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Abstract

We consider the problem of storing and retrieving informatfrom synthetic DNA media. The mathematical
basis of the problem is the construction and design of sempsgethat may be discriminated based on a collection of
their substrings observed through a noisy channel. We extli@a connection between the sequence reconstruction
problem and the problem of DNA synthesis and sequencing,irmtnaduce the notion of a DNA storage channel.
We analyze the number of sequence equivalence classes tinedetnannel mapping and propose new asymmetric
coding techniques to combat the effects of synthesis angeseing noise. In our analysis, we make use of restricted
de Bruijn graphs and Ehrhart theory for rational polytopes.

1. INTRODUCTION

Reconstructing sequences based on partial informatiomtatbeir subsequences, substrings, or composition
is an important problem arising in channel synchronizasgstems, phylogenomics, genomics, and proteomic
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random-access storage media [8], a new family of recortiruquestions has emerged regarding hovdésign
sequencesvhich can be easily and accurately reconstructed baseden ghbstrings, in the presence of write
and read errors. The write process in DNA-based storagersgsis DNA synthesis, a biochemical process of
creating moderately long DNA strings via the use of columnsnicroarrays[[9]. Synthesis involves sequential
inclusion of bases into a growing string, and is accompabigahemical error correction. The read process in
DNA-based storage is DNA sequencing, where classical degdd replaced by a combination of assembly and
error-control decoding. DNA sequencing operates by angatiany copies of the same string and then fragmenting
them into a collection of substrings (reads) of approxityatee same length, so as to produce a large number of
overlapping “reads”. The larger the number of sequencecaphnd reads, the larger theverageof the sequence
— the average number of times a symbol in the sequence isigedtan a read. Assembly aims to reconstruct the
original sequence by stitching the overlapping fragmeogether; the assembly procedure is NP-hard under most
formulations [10]. Nevertheless, practical approximatedgorithms based on Eulerian paths in de Bruijn graphs
have shown to offer good reconstruction performance unigrt¢overage [11]. Due to the high cost of synthesis,
most current DNA storage systems do not use sequence lengtiseeding several thousands nucleotides (nts).
Synthesis error rates range betw&ehand3% depending on the cost of the technology [9],/[12], and thersrare
predominantly substitution errors. The read lengtlanges anywhere betweef0 to 1500 nts. Substrings of short
length may be sequenced with an error-rate not exceetfifiglong substrings exhibit much higher sequencing
error-rates, often as high d$% [13]. In the former case, the dominant error events are gutish errors [14].
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Furthermore, due to non-uniform fragmentation, some prepbstrings are not available for reading, leaving what
is known as coverage gaps in the original message.

More formally, to store and retrieve information in DNA ontarss with a desired information sequence encoded
into a sequenc& € D = {A,T,G,C}", whereD denotes the nucleotide alphabet. TBBA storage channel
shown in Fig[dl and formally defined in Sectioh 1, models a @ayprocess which takes as its input the sequence
x of lengthn, and synthesizes (writes) it physically into a macromdlestring, denoted b¥. Hence, the sequence
both encodes information and serves as a storage medidly)dese would like to synthesiz& without errors,
which is not possible in practice. Hence, the sequende a distorted version ok in so far as it containggy,
substitution errors, wherg,,, is a suitably chosen integer value. When a user desiresrtevethe information, the
process proceeds to amplify the strikgand then fragments all copies of the string, resulting ingdlyi redundant
mix of reads. This mix may contain multiple copies of the saubstring, sayk; = 71 - - - 7, as well as multiple
copies of another substring, = = - -- Tp1¢—1, With & # 1 identical tox; (i.e., such that; = x;). Since the
concentration of all (not necessarily) distinct substsimgthin the mix is usually assumed to be uniform, one may
normalize the concentration of all subsequences by theertration of the least abundant substring. As a result,
one actually observes substring concentrations reflettiagrequency of the substrings ane copyof x. Hence,
in the DNA storage channel we model the output of the fragatemt block as amnordered subset of substrings
(reads)of the sequencg of length/, with ¢ < n, denoted b)E(x) = {X;,,....X;, }, wherei; <iy <...<iy, and
where f <n — ¢+ 1 is the number of reads. As an example, bethandx,; may be observed and hence included
in the unordered set of substrings, or only one or neithethénlatter two cases, we say that the substring(s) were
not covered during fragmentation.

Each of the observed substrings is allowed to have addit8uizstitution errors, due to the next step of sequencing
or reading of the substrings. Substrings of short length baysequenced with an error-rate not exceediig
long substrings exhibit much higher sequencing erroistadéten as high a$5% [13]. For simplicity, we assume
that the total number of sequencing errors per substringlegy.,. The set of substrings at the output of the
DNA storage channel is denoted by the multigdi) = {Xi,,...,X;, }, and eachx; is a substitution-distorted
version ofx;. The information contained iﬁ(x) may be summarized by its multiplicity vector, also caltagput
profile vectorp(x), which is also our channel output. The profile vector is ofgtbnd’, and each entry in the
vector corresponds to exactly one of thdength strings ovef. The ordering of the/-strings is assumed to be
lexicographical. Furthermore, thi¢éh entry inp(x) equals the number of times theth string in the lexicographical
order was observed ifi(x) = {%,,... ,X;, }. Hence, for each < j < 4%, the jth entry inp(x) is a value between
0 andn — ¢ + 1.

The main contributions of the paper are as follows. The fisttigbution is to introduce the DNA storage
channel andnodel the read process (sequencittyfpugh the use gbrofile vectors A profile vector of a sequence
enumerates all substrings of the sequence, and profile rgefiiom a pseudometric space amenable for coding
theoretic analydis The second contribution of the paper isibfdroduce a new family of codder three classes of
errors arising in the DNA storage channel due to syntheastk 0f coverage and sequencing, and show that they
may be characterized lasymmetric errorstudied in classical coding theory. Our third contributisia code design
technique which makes use of (a) codewords with differenfilgr vectors or profile vectors at sufficiently large
distance from each other; and (b) codewords wigubstrings of high biochemical stability which are alssilient
to errors. For this purpose, we consider a numberamfeword constraintknown to influence the performance of
both the synthesis and sequencing systems, one of whichrmedethebalanced content constraint

1A pseudometric space is a generalization of a metric spagehich one allows the distance between two distinct pointbetero.
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Fig. 1. The DNA Storage Channel. Information is encoded inNABequencex which is synthesized with potential errors. The output
of the synthesis process & During readout, the sequengeis read through the sequencing channel, which fragmentsetjgence and
possibly perturbs the fragments via substitution errotse Butput of the channel is a set of DNA fragments, along witkirtfrequency
count, the multiplicity vector of(x).

For the case when we allow arbitrafysubstrings, the problem of enumerating all valid profiletees was
previously addressed by Jacqettal. [L5] in the context of “Markov types”. However, the method Ji#cquetet
al. addressed Markov types which lead to substrings of leAgt2 only. Furthermore, the Markov type approach
does not extend to the case of enumeration of profiles withispé-substring constraints or profiles at sufficiently
large distance from each other, and hence the proof tecésigsed by the authors of [15] and those pursued in
this work are substantially different.

We cast our more general enumeration and code design questia problem oénumerating integer points in
a rational polytopeand use tools fronthrhart theoryto provide estimates of the sizes of the underlying codes.
We also describe two decoding procedures for sequencegsdfiat combine graph theoretical principles and
sequencing by hybridization methods.

2. PROFILEVECTORS AND THEDNA STORAGE CHANNEL

We start this section by defining the relevant terminologg #re DNA storage channel.

Let [¢] denote the set of integef®, 1,2,...,q — 1} and consider a woret of lengthn over [¢]]. Suppose that
¢ < n. An ¢-gram or asubstringof x of length/ is a subsequence &f with ¢ consecutive indices. Lgi(x;q, /)
denote the 4-gram) profile vectorof length ¢‘, indexed by all words of/¢] ordered lexicographically. We refer
to the j-th word in this lexicographic order by(j). In the profile vector, an entry indexed hygives the number
of occurrences of as an/-gram ofx. For examplep(0000;2,2) = (3,0,0,0), while p(0101;2,2) = (0,2, 1,0).
Observe that for any € [¢]", the sum of entries ip(x; ¢, ¢) equals(n — ¢ + 1).

Before we proceed with a formal definition of the DNA storadeamnel, we introduce the system errors that
characterize such a channel. To this end, suppose that thefiaterest is encoded by a vectorc [¢]" and let
p(x) be the output profile of the DNA channel, as indicated in EigTie profile error vectok = p(x; ¢, ¢) —p(x)
arises due to the following error events.

() Substitution errors due to synthesis Here, certain symbols in the word may be changed as a result of
erroneous synthesis. If one symbol is changed, in the pecfaerage case, ¢-grams will decrease their
counts by one and/-grams will increase their counts by one. Hence, the ersultieag froms,,,, substitutions
equalse = e_ — e, wheree,e_ > 0, and both vectors have weigh,, /.

(iiy Coverage errors Such errors occur when not @grams are observed during fragmentation and subsequently
sequenced. For example, suppose that 00000, and thatp(x) is the channel outpui-gram profile vector.
The coverage loss of ongram results in the count @f00 in p(x) to be two instead of three. Note that
imperfect coverage of /-grams results in an asymmetric ert> 0 of weight¢.



(iii) £-gram substitution errors due to sequencing Here, certain symbols in each fragméntmay be changed
during the sequencing process. Suppose/tgeamx; is altered tox; , X; # X;. Then the count fok; will
decrease by one while the count fey will increase by one. Hence, the error resulting frega, ¢(-gram
substitutions equals = e_ — e, wheree,e_ > 0, and both vectors have weighi.,.

Forx, y € [q]", define the usuaHamming distancéetween a pair of words to be the number of coordinates
where the two words differ. Far, u € Z", we define the.;-distancebetween andv to be the sunﬁf\il |u; — i
and theL;-weightof u to be theL;-distance between andO0.

Definition 2.1. The DNA storage channel with parameténsg, £; t, ssyn, Sseq) IS @ channel which takes as its input
a vectorx € [¢]" and outputs a vectgs(x) € Z? such that there existszae [¢]" and a vectop(x) € Z? with
the following properties:

() the Hamming distance betweanandx is at mostsgyy;

(i) all entries of p(x;q,¢) — p(x) are nonnegative and the;-weight of p(x; ¢, ¢) — p(x) is at mostt;

(i) the L,-distance betweep(x) andp(x) is at MoStsgeq.

Here, properties (i)—(iii) correspond to the error typgs({ii) discussed before the definition.

Example 2.1. For simplicity, letq =2, £/ =2, t = 1, sqyn = 1, sseq = 2, and assume that one would want to store
the sequence& = 0110100. One synthesis error, the maximum allowed under the giveanpater constraints,
would renderx into a sequence&, say x = 1110100. The multiset of/-grams belonging tax is given by
{11,11,10,01, 10,00}, and some of theségrams may be subjected to sequencing errors and possibbbserved
due to coverage errors. Suppose that one copy &f lost due to coverage errors, so tl?i’vak) = {11,11,10,01,00},
and that the second and thifegrams are sequenced incorrectly, resultind in, 01,11,01,00}. Hence, the DNA
storage channel output would be the unorderedf@p = {11,01,11,01,00} which we summarize with the profile
vectorp(x) = (1,2,0,2). Note that none of the entries @f(x) exceeds: — ¢ + 1 = 6, and that the sum of the
entries equals five rather than six due to one coverage error.

Consider further a subsét C [¢]‘. Forx € [¢]", we similarly definep(x; S) to be the vector indexed by,
whose entry indexed by < M@ gives the number of occurrences mfas an/-gram ofx. We are interested in
vectorsx whose/-grams belong t&. Once again, the sum of entries jir{x; S) equalsn — ¢ + 1.

