two different
values of the target accuracy ε: ε = 1; 0.1. Reference [6]
assumes beforehand the knowledge of N and ε, not dmax.
Hence, for a fair comparison (and some loss of our method),
with our algorithm we replace dmax with N (upper bound
on dmax) and set α = δ

2N2 . Now, with both algorithms,
their parameters depend on N and ε only; we set them such
that the guaranteed achievable accuracy with our method is
1 + ε/2, and with [6] is 1 + 6ε. This is in favor of [6], as
faster convergence is achieved for lower required accuracy.
We then look at how many per-node communications each
algorithm requires to achieve the 1 + 6ε accuracy. With both
methods, we initialize the allocation to x(0)

i = 1, ∀i. With our
method, we achieve this implicitly by initializing λ(0)

i = 0,
∀i.

Theory predicts that, for a fixed N , our method performs
better for sufficiently small ε, while [6] performs better for a
sufficiently large N , for a fixed ε. (Compare complexities
O(N3/2/ε) versus O((logN)4/ε5).) Simulation examples
show that, for moderate-size networks (N = 100; 400)
our method is significantly faster already at coarse required
accuracies (ε = 0.1). This is illustrated in Figure 1, which
plots the relative error (1>x(k) − 1>x?)/(1>x?) versus
elapsed number of per-node scalar communications with the
two methods. (Computational cost per communication with
the two methods is comparable.) For ε = 1, N = 100 (top
left Figure), the algorithms are comparable; with the increase
of N to 400, [6] becomes slightly better (bottom left Figure).
However, for ε = 0.1, our method performs significantly
better for both values of N (See the two right Figures.)

VI. CONCLUSION

We introduced a new, neighborhood-based data access
model for distributed coded storage allocation where storage
nodes are interconnected through a generic network. A user
accesses a randomly chosen storage node, and attempts a
recovery based on the storage available in the neighborhood
set of the accessed node. We formulate the problem of
optimally allocating the coded storage such that the over-
all storage is minimized while probability one recovery is
guaranteed. We show that the problem reduces to solving
the fractional dominating set problem over the storage node
network. Next, we address the problem of designing an
efficient fully distributed algorithm to solve the coded storage

0 500 1000 1500 20000

5

10

15

20

25

communications

re
l.

e
rr

o
r

proposed
stateless

0 0.5 1 1.5 2
x 104

0

5

10

15

20

25

communications

re
l.

e
rr

o
r

proposed
stateless

0 500 1000 1500 20000

20

40

60

80

100

communications

re
l.

e
rr

o
r

proposed
stateless

0 0.5 1 1.5 2
x 104

0

20

40

60

80

100

communications

re
l.

e
rr

o
r

proposed
stateless

Fig. 1. Relative error (1>x(k) − 1>x?)/(1>x?) versus per-node
communications along iterations for the proposed algorithm (dashed line)
and the stateless algorithm in [6] (solid line). Top left: N = 100, ε = 1;
top right: N = 100, ε = 0.1; bottom left: N = 400, ε = 1; bottom right:
N = 400, ε = 0.1.

allocation problem. While existing work did not focus on
Lagrangian dual methods, we apply and modify the dual
proximal center method. We establish complexity of the
method in terms of the desired accuracy and the underlying
network and demonstrate its efficiency by simulations.

REFERENCES

[1] D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage allocation
problems,” in NetCod 2009, Workshop on Network Coding, Theory,
and Applications, Lausanne, Switzerland, June 2009, pp. 86–91.

[2] ——, “Distributed storage allocations,” IEEE Trans. Info. Theory,
vol. 58, no. 7, pp. 4733–4752, July 2012.

[3] F. Kuhn and R. Wattenhofer, “Constant-time distributed dom-
inating set approximation,” Distributed Computing, 2003, DOi:
10.1145/872035.872040.

[4] M. Luby and N. Nisan, “A parallel approximation algorithm for
positive linear programming,” in 25th Annual ACM Symposium on
Theory of Computing, San Diego, CA, May 1993, pp. 448–457.

[5] Y. Bartal, J. Byers, and D. Raz, “Global optimization using local infor-
mation with applications to flow control,” in 38th Annual Symposium
on Foundations of Computer Science, Miami Beach, FL, Oct. 1997,
pp. 303–312.

[6] B. Awerbuch and R. Khandekar, “Stateless distributed gradient descent
for positive linear programs,” SIAM J. Comput., vol. 38, no. 6, pp.
2468–2486, 2009.

[7] N. E. Young, “Sequential and parallel algorithms for mixed packing
and covering,” in 42th Annual Symposium on Foundations of Computer
Science, Oct. 2001, pp. 538–546.

[8] I. Necoara and J. A. Suykens, “Application of a smoothing technique
to decomposition in convex optimization,” IEEE Trans. Autom. Contr.,
vol. 53, no. 11, pp. 2674–2679, Dec. 2008.

[9] D. Bienstock and G. Iyengar, “Faster approximation algorithms
for packing and covering problems,” 2004, available at:
http://www.columbia.edu/ dano/papers/tr-2004-09.pdf.

[10] N. Garg and J. Konemann, “Faster and simpler algorithms for mul-
ticommodity flow and other fractional packing problems,” in 39th
Annual Symposium on Foundations of Computer Science, Palo Alto,
CA, Nov. 1998, pp. 300–309.

[11] I. Necoara and V. Nedelcu, “Rate analysis of inexact dual first-order
methods: Application to dual decomposition,” IEEE Trans. Autom.
Contr., vol. 59, no. 5, pp. 123–1243, May 2014.

[12] E. Cohen and S. Shenker, “Replication strategies in unstructured
peer-to-peer networks,” in SIGCOMM 2002, ACM conference on
applications, technologies, architectures, and protocols for computer
communications, Oct. 2002, pp. 177–190.