The choice ofS is governed by certain considerations in DNA sequence desigluding

(i) Weight profiles of ¢-grams. For the application at hand, one may want to cho§s® consist of/-grams
with a fixed proportion ofC' and G bases, as this proportion — known as the GC-content of theeseg —
influences the thermostability, folding processes andalveoverage of thé-grams. From the perspective of
sequencing, GC contents of roughi@% are desir
To make this modeling assumption more precise and geneeahdssume setS of the form described below.
Suppose thal < w; < wy < £andl < ¢* < g—1. Let[wy, we| denote the set of integefs;, wi+1,...,ws}.
For eachx € [[q]}e, let the ¢*-weightof x be the number of symbols v that belong tojg — ¢*,¢ — 1], and
denote the weight byt(x; ¢*). Let

S(a, 63" lwr,ws]) 2 {x € [a]" s wh(x;q") € [wn, o] |

2The reason behind th&C' constraint is based on the observation that in Watson-Qratkings,G and C bond with three, whiled and
T bond with two hydrogen bonds. Hence, the bonds betwgeand C' are stronger, and having largeC' content would make the DNA
sequence more stable, but at the same time harder to fraghhé&nknown thatGC rich substrings of DNA suffer most of the coverage
errors during sequencing. On the other hand, a lat@écontent makes the DNA strand less stable and may cause $iootsuin DNA
double helices. Hence, it is desirable to have a balance ob&®s in the strind [16].



be the set of all sequences wiih weights restricted tdw, , wy]. For example,
S(2,4;1,[2,3])) = {0011,0101,0110,0111, 1001, 1010, 1011, 1100, 1101, 1110}.

We remark that if we represemt, T, G, C by 0,1, 2, 3, respectively, and set = 4 and¢* = 2, the choice
wy = wy = £/2 for even? and the choices;; = |¢/2| andw, = wy + 1 for odd ¢ enforce the balance@C
constraint. Also, note tha$(q, /; ¢*, [0,4]) = [¢], for any choice of;*.

(i) Forbidden ¢-grams. Studies have indicated that certain substrings in DNA seges — such aSCG, CGC
— are likely to cause sequencing errors (se€ [17]). Hence,may also choosé so as to avoid certain
¢-grams. Treatment of specialized sets of forbiddeygrams is beyond the scope of this paper and is deferred
to future work.

Therefore, with an appropriate choice ®f we may lower the probability of substitution errors due yathesis,
lack of coverage and sequencing. Furthermore, as we showrigutbsequent derivations, a carefully chosenSset
may improve the error-correcting capability by designimglewords to be at a sufficiently large “distance” from
each other. Next, we formally define the notion of sequenckpanfile distance as well as error-correcting codes
for the corresponding DNA channel.

3. ERROR-CORRECTING CODES FOR THEDNA STORAGE CHANNEL

Fix S C [[q]]é. Let N be an integer which usually denotes the number-gfams in the profile vector, i.e.
N = |S|. Let ZY, denote the set of vectors of lengfi whose entries are nonnegative integers. &of Z%,,
we sometimes writar > 0. For any pair of worda, v € Z,, let A(u,v) 2 S max(u; — v;,0) and define
the asymmetric distancas dasym (u, v) = max (A(u,v),A(v_, u)). A setC is called an(N, d)-asymmetric error
correcting code (AECC) C C Z%, andd = min{dasym(x,y) : X,y € C,x # y}. For anyx € C, lete € Z%,
be such thak — e > 0. We say that arasymmetric errofe occurred if the received word s — e. We have the
following theorem characterizing asymmetric error-cotian codes (see [18, Thm 9.1]).

Theorem 3.1.An (N,d + 1)-AECC corrects any asymmetric error 6f-weight at most.

Next, we let([¢]";S) denote allg-ary words of lengthn whose/-grams belong toS and define the/-gram
distancebetween two words,y € ([¢]";S) as

dgram (%, Y3 S) 2 dasym (P(%; 9), P(y; S)).

Note thatdg.m iS NOt a metric, aslg.m(x,y;S) = 0 does not imply thatx = y. For example, we have
dgram (0010, 1001; [2]%) = 0. Nevertheless(([q]"; S), dgram) forms a pseudometric space. We convert this space
into a metric space via an equivalence relation called métentification. Specifically, we say that 22" y if

and only if dgram (x,y; S) = 0. Then, by defining2(n; S) = ([¢]™ S) dgrw’““, we can makéQ(n;.S), dgram) iNto @
metric space. An elemer¥ in Q(n; S) is an equivalence class, whexex’ € X implies thatp(x;.S) = p(x/;.9).

We specify the choice akpresentativéor X in Sectiori 8 and henceforth refer to element®im; S) by their repre-
sentative words. LgbQ(n; S) denote the set of profile vectors of words@tn; S). Hence |pQ(n; S)| = |Q(n; 5)|.

Let C € Q(n;S). If d = min{dgram(x,y;95) : x,y € C,x # y}, thenC is called an(n,d;S)-¢-gram
reconstruction code (GRC)rhe following proposition demonstrates that égram reconstruction code is able
to correct synthesis and sequencing errors provided thdtgtam distance is sufficiently large. We observe that
synthesis errors have effects that @rémes stronger since the error in some sense propagatagythraultiple
£-grams.



Proposition 3.2. An (n,d; S)-GRC can correcks,, substitution errors due to synthesis,, substitution errors
due to sequencing andcoverage errors provided thdt> 2s.y, ¢ + 2554 + t.

Proof: Consider an(n,d; S)-GRC C and the sep(C) = {p(x;S) : x € C}. By constructionp(C) is an
(N,d)-AECC with N = |S] that corrects all asymmetric errors bf-weight < 254, 0 + 2554 + .
Suppose that, on the contragy,cannot correcks,, substitution errors due to synthesis,, substitution errors
due to sequencing andcoverage errors. Then, there exist two distinct codewards € C' and error vectors
€syn,+5 €syn,— > Cseq,+ Cseq,—»> €t €gyn +s Csyn, > Cheq 1 €heq,—» €1 SUCh thatp(x) = p(x'), that is, such that

. . . / / / /
P(x;S) + €syn,+ — €syn,— + €seq+ — €seq— — € = P(X';5) + €yn+ — €syn— T €seq+ — Cheq— — ©t-

Here, egyn,— — €gyn,+ andel,,  — el,, , are the error vectors due to substitutions during synthiesis and

x/, respectively; each of the vectoe§yn7,,esyn,+,egyn7,,e;ym + hasLi-weight s¢n/; the vectorsegeq,— — €seq,+
and e, _ — €l + Model substitution errors during sequencingxirand x’, respectively; each of the vectors

€5eq,—» €seq, + 1 Creq,—» Cueq,+ NASL1-Weightseq; ande; ande; are the coverage error vectorssoaindx’, respectively,
and bothe;, e; have L;-weightt. Therefore,

p(x;5) — (esyn,f + €seq,— t € + e;yn,+ + e;eq,+) = p(xl§ S) — (e;yn,— + e;eq,— + e:e + €gyn 4+ + €seq,+ )

whereegy, — + €seq— + € + €y, ¢ +eloq  andel,,  + el + e + esyn t + weq+ are nonnegative vectors
of L;-weight at mostsgy, ¢ + 2s.q + t. This contradicts the fact that(z; S) andp(x’; S) belong to a code that
corrects asymmetric errors with;-weight at mossgy,f + 2sgeq + . [ |
Throughout the remainder of the paper, we consider the @nolof enumerating the profile vectorsp®©(n; .S)
and constructingn, d; S)-(-gram reconstruction codes for a general sul§set [¢]‘. Our solutions are characterized
by properties associated with a class of graphs definefl, avhich we introduce in Sectidd 4. In the same section,
we collect enumeration results f@(n; S). Sectiorlb is devoted to the proof of the main enumerationltresing
Ehrhart theory. We further exploit Ehrhart theory and dartgaaph theoretic concepts to construct codes in Section
and summarize numerical results for the special case whiereS(q, ¢; ¢*, [w1,w2]) in Section[¥. Finally, we
describe practical decoding procedures in Sedtion 8.

Remark 1.

(i) For the cases = [q¢], given a wordx € [¢]", Ukkonen made certain observations on the structure céicert
words in the equivalence class »f but was unable to completely characterize all words withanclass|[19].
Here, we focus on computing thmumberof equivalence classes for a general sulsset

(i) For ease of exposition, we abuse notation by identdywords in Q(n;S) with their corresponding profile
vectors inpQ(n; S) and refer to GRCs as being subsetsifr; S) or pQ(n;.S) interchangeably.

(iii) Given (n,d;S)-GRCC and the sep(C) = {p(x;.5) : x € C}, observe that all profile vectors m(C) have
L;-weightn — ¢ + 1. In this case, the asymmetric distance between two profidoveu andv in p(C) is
given by half of theL;-weight of (u — v).

4. RESTRICTEDDE BRUIIJN GRAPHS AND ENUMERATION OF PROFILE VECTORS

We use standard concepts and terminology from graph thémigwing Bollobas [20].

A directed graph (digraph)D is a pair of setqV, E), whereV is the set ofnodesand F is a set of ordered
pairs of V/, calledarcs If e = (v,v') is an arc, we calb theinitial node and,’ the terminalnode. We allow loops
in our digraphs: in other words, we allow= v'. In some instances, we allow multiple arcs between nodes and
we term these digraphs asultigraphs



Theincidence matrixof a digraphD is a matrixB(D) in {—1,0,1}V*¥, where

1 if e is not a loop and is its terminal node

B(D),. =4 —1 if eis not a loop and is its initial node

)

0 otherwise

Observe that when a digragh has loops, its incidence matrR (D) has0-columns indexed by these loops. When
D is connected, it is known that the rank Bf D) equals|V| — 1 (see [20, &I, Thm 9 and EXx. 38]).

A walk of lengthn in a digraph is a sequence of nodgs; - - - v, such thatv;,v; 1) € E for all i € [n]. A walk
is closedif vy = v,, and acycleis a closed walk with distinct nodes, i.e;,# v;, for 0 < i < j < n. We consider a
loop to be a cycle of length one. Given a subSedf the arc set, lej(C) € {0,1} be itsincidence vectorwhere
x(C)e is one ife € C and zero otherwise. In general, for any closed w@lkn D, we haveB(D)x(C) = 0.

A closed walk isEulerianif it includes all arcs inE. A cycle is Hamiltonianif it includes all nodes inl/. A
digraph isstrongly connected for all v,v" € V, there exists a walk froma to +" and vice versa. A necessary and
sufficient condition for a strongly connected graph to hawdoaed Eulerian walk is that the number of incoming
arcs is equal to the number of outgoing arcs for each node.

We are concerned with a special family of digraphs, namélg, de Bruijn graphs_ [21]. Givep and ¢, the
standardde Bruijn graphis defined on the node sgj]‘~'. Forv,v’ € [[q]}’f’l, the ordered paifv, v’) belongs to
the arc set if and only it = v[_, for 2 <i <.

Example 4.1.Let ¢ = 2, ¢ = 4. Then the nodes = 101 and v’ = 010 are connected by the ai®10 which
originates fromv and terminates i’ as the suffix ofv of length? — 2 = 2 equals01, which is also the prefix of
length¢ — 2 of v'.

The notion of restricted de Bruijn graphs was introduced bigkeyet al. [22] for the case of a binary alphabet.
For a fixed subse$ C [[q]]é, we define the correspondingstricted de Bruijn graphdenoted byD(S) as follows.
The nodes ofD(S), denoted by (S), are the(¢ — 1)-grams appearing in the sét The pair(v,v’) belongs to
the arc set if and only if; = v]_, for 2 <i < ¢ andwvivy - --vy_1v;_, € S. Note that the standard de Bruijn graph
is simply D([[q]]e). We refer the readers to Figl 2 for an illustration of a de Braind restricted de Bruijn graph
with sets[2]® and S(2,4;1,[2,3]), respectively.

Example 4.2. Continuing Examplé 411, lef =2, ¢ =4 andS = S(2,4;1, [2, 3]). Since the word 010 belongs to
S, the arc fromv = 101 andv’ = 010 belongs toD(S). We also observe tha®10 is word of lengthn = 4 and
it can be represented by the walk of length- ¢ +1 =1 from v to v’.

In general, a word of length whose/-grams belong t& can be represented by a walk of length- ¢ + 1 in
D(S). For example, the wor@11001101011 of length twelve corresponds to the walk

0110 1100 1001 0011 0110 1101 1010 0101 1011

of length nine. Conversely, given the abowalk of length nine, it is not difficult to obtain the binary word of
length twelve. For each arg in S, we observe that the number of timesis traversed by the walk gives the
number of times ok appears as a-gram of the word. Hence, if we label each arby this number, we obtain a
representation of the profile vector dn(.S). We refer the readers to Figl 2 for an illustration.

In their paper, Ruskewt al. showed thatD(S) is Eulerian whenS = S(2,4;1,[w — 1,w]) for w € [/].
Nevertheless, the results of [22] can be extended for gegekg and more general range of weights. As these
extensions are needed for our subsequent derivation, widprtheir technical proofs in Appendix] A. For purposes



D([2]?) p(0001000; 2, 3)

010
001 110
101

111

000

D(2,4;1,[2,3]) p(011001101011; S(2,4; 1, [2,3]))

0101
—_—
-

1010

100

1100

Fig. 2. Examples of two de Bruijn and restricted de Bruijngm® The upper left corner shows a classical de Bruijn graiph gv= 2 and

£ = 3. Note that the nodes of the graph are all binary tuples ofttefig- 1 = 2, and arcs in the graph connect any pair of nodes for which
the last symbol of the origin node equals the first symbol eftérminal node. The arcs are labeled by the “overlap” sexpief the node
labels. In the right hand corner, the same graph is depictddrespect to a input sequengewhich induces weights on the arcs, indicating
how many times the&-gram corresponding to the arc appearedirFor example, ink = 0001000, the ¢ = 3-gram appears twice, leading
to the label2 for the self-loop around the nod#. This example is extended for the case of a restricted dgrBguaph defined on the
setS(2,4;1,[2,3]) as depicted in the second row. Note that the graph in the l&sfecorner contains only arcs labeled By= 4-tuples

of weight 2 and 3, as required by the definition o (2, 4;1,[2, 3]). The corresponding-gram profile vector for011001101011 on the
aforementioned restricted de Bruijn graph is shown in theetoright corner. As an example, observe that the sequenee)11001101011

has two substring8110, and hence the arc from the node labeledoby to the node labeled by10 has weight2.

of brevity, we write D(S(q, £; ¢*, [wy, w2])) and D([¢]%) as D(q, ¢; ¢*, [wy,ws]) and D(g, £), respectively.

Proposition 4.1. Fix g and/. Let1 < ¢* < ¢—1 and1 < w; < wy < {. ThenD(q, ¢; ¢*, [w1,ws]) is Eulerian. In
addition, D(q, ¢) is Hamiltonian.

Observe that whep* = ¢ — 1, w; = 0, we = ¢, we recover the classical result that the de Bruijn gréj, ¢)
is Eulerian and Hamiltonian.

We provide next the main enumeration results @(n;.S), or equivalently, forpQ(n;S). We first assume that
D(S) is strongly connected. In addition, we consider closed saikD(.S). Observe from Example 4.2 that a walk
from nodev to nodev’ in D(S) is equivalent to a word whoségrams belong ta5' that starts withv and ends
with v’. Therefore, we definelosed wordgo be words that start and end with the saffie 1)-gram to correspond
with closed walks inD(S). We denote the set of closed words@{n; S) by Q(n;S), and the corresponding set
of profile vectors bypQ(n; S).

Suppose thati belongs topQ(n; S). Then the following system of linear equations that we rédeas theflow
conservation equation$old true:

B(D(S))u=0. @)

Let 1 denote the all-ones vector. Since the numbef-gfams in a word of length is n — ¢ + 1, we also have

1Tu=n—-0+1. (2)



Let A(S) be B(D(S)) augmented with a top row”’; let b be a vector of lengthV’(S)| + 1 with a one as its
first entry, and zeros elsewhere. Equatidds (1) ahd (2) may bie rewritten af\(S)u = (n — £+ 1)b.
Consider the following two sets of integer points

F(n;:8) 2 {uez®:A(S)u=(n—-0+1)b, u>0}, (3)
Em;S) 2 {uezlf: A(S)u=(n—r+1)b, u> 0} 4)

The preceding discussion asserts that the profile vectonypfclbsed word must lie iF(n; .S). Conversely, the
next lemma shows that any vector difn; S) is a profile vector of some word i@(n; S).

Lemma 4.2. Suppose thaD(S) is strongly connected. lfi € £(n;.S), then there exists a word € Q(n; S) such
thatp(x; S) = u. That is,&(n; S) € pQ(n; S).

Proof: Construct a multidigraptD,, on the node seV’(.S) such that there are, copies of the ara for all

z € S. Since eachy, is positive andD(.S) is strongly connected), is also strongly connected. Sinaec £(n;5),

u also satisfies the flow conservation equations arpdis consequently Eulerian. Also, d%, hasn — ¢+ 1 arcs,

an Eulerian walk onD,, yields one such desired woud |
Therefore, we have the following relation,

£(n;8) € pQ(n; S) C F(n; ). (5)

We first state our main enumeration result and defer its pro@ectior 5. Specifically, under the assumption
that D(S) is strongly connected, we show that bdf(n; S)| and |F(n;S)| are quasipolynomials im whose
coefficients are periodic im. Following Beck and Robins [23], we definequasipolynomialf as a function in

n of the formep(n)nP~! 4+ cp_1(n)nP~! + --- 4 co(n), wherecp,cp_1,...,co are periodic functions im. If
cp is not identically equal to zerdf is said to be ofdegreeD. The period of f is given by the lowest common
multiple of the periods otp,cp_1,...,c.

In order to state our asymptotic results, we adapt the stdrfland© symbols. We usg (n) = Q'(g(n)) to state
that for a fixed value of, there exists an integer and a positive constamtso thatf(n) > cg(n) for sufficiently
largen with A\|(n — ¢+ 1). In other words,f(n) > cg(n) whenevem is sufficiently large and is congruent fo- 1
modulo \. We write f(n) = ©'(g(n)) if f(n) = O(g(n)) and f(n) = Q'(g(n)).

Theorem 4.3. SupposeD(S) is strongly connected and let be the least common multiple of the lengths of all
cycles inD(S). Then|E(n; S)| = |F(n; )| (nl¥=IVEN) /n particular,[pO(n; S)| = ©' (nlSI=IVIS).

Before we end this section, we look at certain implicatioh3lweorem 4.B. First, we show that the estimate on
IpQ(n; S)| extends topQ(n;S)| when D(S) is strongly connected.

Corollary 4.4. SupposeD(S) is strongly connected. For amyz’ € V(S), consider the set of words i@(n;.5)
that begin withz and end withz’ and letpQ(n; S,z — z’) be the corresponding set of profile vectors. Similarly,
let pQ(n; S,z — *) andpQ(n; S, — z') denote the set of profile vectors of words beginning withnd words
ending withz’, respectively. Then

IpQ(n; S)| = O (|IpQ(n; S,z — 2')|) = O'(IpQ(n; S, x — 2')|) = O'(|pQ(n; S,z — *)|) = O’ (nIS\—IV(SH) )

Proof: Let z,z' € V(S). Since D(S) is strongly connected, we consider the shortest path fzoim z’ in
D(S). Letw = zw’ be the corresponding-ary word andL(z,z’) be the length of the path, or equivalently, the
length of the wordw’. Consideru(z — z') = p(w; S) the profile vector ofw and observe that both the length



10

L(z,z’) and the vectou(z — z') are independent af.
We demonstrate the following inequality:

[£(n — L(2,2); 5)| < [pQ(n; S,z — 2')| < [pQ(n + L(2',2); 5)|. (6)

To demonstrate the first inequality, we construct an injecthap¢, : £(n — L(z,7'); S) — pQ(n; S,z — 2’)
defined by¢,(u) = u+ u(z — z’). Now, sinceu € £(n — p(z,2'); S), we obtain from Lemm&a_4l2 a word of
lengthn — L(z,z') whose profile vector im. Without loss of generality, we let this word beand assume that it
starts and ends with. Thenxw is a word of lengthn whose profile vector is1 + u(z — z’). Thereforep;(u)
lies in pQ(n; S,z — Zz') and ¢, is a well-defined map. Supposeandu’ are vectors i€ (n — L(z,2'); S) such
that ¢, (u) = ¢1(u’). Sinceu = ¢1(u) — u(z — z') = ¢1(v') — u(z — z’) = u/, we concludep, is injective and
hence, the first inequality follows.

Similarly, for the other inequality, we consider anotherpwa : pQ(n; S,z — z’) — pQ(n+ L(Z,z); S) where
¢2(u) = u+u(z — z). As before, letu be the profile vector of a worg of lengthn that starts withz and ends
with z'. Let w = z'w’ be theg-ary word corresponding to the shortest path frento z in D(.S). Concatenating
x with w’ yields xw’, which is a word of lengtm + L(z’,z) and starts and ends with Hence, its profile vector
u+u(z — z) lies in pQ(n + L(7',z); S). As with ¢, the mapg, is a well-defined and can be shown to be
injective.

Combining [6) with Theoreri 4.3 yields the res|tQ(n; S,z,z')| = ©' (nlSI=IVIS).

Next, we demonstrate thapQ(n; S)| = ©’ (nlSI=IV(9)l), and observe that the other asymptotic equalities may
be derived similarly.

Let P £ max{L(z,7') : z,z' € V(S)} be the diameter of the digrapf(S). Then,

PO )= Y |QmiSzZ) < Y |Q(n+LZ,2);5)

z,2'€V/(S) 2,2/ €V(S)
< V(S)P1Qn + P; S)| = O (nSI=VS))

Since|Q(n; S)| > |Q(n; S)| = Q' (nl¥I=IVS)), the corollary follows. |

In the special case wherfe= [[q]]e, Jacqueet al. demonstrated a stronger version of Theokem 4.3 for the apeci
casel = 2 using analytic combinatorics. In addition, using a carefiuhlysis similar to the proof of Corollafy 4.4,
Jacquett al. also provided a tighter bound fpQ(n; [¢]°)| for the case/ = 2. Note thatf(n) ~ g(n) stands for

lim, 00 f(n)/g(n) = 1.

Theorem 4.5(Jacqueet al. [15]). Fix ¢, 4. Let £(n; [q]°), F(n;[q]%), pQ(n; [¢]°) andpQ(n; [¢]°) be defined as
above. Then

1E(n; [q])| ~ [F(n: [q])] ~ [PO(n; [a])| ~ e(q, O)mT 7", (7

where ¢(¢, 0) is a constant. Furthermore, whén= 2, we have|pQ(n: [¢]°)| = (¢* — ¢ + 1)|pQ(n; ¢, 2)|(1 —
O(n—29)).

Next, we extend Theoref 4.3 to provide estimatesQin; S) and Q(n;S) for generalS, where D(S) is not
necessarily strongly connected.

Given D(S5), let Vq,Va, ..., V7 be a partition ofV/(S) such that the induced subgrapl, S;) is a maximal
strongly connected component for al< i < I. Defined; £ |S;| — |Vi|. Then by Theorerh 413, there a@®(n’)
closed words belonging t@(n;.S;) and therefore Q(n;S). SupposeA = max{d; : i € I}. ThenQ(n;S) =
Q'(n?).
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(1) - g
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Fig. 3. Constructing a weighted digraph from the connectdponents ofD(S).

On the other hand, any closed waxdin Q(n;S) corresponds to a closed walk i(S) and a closed walk in
D(S) must belong to some strongly connected compoignts;). In other wordsx must belong toQ(n; S;) for
somel < i < I. Hence, we havéQ(n; S)| = O(n?).

Corollary 4.6. Given D(S5), let V1, Vs, ..., Vi be a partition oft’(S) such that the induced subgraphi, S;) is
strongly connected for all <i < I. DefineA £ max{|S;| — |V;| : 1 <i < I}. Then|Q(n; )| = ©'(n?).

Example 4.3.Let S = {00,01,10,12,23,32,33} with ¢ =4 and/ = 2. ThenD(S) is as shown below.

oS0

We have two strongly connected components, namgly- {0,1} andV2 = {2,3}. So, (V1,5 = {00,01,10})
and (V,, Ss = {23,32,33}) are both strongly connected digraphs withQ(n; S1)| = |pQ(n;S2)| = [n/2] =
©'(n). Hence,|pQ(n; S)| = [pQ(n; S1)| + |pQ(n; So)| = ©'(n), in agreement with Corollary4.6.

On the other hand, let us enumerate the elementg(af S) or pQ(n;S). Letu € pQ(n;S). If ui2 =0, then
u belongs topQ(n; Sy1) or pQ(n;Sz). Otherwiseuio = 1 and we haver = u; + x(12) + ug with u; € pQ(n; +
1;81,%« = 1), us € pQ(na+1; 52,2 — %) andni; +n2+1 =n—1. Now, |pQ(n; S1)| = |pQ(n; S2)| = n+[n/2]
and|pQ(n; Sy, * — 1)| = [pQ(n; S2,2 — *)| =n — 1 for n > 2. Hence,

n—3
A o E _ 9 — O/ (n3
IpQ(n; S)| = 2 <n+ M) +2(n—2) +n21n1(n 2 —ny) = O'(nd).
Therefore, wherD(S) is not strongly connected, it is not necessarily true tp&(n; S)| and|pQ(n; S)| differ
only by a constant factor. Furthermore, we can extend théadstin this example to obtajpQ(n;.S)| for general
digraphs.

To determingpQ(n; S)|, we construct an auxiliary weighted digraph with nodesvs, . . ., vr, Vsource @NdUgipk-
If there exists an arc from the componénitto component; for 1 < 4,5 < I, we add an arc fromy; to v;.
Further, we add an arc fromyyu.cc 10 v; and fromw; to vgy for all 1 < ¢ < I. The arcs leavin@source have zero
weight. For alll <1 < I, the arcs leaving; have weight; = |S;| — |V;] if their terminal node i9,, and weight
d; + 1 otherwise. (see Fid.l 3 for the transformation).

Let D’ be the resulting digraph and observe tlitis acyclic. Hence, we can find the longest weighted path
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from vgource 10 vgink IN linear time (see Ahuj&t al. [24, Ch. 4]). Furthermore, suppose thiatis the weight of the
longest path. Then the next corollary states {pa@(n; S)| = ©'(n?).

Corollary 4.7. Given D(S5), let V1, Vs, ..., Vi be a partition oft’(S) such that the induced subgraphi, S;) is
strongly connected for all < i < I. ConstructD’ as above (see Figl 3) and &t be the weight of the longest
weighted path fromy,uree t0 vgink. Then|pQ(n; S)| = ©'(n?).

Proof: Let K C {1,...,I} be the set of indices such thatS; = (). In other words, the induced subgraph
(Vik, S) is an isolated node. Defing to be0 if j € K andd; otherwise.
For eachu € pQ(n; S), we have a set of indice§, io,...,i:} C {1,2,...,I}, a set of vectorsiy, ug, ..., uy,
e, e, ..., e 1, and integersiy, no, ..., n; such that the following hold:
() u=uw+er+urter+- - +e_1+u;
(i) for 1 < j <t -1, e is the incidence vector of some afe;,z’,,) in D(S) such thatz; € V;, and
Z;'Jrl € ‘/%jJrl;
(iiiy for 1< j <t, the vectoru; belongs topQ(n;; S;,);
(v) (t—1)+> 5 nj=n—C(+1;
(V) VsourceVi, Vi, * * * Vi, Usink IS @ path inD’.
Note that Condition (iii) implies that; = 0 wheneveri; € K. Note that ifu, u’ are vectors inpQ(n;.S) having
the same set of indice§;,...,i;} and the same vectors,, ..., u;, thenu = u’. Thus, we may obtain an upper
bound on|pQ(n; s)| by bounding the number of ways to produce such index sets acibns.
For a fixed subse{iy,io,...,it} C [I], letk = |{i1,...,5} N K|. LetT be the set of tupleén,,...,n;) such
that Z;Zl n; = (n—£+1) — (t — 1) and such that; = 0 wheneveri; € K. If k < t, then|T| < n'~17%, so we
have

> I Ipons;ss)

(n1,...,ny)€T j=1

=|T| O(n5i1+"'+5it) — O(nt—l—k)o(néh+~~~+6it+k) _ 0(n5n+"'+5n+(t—1)) _ O(nA).

Here, the first inequality follows from Corollafy 4.4, whifee last inequality follows from the fact th&t—1) +
Z;Zl d;, measures the weight @f,.ccvi, vi, - - - v;, vsink @nd this value is upper bounded By On the other hand,
if k=t,thatis, if{i;,...,5} C K, then|T| =0if t—1 <n—¢+1and|T| = 1 otherwise. Hence in this case we
also haved_(, . er H;‘.le IpQ(n;; S;,)| = O(n?). Since the number of subsets @f, 2,... I} is independent
of n, and since each subset corresponds to at igst*) vectors inpQ(n; S), we havelpQ(n; S)| = O(n?).

Conversely, SUPPOS&ourceVi, Vi, * * * Vs, Usink 1S @ path inD’ of maximum weightA. With T' defined as before
relative to{iy,...,i;}, we then have

t
pQm;S) > > Qs =0 Y mitnytmg

(n1,...,ne)€T j=1 (n1,...,ne)ET

for some positive constart;, by Corollary[4.4. Letk = |K N {i1,...,i:}| as before, and 11" C T be the set
defined by
T = {(nl,...,nt) €T :n; > % wheneveri; ¢ K}

Observe that there is a positive consté@htsuch that forn sufficiently large,|T’| > Con*~D~*. Now we have

Szt S et

(s me ) ETY (n1ymy ) ETY
> (Qt)_tCQTléh s, H (1) anA.
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5. EHRHART THEORY AND PROOF OFTHEOREM[4.3

We assumeD(S) to be strongly connected and provide a detailed proof of Téma@4d.3. For this purpose,
in the next subsection, we introduce some fundamentalteefn@m Ehrhart theory. Ehrhart theory is a natural
framework for enumerating profile vectors and one may siynphe techniques of [15] significantly and obtain
similar results for a more general family of digraphs. Farthore, Ehrhart theory also allows us to extend the
enumeration procedure to profiles at a prescribed distance.

A. Ehrhart Theory

As suggested by [3) and](4), in order to enumerate codewdrihdesest, we need to enumerate certain sets of
integer points or lattice points in polytopes. The first gah&reatment of the theory of enumerating lattice points
in polytopes was described by Ehrhartl[25], and later dgeddoy Stanley from a commutative-algebraic point of
view (seel[26, Ch. 4]). Here, we follow the combinatorialatraent of Beck and Robins [23]. Recall that> 0
means that all entries im are nonnegative. We extend the notation so that u denotesv — u > 0.

Consider the seP of points given by

P2E{ucR": Au<b},

for some integer matrixA and some integer vectds. We then call this seP a rational polytope A rational
polytope isintegerif all of its vertices (see Definitioh 5.1) have integer cdoedes. Thdattice point enumerator
Lp(t) of P is given by

Lp(t) 2 |Z™NtP|, for all postive integers.

Ehrhart [25] introduced the lattice point enumerator fdroral polytopes and showed thap (¢) is a quasipoly-
nomial of degreeD, where D is given by the dimension of the polytoe Here, we define theimensionof a
polytope to be the dimension of the affine space spanned Imyspimi P. A formal statement of Ehrhart's theorem
is provided below.

Theorem 5.1 (Ehrhart's theorem for polytopes [23, Thm 3.8 and 3.23{)P is a rational convex polytope of
dimensionD, then Lp(t) is a quasipolynomial of degreP. Its period divides the least common multiple of the
denominators of the coordinates of the verticesPofFurthermore, ifP is integer, thenL»(¢) is a polynomial of
degreeD.

Motivated by [(4), we consider theelative interior of P. For the case wher® is convex, the relative interior,
or interior, is given by

P° 2 {uecP: forall u € P, there exists am > 0 such thatu + ¢(u — u’) € P}.
For a positive integet, we consider the quantity
Lpo(t) = |Z" NtP°|.
Ehrhart conjectured the following relation betwekp(t) and Lp-(t), proved by Macdonald [27].

Theorem 5.2 (Ehrhart-Macdonald reciprocity [23, Thm 4.1Jf P is a rational convex polytope of dimensidn,
then the evaluation of.»(t) at negative integers satisfies

Lp(=t) = (=1)PLp: (1).
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B. Proof of Theorerh 4.3
Recall the definitions ofA (S) andb in (3), and consider the polytope

P(S) 2 {uecRP:A(S)u=b,u>0}, (8)

Using lattice point enumerators, we may Writg(n; S)| = Lp(s)(n — £ + 1). Therefore, in view of Ehrhart's
theorem, we need to determine the dimension of the poly@e) and characterize the interior and the vertices
of this polytope.

Lemma 5.3. Suppose thaD(S) is strongly connected. Then the dimension/(S) is |S| — |V (5)|.

Proof: We first establish that the rank &(.S) is |V (S)|. SinceD(S) is connected, the rank @(D(S5)) is
|V (S)| — 1. We next show thal” does not belong to the row spaceB{D(S)). As D(S) is strongly connected,
D(S) contains a cycle, sag'. SinceB(D(S))x(C) = 0 but 1x(C) = |C| # 0, 1 does not belong to the row
space ofB(D(S)), so augmenting the matrix with the all-one row increasesait& by one. Therefore, the nullity
of A(S) is |S| —|V(S)|. Hence, the dimension d?(S) is at most|S| — [V (5)].

Next, we show that there existsta> 0 such thatA (S)u = b. Since the nullity ofB(D(S)) is positive, there
exists au’ such thatA (S)u’ = b. SinceD(S) is strongly connected, there exists a closed walkXq¥) that visits
all arcs at least once. In other words, there exists a vector0 such thatA(S)v = pb for x> 0. Choosey’
sufficiently large so thatt' 4+ /v > 0 and setu = (u’ + ¢'v)/(1 + ¢/1). One can easily verify thaA (S)u = b.

To complete the proof, we exhibit a set |8f] — |V (S)| + 1 affinely independent points iR(S). Letuy, ug, .. .,
us—|v(s) be linearly independent vectors that span the null spac&(sf). Sinceu has strictly positive entries,
we can finde small enough so thai + eu; belongs toP(S) for all i € [|S| — |V (5)]]. Therefore{u, u+ eu;,u+
€uy,...,u+ eug_|y(g) ) is the desired set of5| — |V(S)| + 1 affinely independent points i®(S). [

Lemma 5.4. SupposeD(S) is strongly connected. TheR°(S) = {u € RISl : A(S)u = b,u > 0}. Therefore,
‘5(%, S)’ = Lpo(s)(n -0+ 1).

Proof: Let u > 0 be such thatA(S)u = b. For anyu’ € P(S), we haveA(S)u’ = b and henceA(S)(u —

u’) = 0. Sinceu has strictly positive entries, we choosesmall enough so that + ¢(u — u’) > 0. Therefore,
u + ¢(u — u’) belongs toP(S) andu belongs to the interior oP(S).

Conversely, letu € P(S), with u, = 0 for somez € S. Since D(S) is strongly connected, from the proof of
Lemmal5.B, there exists@ € P(S) with u’ > 0. Hence, for alle > 0, the z-coordinate ofu+ ¢(u —u’) is given
by —eu,, which is always negative. In other words,does not belong t@°(S). [ |

Therefore, using Ehrhart’s theorem and Ehrhart-Macdorediprocity along with Lemmds 8.3 ahd 5.4, we arrive
at the fact that€(n; S)| and|F(n;S)| are quasipolynomials in whose coefficients are periodic in

In order to determine the period of the quasipolynomials,ciaracterize the vertex set 8f(.5).

Definition 5.1. A point v in a polytope is avertexif v cannot be expressed as a convex combination of the other
points.

Lemma 5.5. The vertex set ofP(.S) is given by{x(C)/|C|: C'is a cycle inD(S)}.

Proof: First, observe thak(C)/|C| belongs toP(S) for any cycleC in D(S).
Let v € P(S) and suppose is a vertex. SincéP(SS) is rational, its vertexw has rational coordinates (see|[23,
Section 2.8, Appendix A]) Choose > 0 so thatuv has integer entries. Construct the multigraphon V (S) by
adding v, copies of the ar@ for all z € S. Sincev € P(S), B(S)uv = 0 and hence, each of the connected
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components ofD’ are Eulerian. Therefore, the arc setiof can be decomposed into disjoint cycles. Sinces a
vertex, there can only be one cycle and hence; x(C)/|C| for some cycleC.

Conversely, we show that for any cydié¢in D(S), x(C)/|C| cannot be expressed as a convex combination of
other points inP(S). Suppose otherwise. Then there exist cydlgsCs,. .., C; distinct fromC and nonnegative
scalarsag, ag, . .., aq such thaty(C) = Z§:1 a;x(C;). For eachy, lete; be an arc that belongs G; but notC.
Then

0=x(C)e, = Y ix(Ci)e, = a;x(Cy)e; = .
1<i<t
Hence,a; = 0 for all j. Therefore,x(C) = 0, a contradiction. u

Let As = lem{|C| : C is a cycle inD(S)}, wherelecm denotes the lowest common multiple. Then the period
of the quasipolynomialp(g)(n — £ + 1) divides Ag by Ehrhart's theorem.

Let us dilate the polytop® () by A\s and consider the polytopesP(S) and L, p(s)(t). SincesP is integer,
both L) p(s)(t) and Ly p-(s)(t) are polynomials of degrels| — [V'(S)|. Hence,

1Q(n; S)| > Ly pe(s)(t) = Q (t‘5|“‘/(5)‘) , whenevem — £ +1 = \gt or \g|(n —{+1),

and therefore|Q(n; S)| = ©’ (nlSI=IV(9I). This completes the proof of Theordm14.3.

In the special case wher®(S) contains a loop, we can show further that the leading coefftsi of the
quasipolynomialsé (n; [¢]°)| and | F(n;[¢]%)| are the same and constant. This result is a direct consegjuEnc
Ehrhart-Macdonald reciprocity and the fact th&tn; [¢]*)| is monotonically increasing. We demonstrate the latter
claim in AppendiXB.

Note that whenS = [[qﬂz, Corollary[5.6 yields[{7), a result of Jacquedtal. [15].

Corollary 5.6. SupposeD(S) is strongly connected. ID(S) contains a loop, then

1E(n; S)| ~ |Q(n; S)| ~ | F(n; S)| ~ e(S)n!S =V L omSI=IVES)I=1) " for some constant(S).  (9)

6. CONSTRUCTIVELOWER BOUNDS

Fix S C [¢]* and recall thapQ(n; S) denotes the set of all-gram profile vectors of words iQ(n; S). For
ease of exposition, we henceforth identify wordsdn; .S) with their corresponding profile vectors Q(n; S).
In Section[8, we provide an efficient method to map a profiletarem pQ(n; S) back to ag-ary codeword in
Q(n; S), Therefore, in this section, we construct GRCs as sets dfl@neectorspQ(n;S) which we may map
back to corresponding-ary codewords irQ(n; S).

Suppose thaf is an (N, d)-AECC. We construct GRCs froi@ via the following methods:

(i) When N = |S|, we intersecC with pQ(n;S) to obtain an/-gram reconstruction code. In other words, we
pick out the codewords i€ that are also profile vectors. SpecificallyN pQ(n;.S) is an (n,d; S)-GRC.
However, the sizéC N pQ(n; S)| is usually smaller thafC| and so, we provide estimates 0N pQ(n;.S)|
for a classical family of AECCs in Sectidn 6-A.

(i) When N < |S|, we extend each codeword thto a profile vector of lengthS| in pQ(n;q,¢). In contrast
to the previous construction, we may in principle obtain(and; ¢, ¢)-GRC with the same cardinality &%
However, one may not always be able to extend an arbitraryl i@ profile vector. Sectidn 6B describes
one method of mapping words ihn]}N to pQ(n;q,{) that preserves the code size for a suitable choice of
the parameters and N. In addition, this mapping also preserves the distance efotiginal codeC.
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A. Intersection withpQ(n; S)

In this section, we assum& = |S| and we estimatéC N pQ(n;S)| whenC belongs to a classical family of
AECCs proposed by Varshamadv [28]. Rixand letp be a prime such thai > d andp > N. ChooseN distinct

nonzero elements;, as,...,ay in Z/pZ and consider the matﬁx
al a2 oo aN
2 2 2
H é al a2 e aN
off ag Oéﬁlv

Pick any vectorB € (Z/pZ)¢ and define the code
C(H,B) £ {u: Hu= B mod p}. (10)

Then,C(H, B) is an(N, d+1)-AECC [28]. HenceC(H, 8)NpQ(n; S) is an(n, d+1; S)-GRC for all3 € (Z/pZ)“.
Therefore, by the pigeonhole principle, there exisi8 such thatlC(H, 3) N pQ(n; S)| is at leastpQ(n; S)|/p®.
However, the choice off that guarantees this lower bound is not known.

In the rest of this section, we fix a certain choice Hf and 3 and provide lower bounds on the size of
C(H,B) npQ(n;S) as a function ofv. As before, instead of looking tQ(n; S) directly, we consider the set of
closed wordsQ(n; S) and the corresponding set of profile vectpr@(n; S).

Let 3 = 0 and choosd&l andp based on the restricted de Bruijn digraptS). For an arbitrary matrixM, let
Nulls oM denote the set of vectors in the null spacbtthat have positive entries. We assumégs) to be strongly
connected so tha¥ull.¢B(D(S)) is nonempty. Hence, we choo¥k andp such thatC(H, 0) N Null.¢B(D(S))
is honempty.

Define the(|V(S)| + 1 + d) x (|S| + d)-matrix

AGELS) 2 < AS)| o )

H —pId
where A(S) is as described in Sectign 4. Lbtbe a vector of lengthV'(S)| + 1 + d that hasl as the first entry
and zeros elsewhere, and define the polytope

Perc(H,S) 2 {u e R+ A(H, S)u =b,u > 0} (11)

Since&(n; S) C pQ(n;S) C pQ(n;S), |C(H,0) N E(n;S)| is a lower bound folC(H,0) N pQ(n;S)|. The
following proposition demonstrates thg(H, 0) N E(n; S)| is given by the number of lattice points in the interior
of a dilation of Pgrc(H, S).

Proposition 6.1. Let C(H,0) andPgrc(H, S) be defined as above. D(S) is strongly connected an@(H, 0) N
NulloB(D(S)) is nonempty, therC(H, 0) N E(n; S)| = |Z¥ TN (n — £+ 1)Perc(H, 5)|.

Proof: Similar to Lemmd 514, we have th@,o(H, S) = {u € RI¥+: A(H, S)u = b,u > 0}, and we
defer the proof of this claim to Appendix C.
To prove the desired sets have the same cardinality, we rcohst bijection between the two maps. het- 0
be such thatA (H, S)u = (n — £+ 1)b. Letu = (ug, 3’), where the vecton, is the vector restricted to the first
3The value ofp may be determined in time polynomial iNf since there always exists a prime number betw&eand2N by Bertrand’s

postulate[[2D] and the running time of a primality test isymamial inlog N [30]. The constructiof can be completed in time polynomial
in N, since multiplication in the field, has time complexity polynomial itog N and there are/N entries to fill in H.
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N coordinates and}’ is the vectoru restricted to the last coordinates. The® (S)uy = (n — £ + 1)bg, where
by is a vector of lengthV (S)| + 1 with one in its first coordinate and zeros elsewhere. Henges £(n;.S).
On the other handHuy = p3’ and so,Huy = 0 mod p, implying thatuy € C(H, 0). Therefore,¢(u) = uy is
well-defined map from{u € ZN+¢: A(H, S)u = (n — £+ 1)b andu > 0} to C(H,0) N &(n; S).

Next, consideruy € C(H,0) N E(n;S). Then A(S)ug = (n — £ + 1)bg. Also, Hup = 0 mod p and hence,
~Hu, has integer coordinates. Thef(ug) = (uo, ;Huo) is a well-defined map fron€(H,0) N £(n; S) to
{fueZN*?: A(H,S)u = (n— £+ 1)b andu > 0}.

Finally, to demonstrate that both and are bijections, we verify thap o ¢ and ¢ o ¢ are both identify maps
on{uecz¥*: A(H,S)u = (n—¢+1)b andu > 0} andC(H, 0) N &(n; S), respectively. Indeed,

o é((wo, B)) = ¥(uo) = (uo, })Huw — (u, B),

¢ o (ug) = Y((uo, %Huo)) = uo.

Hence, the two sets have the same cardinality. [ |
As before, we compute the dimensionfrc(H,.S) and characterize its vertex set. Since the proofs are simila
to the ones in Sectidn 5, the reader is referred to AppentigrG fdetailed analysis.

Lemma 6.2. Let C(H, 0) andPcrc(H, S) be defined as above. Suppose further thas) is strongly connected
andC(H,0) N NullsoB(D(S)) is nonempty. The dimension #grc(H, S) is |S| — [V(S)|, while its vertex set
is given by

{(M Hx(C)

| " plC]
Let \grc = lem{|C| : C'is a cycle inD(S)}U{p}. Then Lemma®6l2, Ehrhart's theorem and Ehrhart-Macdosald’

reciprocity imply thatLp. _(s1,5)(t) is a quasipolynomial of degrgé| — [V (S)| whose period dividesgrc- AS

in Section[b, we dilate the polytopBcrc(H, S) by Aqrce to obtain an integer polytope and assume that the

polynomial Ly, .psne(H,5) (t) has leading coefficient. Hence, wheneven — £ + 1 = Agrct, that is, whenever

Acrel(n — £+ 1),

> : C'is a cycle inD(S)} .

IC(H,0) N E(n; S)| = L/\GR,chRC(H,S)(t) = tISI=IVES)I 4 O(t\5|*\V(S)|*1)

= ¢(n/Agre) VOl 4 ORIV,
We denotec/ A5 by ¢(H, 5) and summarize the results in the following theorem.

Theorem 6.3.Fix S C [¢]° andd. ChooseH and p so thatC(H,0) is an (|S|,d + 1)-AECC andC(H, 0) N
NullsoB(D(S)) is nonempty. Suppose thatrc = lem{{|C| : C is a cycle inD(S)} U {p}}. Then there exists
a constant(H, S) such that whenevexgrc|(n — ¢ + 1),

IC(H,0) N pQ(n; S)| > ¢(H, S)n!S=IVI L o@pS=IVES)I=h),
Hence, it follows from Theorein 8.3, we hagén, d; S) = Q' (n!¥I=1V(5)l) whend is constant. Sinc€'(n, d; S) <

10(n; 8)| = O(nISI=VS)I) we haveC (n,d; S) = ©'(nlSI=IVS),

B. Systematic Encoding of Profile Vectors

In this subsection, we look at efficient one-to-one mappings [m]" to pQ(n;S). As with usual constrained
coding problems, we are interested in maximizing the nurobenessages, i.e. the sizewf", so that the number
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of messages is close tpQ(n; S)| = ©'(nlSI=1V(9)]), We achieve this goal by exhibiting a systematic encoder wit
m = 0(n) and N = |S| — |V(5)| — 1. More formally, we prove the following theorem.
Theorem 6.4 (Systematic Encoderfix n andS C [[Q]]é. Pick anym so that
n—~0+1
S e '
("M@= +ISI - V(9)] -1

(12)

Suppose further thab(.S) is Hamiltonian and contains a loop. Then, there exists d setS of coordinates of size
|S| — |V (S)| — 1 with the following property: for anw < [m]?, there exists afi-gram profile vecton € pQ(n; S)
such thatu|; = v. Furthermoreu can be found in time(|V (5)]).

In other words, given any wore of length N = |I| = |S| — |V(S)| — 1, one can always extend it to obtain a
profile vectoru € pQ(n;S) of length|S|. As pointed out earlier, this theorem provides a simple wiagoastructing
¢-gram codes from AECCs and we sketch the construction in fdilatvs.

Let ¢sys(v) denote the profile vector resulting from Theorlenm 6.4 givgrutrv. Consider ann-ary (IV, d)-AECC
C with N = [S]| — |V(S)| — 1 andm satisfying [I2). Letpsys(C) £ {¢psys(V) : v € C}. Thengyys(C) € pQ(n; S).
Furthermore gs,s(C) has asymmetric distance at le@ssince restricting the codé,,s(C) on the coordinates it
yields C. Hence, we have the following corollary.

Corollary 6.5. Fix n andS C [¢]* and pickm satisfying [12). Suppos®(S) is Hamiltonian and contains a loop.
If Cis anm-ary (|S| — |V (S)| — 1,d)-AECC, thengsys(C) = {¢sys(v) : v € C} is a(n, d; S)-GRC.

For compactness, we wrifé, A andB, instead ofl/(.S), A(S) andB(D(S)). To prove Theorern 614, consider
the restricted de Bruijn digrapP(.S). By the assumptions of the theorem, denote the sgf pércs in a Hamiltonian
cycle asH and the arc corresponding to a loop d&y. We set] to be S\ (H U {ag}).

We reorder the coordinates so that the arcdHirare ordered first, followed by the agg and then the arcs
in I. So, givenv = (v1,va,...,v) € [[m]]'”, the proof of Theorerh 614 essentially reduces to findinggieite
T1,T2,...,T)y|,y such that

A (.%'1,1‘2, TV Y, V1,02, ,1)|[|)T = (n — 0+ 1)b (13)

Considering the first row oA separately from the remaining rows, we see that (13) is edpnv to the following
system of equations:

\4 |1]
Z:ﬂi%—y:(n—f%—l)—Zvi, (14)
i=1 i=1
I T 0 0
v |v| 0
0=B y =B 0 +B| y | +B 0 ) (15)
Uy 0 0 Uy

U,|[| 0 0 U|[|
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Since the firs§V/| columns of B correspond to the arcs i, we have

ro — I

T €r3 — T2
B(xl,...,x‘v‘,0,0,...,O) ==

561—£C|V‘

Since the(|V| + 1)-th column ofB is a 0-column, we haveB (0, ...,0,y,0,... ,O)T = 0 for any y.

For the final summand, 1B (0,...,0,0,v1,... ,vm)T = (r1,72,...,my)’. We can then rewritd (15) as
T — Tjr1 = Ti, forl1 <i< ‘V’ —1. (16)
Since1’B = 07, we havel” (ry,ry,..., 7y )" = SVl 7 = 0. Furthermore, we assume without loss of generality

that Z{Zl r; > 0, for all 1 < j < |V|. This can be achieved by cyclically relabelling the noded ae prove this
in Appendix[D.

It suffices to show that an integer solution forl(16) ahd (Ddyts, satisfyingy > 1 andx; > 1 for ¢ € [|V]].
Consider the following choices af; andy:

i—1
z; =1+ er,
j=1
|1 VI

yz(n—f%—l)—Zvi—in.
i=1

=1
Clearly, z; andy satisfy [14) and{16). Since eachis an integer, all; are integers, s@; andy are also integers.
Furthermore, eacl; > 1, since we chose the labeling so t@t;;ll r; > 0. We still must show thay > 1.
First, we observe that; < (¢ — 1)m for all i, since each node has at mggt— 1) incoming arcs inl and by
design, each; is strictly less tharmm. Thus, eache; satisfies

x; <1+ (G—1)(¢g—1)m.

Summing over alli, we have

Vi ]

stzw—mmJW:m—m%fv

Since also each; < m, we have

Vv
vz o= -min+ -0y,
By the choice ofm, it follows thaty > 0. This completes the proof of Theorém16.4.

Example 6.1.Let S = [[2]]3 and letn = 20. Then Theorerh 614 states that there is a systematic endoatembps
words from[2]? into pQ(20;2,3). Following the convention in Fid.]2 and Examplel4.2, we listegght encoded
profile vectors (as edge labellings dD([[Q]}?’)) with their systematic componentsighlighted in boldface.
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10

13 11
W00 w00 M=) ()00
- - - -
0 0 0 0
1 1 1 1 1 2 1 2
0 0 1 1
(= W=y 5wy @50
1 1 2 2
1 0 1
10 12 11
=00 ) () ()0
- - - -
1 1 1 1
1 1 2 1 1 1 1 1
0 0 1 1
—_— —_— —_— —_—
W=y =Wy 5w, =50
0 1 0 1

For instance, the codewof)0 < [[2]]3 is mapped to the profile vectoi4, 1,0,1,1,0,1,0). Via the EULER map
described in Sectionl 8, this profile vector is mapped@o- - 01100 € Q(20,2, 3).

Observe that we can systematically encd@® into pQ(n;2,3) even whenn is smaller than 20. In fact, in
this example, we can systematically encddg’® into pQ(10;2,3). In general, we can can systematically encode
[m]? into pQ(4m + 2;2,3). In this case, the size of the message set is approximatgly while the number of
all possible closed profile vectors is approximatefy 288 [15].

In Section[¥ and Example_7.1, we observe that the construgfieen in Sectiof 6-A yields a larger code
size. Nevertheless, the systematic encoder is conceptsiaiple and furthermore, the systematic property of the
construction in Sectioh 61B can be exploited to integrat& nmodulation codes into our coding schemes for DNA
storage, useful for automatic decoding Wigbridization We describe this procedure in detail in Secfién 8.

11

7. NUMERICAL COMPUTATIONS FORS = S(q, ¢; ¢*, [w1,w2))

In what follows, we summarize numerical results for codeesipertaining to the special case wh&n=
S(q, b %, [w1,wa)).

By Proposition 41D (q, ¢; ¢*, [w1, ws]) is Eulerian and therefore strongly connected. In other wioftieoren 413
applies and we havy@(n; S)| = ©' (nlSI=1V(9)I), where|S| is given by|S(q, £; ¢*, [w1, wa])| = 3“2 () (¢*)" (a—

¢*)"=*, while [V(S)| is given by|S(q, £ — 1;¢, [w1 — Lws])| = 02,y (1) (a7)"(q — ¢*) .

Let D = |S| — |V(S)|. We determine next the coefficient af’ in |Q(n;S)|. Whenw, = ¢, the digraph
D(q,4;q*, [wy,£]) contains the loop that corresponds to tiigram 17. Hence, by Corollary 516, the desired
coefficient is constant and we denote it &y, ¢; ¢*, [w1,¢]). WhenS = [[q]}z, we denote this coefficient by(q, ¢)
and remark that this value corresponds to the constant deffin€heoreni 4)5.

Whenws < ¢, the digraphD(q, ¢; ¢*, [w1,ws]) does not contain any loops. Recall from Secfibn 5 the dedimsti
of P(S), As and Lpsy(n — £+ 1). In particular, recall that the lattice point enumeralossy(n — £+ 1) is a
quasipolynomial of degre® whose period divides.s and that consequently, the coefficient:of in |Q(n; S)|
is periodic. For ease of presentation, we only determinecthefficient of n” for those values for which\g
divides (n — ¢+ 1) orn — £+ 1 = Agt for some integet. In this instance, the desired coefficient is given by
(g, 6 q*, [wi, wa]) & ¢/A§, wherec is the leading coefficient of the polynomial pg)(t).

In summary, we have the following corollary.

Corollary 7.1. ConsiderS = S(q,¢; ¢*, [w1, w2]) and define
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TABLE |
COMPUTATION OF ¢(g, £)

g ¢ D c(q,?)
2 2 2 1/4*
3 2 6 1/8640*
4 2 12 1/45984153600*
5 2 20 37/84081093402584678400000*
2 3 4 1/288*
3 3 18 887/358450977137334681600000
2 4 8 283/9754214400
2 5 16 722299813/94556837526637331349504000000
Entries marked by an asterisk refer to values that were asivatl by Jacquedt al. [15].

- 14 *\ W *\L—w S -1 *\ W *\l—1—w
D=Y" <w>(Q) (@—q)™ = > < " >(Q) (=g
w=w, w=w;—1
Suppose thahs = lem{|C| : C' is a cycle inD(S)}. Then for some constamtq, ¢; ¢*, [wy, ws]),
(i) If wo =2, 1Q(n;S)| = c(q,4;q%, [wy, £))n” + O(nP~1) for all n;
(i) Otherwise, ifwy < ¢, |Q(n; S)| = c(q,4; ¢*, [w1, wa])n? + O(nP~1) for all n such that\g|(n — £+ 1).
When S = [¢]*, we write ¢(q, ¢) instead ofc(q, ¢; 1,0, 4)).

We determinec(q, ¢; ¢*, [w1,w2]) via numerical computations. Computing the lattice pointiresrator is a
fundamental problem in discrete optimization and many rtlgms and software implementations have been
developed for such purposes. We make use of the softwarecE, developed by Baldonet al. [31], which
is based on an algorithm of Barvinok [32]. Barvinok’s algiom essentially triangulates the supporting cones of
the vertices of a polytope to obtain simplicial cones anchtdecompose the simplicial cones recursively into
unimodular cones. As the rational generating functionshef tesulting unimodular cones can be written down
easily, adding and subtracting them according to the iimmhiexclusion principle and Brion’s theorem gives the
desired rational generating function of the polytope. Thgoithm is shown to enumerate the number of lattice
points in polynomial time when the dimension of the polytapdixed.

Using LattE, we computed the desired coefficients for various valuegof; ¢*, [wy, we]). As an illustrative
example,LattE determinedc(2,4) = 283/9754214400 with computational time less than a minute. This shows
that although the exact evaluation @y, ¢) is prohibitively complex (as pointed by Jacqwtal. [15]), numerical
computations of:(q, ¢) andc(q, ¢; ¢*, w1, w,]) are feasible for certain moderate values of parameters atidate
these values in Tablé | and II.

Next, we provide numerical results for lower bounds on theéecsizes derived in Sectign G-A.

When S = S(q,¢;q*, [wi,ws]), the digraphD(S) is Eulerian by Propositiol 4.1 and hende,belongs to
NullsoB(D(S5)). Therefore, ifC(H, 0) contains the vectot as well,C(H, 0) N Nulls(B(D(S)) is nonempty and
the condition of Theorer 6.3 is satisfied. Hence, we have dhewfing corollary.

Corollary 7.2. Let S = S(q, ¢; ¢*, [w1,ws]). Fix d and choosé andp such thatC(H, 0) is an(|S|,d + 1)-AECC
containingl. Suppose thatgrc = lem{{|C| : C is a cycle inD(S)} U {p}}. Then there exists a constaitH, S)
such that wheneveXgrc|(n — ¢+ 1),

IC(H,0) NpQ(n; S)| > c(H, S)n? + O(nP1),
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TABLE 1l
COMPUTATION OF¢(q, ¢; ¢*, [w1,w2]). WE FIXEDg = 2 AND ¢* = 1.

¢ w we D As c(2,0; 1, [wy, ws))

4 2 3 3 60 1/360

4 2 4 4 - 1/1440

5 2 3 6 120 1/5184000

5 2 4 10 27720 40337/34566497280000000
5 2 §5§ 11 - 3667/34566497280000000

5 3 4 4 420 23/302400

5 3 5 5 - 23/1512000

6 3 4 10 65520 43919/754932300595200000
6 3 5 15 5354228880 1106713336565579/7395066798557146888952000000000
6 4 5 5 840 1/518400

whereD = 5| = [V(S)] = X2, (u)(@)" (= a) ™ = Xz, 1 ()@ (@ = a1
Example 7.1.Let S = [2]® andd = 2. Choosep = 13 and
H_12358101112

N1 491212 9 4 1)
ThenC(H, 0) is an(8, 3)-AECC containingl. We haveAgrc = lem{{1,2,...,8} U {13}} = 156. UsingLattE,
we compute the lattice point enumerator)efrcPorc(H, S) to be12168t* — 1248t + 131¢* — 16t + 1. Hence,
for n = 156t + 2, the number of codewords ®(H, 0) N E(n;2,3) is given by12168t* — 12483 + 131¢2 — 16t + 1.
Whent =1 or n = 158, there exist a158, 3;2, 3)-GRC of size at least1036.

We compare this result with the one provided by the consbmetsing the systematic encoder described in Section

and in particular, Example 8.1. When= 158, we can systematically encode wordg#9]° into pQ(158; 2, 3).
1 2 3

1 4 4 )
we obtain a39-ary (3,3)-AECC of size2368. Applying the systematic encoder in Theoréml 6.4, we coonsiau

(158,3;2, 3)-GRC of size2368.

Hence, we consider 39-ary (3, 3)-AECC. Using Varshamov’s construction with = 5 andH; =

Using LattE, we determined:(H, S) for moderate parameter values and summarize the resultshie[TI.
We conclude this section with a conjecture on the relatiameenc(q, ) andc(H, S).

Conjecture 7.3. Fix ¢,¢,d. ChooseH andp such thatC(H, 0) is an (/V,d + 1)-AECC containingl. Let ¢(q, /)
andc(H, S) be the constants defined in Corollaries| 7.1 7.2, respdctiThenc(H, S) > c(q,£)/p?.

Roughly speaking, the conjecture states that asymptiytid@(H, 0) N £(n; q,¢)| is at least|Q(n; g, £)|/p?. In
other words, for our particular choice # and 3, we asymptotically achieve the code size guaranteed by the
pigeonhole principle.

8. DECODING OFPROFILE VECTORS

Recall the DNA storage channel illustrated in Hig. 1. Thencte takes as its input a word € Q(n;.S) and
outputs a profile vectop(x) € Z°l. Assuming no errors, the vectgix) corresponds to the correct profile vector
p(x;S) € pQ(n;S). In this channel model and the code constructions in Seffjome have implicitly assumed
the existence of an efficient algorithm that deco@és) € Z/°! back to the message. We now describe this
two-step algorithm in more detail.
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TABLE 11l
COMPUTATIONS OFc(H, S)

When S = [2]°, we havec(2,3) = 1/288.
d p D Asre  c(H,S) c(2,3)/p”
1 11 4 132 1/3168 1/3168
2 13 4 156 1/48672 1/48672
3 13 4 156 1/632736 1/632736
4 17 4 204 1/24054048 1/24054048
5 17 4 204 1/24054048 1/408918816
6 17 4 204 1/24054048 1/6951619872

When S = [2]*, we havec(2, 4) = 283/9754214400.

d p D Aagre c(H, S) c(2,4)/p?

1 17 8 14280 283/165821644800 283/165821644800
2 17 8 14280 283/2818967961600 283/2818967961600
3 17 8 14280 283/47922455347200 283/47922455347200

When S = 5(2,5;1,[2,3]), we havec(2,5;1,[2,3]) = 1/5184000.

d p D JAgre C(H7 S) 0(275; L, [273])/pd

1 23 6 2760 1/119232000 1/119232000

2 29 6 3480  1/4359744000 1/4359744000
3 29 6 3480 1/126432576000 1/126432576000

The first step of decoding is to correct errorspif) € Z!°! to arrive at a profile vector of the valid codeword
p(x;S) € pQ(n;S). For this purpose, one can use the conceptually simple ®aretr's decoding algorithm
described in[[18]. The algorithm reduces to recursive cdatmns of residues of the channel output profile vectors
with respect to the rows of the matrFl defining the code in_(10) and solving a system of equations a\fanite
field.

The second step of decoding consists of converting the c@exerofile vector into the corresponding codeword.
For the purpose of describing this process,uebe a profile vector inpQ(n; S) so thatu = p(x;S) for some
x € Q(n;S). As it was done in the proof of Lemma_ 4.2, we construct a m@ph on the node sét(S) by
addingu, arcs for eachs € V(S). We remove any isolated nodes to arrive at a connected Enlenultidigraph.
We subsequently apply any linear-time algorithm like Hazer's algorithm[[33] to this multidigraph to obtain an
Eulerian walk. Hierholzer’s algorithm uses two straighifard search steps:

« One starts by choosing a starting node in the multidigrapdind then proceeds by following a connected
sequence of edges until returning 40 Note that the multidigraph is Eulerian so such a closed mdth
always exist. Note that one closed path may not cover all ®dgenodes) in the graph.

« If the path does not cover all edges, as long as there existwlawon the last identified closed path that
has emanating edges terminating in nodes not on the clogkdipiiate another closed walk from the node
u that does not share any edges with the current closed patlgeMie current path with the path initiated
from u.

Most implementations of the Hierholzer's algorithm inwhan arbitrary choice for the starting node and the
subsequent nodes to visit. Hence, it is possible for theritgo to produce different walks based on the same
multigraph. Nevertheless, we may fix an order for the nodeshave the algorithm always choose the ‘smallest’
available node. Under these assumptionsLER(u) is always well defined. Let #.ER(u) denote the word of
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(a) Sequencing
000:3 100:1 001, 100,
001:1 101:1 001, 101,
010:0 110:2 ) 110,
00000110111100 Fragmentation 011:2 111:2 Detecting presence o 011, 111
absence oB-grams
(b) Sequencing
000:3 100:1
001:1 101:1
010:0 110:2 . _
0000011011110 i 011:2 111:2 Detecting relative order|: 510 < 101 < 111
Fragmentation of 010, 101 and111.

Fig. 4. Sequencing by hybridization. Instead of obtaining ¢xact count of thé-grams, we obtain auxiliary information on the count: (a)
we obtain the set o8-grams present i80111011000000; (b) we obtain the relative order of the countsd, 101 and 111.

[Q]" obtained from this restricted Eulerian walk. It remains @ify that BULER(u) = x.

As mentioned in Sectiof] 1, an elementd@f{n; S) is an equivalence clask C [q]", wherex,x’ € X implies
thatp(x; S) = p(x’; S). Here, we fix the choice of representative f6r As hinted by the previous discussion, we
let this representative beUEER (p(y; S)) for somey € Y and observe that this definition is independent of the
choice ofy. Then with this choice of representatives, the functian.Er indeed decodes a profile vector back to
its representative codeword.

In summary, we identify the elements @(n;S) with the set of representativ§€ULER(u) : u € pQ(n; S}.
Then for anyx € Q(n;5), the function EJLER decode®(x;.S) to x in linear-time.

A. Practical Methods for Counting-grams

An interesting feature of the described coding scheme tsote can avoid common problems with DNA sequence
assembly by designing codewords that have distinct profletors and profiles at sufficiently large distance.
However, there are computational challenges associatdd agunting the number of-grams and determining
the profile vector of an arbitrary word, given that modernhkigroughput sequences may produce hundreds of
millions of reads. We examine next a number of practical washfor profile counting which represents a crucial
step in decoding and address emerging issues via knowngadiations.

In particular, we look at an older technology — sequencinghigridization (SBH), proposed in_[34] — as a
means of automated decoding. The idea behind SBH is to boilrray of/-grams orprobes this array of probes
is commonly referred to as sequencing chipA sample of single stranded DNA to be sequenced is fragrdente
labelled with a radioactive or fluorescent material, and theesented to the chip. Each probe in the array hybridizes
with its reverse complement, provided the correspondiggam is present in the sample. Then an optical detector
measures the intensity of hybridization of the labelled DEAd hence infers the number éfgrams present
in the sample. The advantage of using SBH for countirggams is massive parallelism, and hence increased
speed of decoding. Furthermore, SBH allows one to bypaseetding step in sequencing as this is automatically
accomplished via hybridization to a proper target.

We first present an analysis of the simplest form of SBH, inclHiybridization results may only indicated the
presence or absence of certéigrams. This simple and inexpensive sequencing method magéd to significantly
reduce the space of possible profile vectors, and this irdbom may be used to design a more cost efficient and
accurate SBH sequencer having fewer probes and more pproise binding intensity — and henégram counts.



25

In our discussion, we assume thét= [¢]‘. Furthermore, in our terminology, i is the codeword, the channel
outputs a subset cﬁfy]]z given bysupp(p(x;q, ¢)), wheresupp(u) denotes the set of coordinatesvith u, > 1 (see
Fig.[4(a)). Then, we can defing,,.,(x,y;q, /) 2 |supp(p(x; ¢, £)) Asupp(p(y; ¢, £))| for any pair ofx,y € [¢]".
Intuitively, dg,,,, measures how dissimilar the setsée§rams contained in two sequences are.

As before, ([q]" , dyay,) forms a pseudometric space and we convert this space intotc repace via an
equivalence relation — we saayfv* y if and only if d3, .., (x,y; ¢, £) = 0. Then, by definingQ*(n; ¢, ¢) 2 [q]™/ f:,
we obtain a metric space.

Let C C Q*(n;¢,0). If d = min{dg,,,,(x,y;¢) : x,y € C,x # y}, thenC is said to be(n,d; g, ()-¢*-gram
reconstruction codex{GRC). Intuitively, ax-GRC with high distance allows for the reconstruction of angeword
sequence via the measurement of a sufficiently large subsie¢ 6-grams. We have the following proposition that
is an analogue of Propositién B.2.

Proposition 8.1. Given an(n,d;q,f)-+-GRC, a set ofn — ¢+ 1 — |(d — 1)/2] ¢-grams suffices to identify a
codeword.

Proof: Lett =n —¢+1—[(d—1)/2]. Suppose otherwise that there exists a pair of distinctwouris x
andy that contain a common set ¢f/-grams. Then

dgram (X, ¥; £) = [supp(p(X; ¢, £)) Asupp(p(y; ¢, £))|
<(n—l+1-t)+(n—L+1-t)=2[(d-1)/2]) <d—-1<d,

resulting in a contradiction. |

Determining the maximum size of dn, d; q, ¢)-+-GRC turns out to be related to certain well studied combina-
torial problems.

Cased = 1. The maximum size of arin, 1;q,¢)-x-GRC is given by|Q*(n;q,¢)|. Equivalently, this count
corresponds to the number of possible setg-gfams that can be obtained from words of lengttObserve that
|Q*(n;q,0)| < 29 and henceéQ*(n; ¢, /)| cannot be a quasipolynomial in with degree at least one. Therefore,
it appears that Ehrhart theory is not applicable in this exntNevertheless, preliminary investigations of this
guantity forq = 2 have been performed by Tan and Shallit/[35]. In particulan &nd Shallit proved the following
proposition forn < 24.

Proposition 8.2 ( [35, Corollary 19]) For £ < n < 2¢, we have

n—~+1
om =2~y "y, <§) 2

k=1 d|k

where(-) is the Mobius function defined as

1, if nis a square-free positive integer with an even number of @fiactors
u(n) =1, if nis a square-free positive integer with an odd number of priactors

0, otherwise

Cased = 2(n — ¢+ 1). For the other extreme, we see that the problem is relateddge-disjoint path packings
and decompositions of graphs (seel[36],[37]). Formally)sider a graplG. A setC of paths inG is said to be
an edge-disjoint path packingf G if each edge inG appears in at most one path ¢h An edge-disjoint path
packingC of G is anedge-disjoint path decompositiaf G if each edge inG appears in exactly one path ¢h
Edge-disjoint cycle packings and decompositions are dexfamailarly.
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Now, an(n,2(n—¢+1);¢,¢)-x-GRC is equivalent to an edge-disjoint path packingxf, ¢), where each path
is of length(n — ¢+ 1). Furthermore, an edge-disjoint path decompositio®¢4, ¢) into paths of lengtm — ¢+ 1
yields an optimal(n, 2(n — £ 4 1); ¢, £)-+-GRC of sizeq’/(n — £ + 1).

Since an edge-disjoint cycle decomposition is also an @igjeint path decomposition, we examine next edge-
disjoint cycle decomposition of de Bruijn graphs. These bimratorial objects were studied by Cooper and Graham,
who proved the following theorem.

Theorem 8.3( [38, Proposition 2.3, Corollary 2.5])
(i) There exists an edge-disjoint cycle decompositionDgf;, £) into ¢ cycles of lengthy’~!, for any ¢ and /.
(i) There exists an edge-disjoint cycle decompositiongf-2*+1, 3) into 8% cycles of lengthgr?, for anyk > 0
andr > 1.

Therefore, Theorein 8.3 demonstrates the existence of amaly' ' + ¢ — 1,2¢~!; ¢, ¢)-+-GRC of sizeq and
an optimal(8r3 + 2,16r3; r28+1 3)-x-GRC of sizes* for any k£ > 0 andr > 1.

B. Decoding Rank Modulation Encoded Profiles

As mentioned earlier, it is difficult to infer accurately timber of/-grams present from the hybridization
results. However, we may significantly more accurately mheitee whether the count of a certadrgram is greater
than the count of another. In other words, we may view the secjng channel outputs aankingsor orderings
on theq’ ¢-grams counts or permutationof length ¢* reflecting the/-gram counts.

This suggests that we consider codewords whose profile ngazaory information about orderMore precisely,
let Perm(N') denote the set of permutations over the[3€éf. We consider codewords whose profile vectors belong
to Perm(/N) and consider a metric oRerm(/NV) that relates to errors resulting from changes in order. Taedall
metric was first proposed by Jiaeg al. [39] in rank modulation schemes for nonvolatile flash mee®and codes
in this metric have been studied extensively since (seed#ad]the references therein). The Ulam metric was later
proposed by Farnouet al. for permutations([41] and multipermutatioris [42].

Unfortunately, due to the flow conservation equatidds (i, profile vector of aj-ary word is unlikely to have
distinct entries and hence be a permutation. Neverthelesappeal to the systematic encoder provided by Theorem
6.4. We setn = ¢ —¢'~1 —1. Then, provided: is sufficiently large, there exists a sebf m coordinates that allow
us to extend any woré in [m]™ to a profile vector inpsys(v) € pQ(n; ¢, £). In particular, sinc®erm(m) C [m]™,
any permutatiornv of lengthm may be extended to a profile vector dgys(v) € pQ(n;q,£).

This implies that for the design of the sequencing chip, wadineed to have’ probes for all possiblé-grams.
Instead, we require onlyn = ¢ — ¢! — 1 probes that correspond to tegrams inl. Hence, the sequencing
channel outputs an ordering on this setef/-grams (see Fid.l4(b)).

This setup allows us to integrate known rank modulation sq@eany metric) into our coding schemes for DNA
storage. In particular, to encode information we perform fibllowing procedure. First, we encode a message is
into a permutation using a rank modulation encoder. Thenp#renutation is extended into a profile vector and
then mapped by &LER to the profile vector of a-ary codeword (see Fi@l 5 for an illustration).

Example 8.1. Suppose thats = [[2ﬂ3. Hence, we setn = 3 and recall the systematic encodgy,s described
in Example[6.1 that map§3]® into pQ(14;2,3). Suppose that = (0,1,2) € Perm(3) belongs to some rank
modulation code. Them = ¢g(v) = (3,1,0,2,1,1,2,2) belongs topQ(14;2,3). Finally, EULER mapsu to a
codeword00000110111100 € [2]**.

Now, if we were to detect the relative order of tBrggrams010, 101 and111, we obtain the permutatiofd, 1, 2)
as desired (see also F[g. 4(b)).
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Encoder

message | Rank  Modulation permuytation| Systematic  Profile profile vector| gy gg | | codeword

U

Encoder Encoder l
DNA
Storage
Channel
decoded messageRank  Modulation output permutation
Decoder

Fig. 5. Encoding messages for a DNA storage channel thatutsuthe relative order on the counts of particllagrams.

APPENDIX A
EULERIAN PROPERTY OFCERTAIN RESTRICTEDDE BRUIIJN DIGRAPHS

In this section, we provide a detailed proof of Propositiafi. 4Specifically, forqg, ¢, 1 < ¢* < ¢ — 1 and
1 < w; < wy </, we demonstrate that the digraph(q, ¢; ¢*, [w1,ws]) is Eulerian. Our analysis follows that of
Ruskeyet al. [22].

Recall that the arc set dD(q, £; ¢*, [wy,ws]) is given by S = S(q,¢; ¢*, [w1,ws]), while the node set is given
by V(S) = S(q,¢ — 1;¢*, [w1 — 1,ws]), which we denote by for short. In addition, we introduce the following
subsets of¢]. For a nodez in V, let Pref(z) be the set of symbols ifyy] that when prepended toresults in an
arc in S. Similarly, letSuff(z) be the set of symbols ify] that when appended twresult in an arc inS. Hence,
{oz : 0 € Pref(z)} and{zo : o € Suff(z)} are the respective sets of incoming and outgoing arcs fontikez.

Lemma A.1. Every node ofD(q, ¢; ¢*, [w1,w2]) has the same number of incoming and outgoing arcs.

Proof: Let z belong toV. Observe that for akk € [¢], sz € Sifand only ifz s € S. Hence Pref(z) = Suff(z)
and the lemma follows. |
It remains to show thab(q, ¢; ¢*, [w1, we)]) is strongly connected. We do it via the following sequenckenfmas.

Lemma A.2. Let z,z’ belong toV and have the property that they differ in exactly one coatdin Then there
exists a path fronz to z'.

Proof: Observe the following characterization Bfef(z) = Suff(z):

Pref(Z) - SUE(Z) = [[q*ﬂ ) |f Wt(Z, q*) = wW3y;

[q] otherwise

ThenSuff(z) N Pref(z') is empty only ifwt(z; ¢*) = w; — 1 andwt(z’; ¢*) = wo or vice versa. Either way, and
z' differ in at least two coordinates, which contradicts thertsig assumption.

Hence,Suff(z) N Pref(z’) is always nonempty. To complete the proof, det Suff(z) N Pref(z’). Then, the path
corresponding ta sz’ is the desired path. (Note that eaglgram appearing ire sz’ has weight equal to either
wt(z s) or wt(sz'); in particular, each suchgram lies inS.) [ |

Therefore, to construct a path between any two given nadasd z/, it suffices to demonstrate a sequence of
nodes such that consecutive nodes differ in only one pasitio

Lemma A.3. For anyz,z’ € V, there is a sequence of nodes- zy, z, ...,z = 2z’ such thatz; andz;, differ
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in exactly one position foy € [t].

Proof: Let 2 = o109---04y_1. We construct the sequence of nodes inductively. Suppasefdn somej,
Zj = 0102 0;Ti+1 -~ T—1, With 7,41 # o;41. Our objective is to construct a sequence of nodes with curtise
nodes differing in one position, terminating at some nagewith z; = 0102---Uz~ai+17'i’+2---7'é_1 for some
T 1,Tisa,- -+, Ty_q- HENCe, by repeating this procedure, we obtain the desgqdesce of nodes that terminates
atz’.
Sincez; € V, we havewt(z;; ¢*) € [w; — 1, ws]. As such, we consider three possibilities to extend the esecpt
(i) Whenw; — 1 < wt(z;;¢*) < wa, we may simply change;;; to o;;; and make no other changes, since the
word z;,; produced this way still satisfiest(z;,1) € [wi — 1, w2] and is therefore a node.
(i) Whenwt(z;;¢*) =wi—1, 711 € [¢—q*,¢—1] ando;1 ¢ [¢—q¢*, ¢— 1], there exists soms, in z; that does
not belong tojg — ¢*, ¢ — 1]. Otherwisewt(oy - - - 0;;¢*) = w1 — £+ and sowt(oy - - - 0i41;¢%) = w1 — L+ 4.
Then,wt(z’; ¢*) < wy — 2, contradicting the fact that’ € V. Therefore, we have the sequence of nodes

Zj =01 OiTi41Ti42 " T+ " TY—1,
Zjt1 =01 OiTip1Tiv2 - (@ — 1) -+ 71,
Zjy2 =01 0i0i1Tive (@ — 1) 71
(i) When wt(z;;¢*) = w2, Tit1 € [¢ — ¢*, ¢ — 1] ando;1 € [¢ — ¢*, ¢ — 1], then there exists somg in z; that
belongs tog — ¢*, ¢ — 1]. Otherwisewt(oy - - - 0;; ¢*) = wy and sowt(z'; ¢*) > wt(oy -+ 04415 ¢%) = wa + 1,
contradicting the fact that’ € V. Therefore, we have the sequence of nodes
Zj; =01 O3Ti41Ti42 Tk " Te—1,
Zjy1 =01 0Tit1Ti2 -0 71,
Zjto =01 0i0i41Tiy2 - 0 Tp1.
[ |

ConsequentlyD(q, ; ¢*, [w1, ws]) is strongly connected. Together with LemfalA.1, this resstablishes that
D(q,¢; q*, [wy,ws)) is Eulerian.

APPENDIX B
PrROOF OFCOROLLARY 5.6

We provide next a detailed proof of Corolldry 5.6. Specificake demonstrate Proposition B.1 from which the
corollary follows directly. For the case that= [[q]]é, Jacquett al. established a similar result by analyzing a sum
of multinomial coefficients. This type of analysis appeardé to complex for a general choice 8f

Proposition B.1. Suppose thaD(S) is strongly connected and that it contains loops. tet n — ¢+ 1, D =
|S| — [V(S)| and let the lattice point enumerator B¥(S) be Lpg)(t) = cp(t)t? + O(tP~1). Then,cp(t) is
constant.

To prove this proposition, we use the following straightfard lemma.

Lemma B.2. Suppose thaD(S) is strongly connected and that it contains loops. Fot,alle havelpg)(t+1) >
Lps)(t).

Proof: It suffices to show that there is an injection fraf{n;S) to F(n + 1;.5). Suppose that € F(n;S),
so thatA(S)u = tb. Fix a loop inD(S) and consider the vectog(z), wherez is the arc corresponding to the
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loop. Then,A(S)x(z) = b and A(S)(u + x(z)) = (t + 1)b. So, the mapu — u + x(z) is an injection from
F(n;S) to F(n+ 1;5). [

Proof of Proposition[Bll: Lemmal[B.2 demonstrates thdtyg) is a monotonically increasing function.
Intuitively, this implies that the coefficient of its domirag term cp(t) cannot be periodic with period greater
than1. We prove this claim formally in what follows.

Suppose thatp is not constant and that it has periodHence, there exists # t, mod 7 such thatp(t,) = ap,
ep(ty) = bp andap < bp. Furthermore, define; = ¢;(t,) andb; = ¢;(t) for 0 < i < D — 1, and consider the
ponnomialZD bit' —a;(t+7)%. By construction, this polynomial has degrBeand a positive leading coefficient.
Hence, we can choose = ¢, mod 7 andty = ¢, mod 7 so thatt; <ty < t;+71 andzZ “obi ith —a;(ty +7)" > 0.
Consequently,

D D D
Lyt +7)=> cilti +7)(t1+7) =D ai(ts +7)" < Y bith = Lp(s)(ta),
=0 =0 =0
contradicting the monotonicity ofpg). [ |

APPENDIXC
PROPERTIES OF THEPOLYTOPE Pgrc(H, S)

We derive properties of the polytope;rc(H, S) described in Section 63A. In particular, under the assuonpti
that D(S) is strongly connected and(H, 0) N Null.(B(D(S)) is nonempty, we demonstrate the following:
(C1) The dimension of the polytopBgrc(H, S) is |S| — [V (5)];

(C2) The interior of the polytope is given byu € RIS+ A(H, S)u = b,u > 0};
(C3) The vertex set of the polytope is given by
{(M Hx(C)
ICl 7 plC]

SinceC(H,0) N NullsoB(D(S)) is nonempty, letu belong to this intersection. ThddAuy = 0 mod p, that is,
Hu, = pB for somegB > 0. Let = 1ug. If we setu = (uo,ﬁ), then A(H, S)u = b, with u > 0.

Observe that the block structure Af(H, S) implies that it has rankV (S)| + d. Hence, the nullity ofA (H, .S)
is [S| — [V(S)]. As before, letu;, uy, ..., ujg_jv(s) be linearly independent vectors that span the null space of
A(H,S). Sinceu has strictly positive entries, we can fiacsmall enough so thai + eu; belongs toPgrc(H, S)
forall i € [|[S|—[V(5)[]. Therefore{u,u+euj,u+teuy, ..., u+eug_y(s)} is asetoflS|—|V(S)[+1 affinely
independent points iPgrc(H, S). This proves claim (C1).

For the interior of Pgrc(H, S), first considera’ > 0 such thatA(H, S)u’ = b. For anyu” € Pgrc(H, S),
we haveA (H, S)u” = b and henceA(H, S)(u’ — u”) = 0. Sinceu’ has strictly positive entries, we choose
small enough so that’ + e(u’ — u”) > 0. Therefore,u’ + ¢(u’ — u”) belongs toPgrc(H, S) andu’ belongs to
the interior of Pgrc(H, S).

Conversely, letu’ € Pgrc(H, S) with ug = 0 for some coordinatg. Let u be as defined earlier, where
u € Pcere(H, S) with u > 0. Hence, for alle > 0, the jth coordinate ofu’ + ¢(u’ — u) is given by —eu;, which
is always negative. In other worda; does not belong to interior dPcrc(H, S). This characterizes the interior
as described in claim (C2).

For the vertex set, observe th%(%, Hp’fé?) : C'is a cycle inD(S)} C Pere(H, S).

Let v € Pgrc(H, S) and suppose that = (v, v2) is a vertex. Sincer € Pgrc(H, S), we havev, = %Hvl
andB(D(S))vy; = 0. Proceeding as in the proof of Lemmal5.5, we concludethat x(C)/|C|, for some cycle

in D(S) and hencey = (%, préc“))'

) : C'is a cycle inD(S)} .
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Conversely, we show that for any cydlgin D(S), (%, Hp’fé?) cannot be expressed as a convex combination

of other points inPgrc(H, S). Suppose otherwise. Then we consider the fis$tcoordinates and we proceed as
in the proof of Lemma5l5 to yield a contradiction. This coatpk the proof of claim (C3).

APPENDIX D
RELABELLING OF NODES IN PROOF OFTHEOREM[G.4

In this section, we demonstrate the existence of a cyclabedling of nodes that is necessary for the proof of
Theoreni 6.4. In particular, we prove the following lemma.

Lemma D.1. Let v be a positive integer, and, 9, ..., 7, bev real values such thg’;_, r; = 0. For convenience,
we letr,; =r; for 1 <i <wv— 1. Then there exist$ < J < v such thatzgzo rjoi>0foral0<j<ov-—1.

Proof: For1 <j <2v—1, letR; = Z{ZO r; and observe thak, = 0. Let J be such that?; = min{R; :
1 <j <2v-1}. SinceR, =0, we haveR,;,, = R; forall 1 <: <wv—1 and hence, we may assume< J < v.
Next, we claim that/ is the desired index. Indeed, for @ll< ;7 < v — 1, observe that

J J
Y riri=Re+ Y ripi=Ry;— Ry >0,
i=0 =0
where the final inequality follows from the minimality @i ;. ]
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