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Abstract

We consider the problem of storing and retrieving information from synthetic DNA media. The mathematical

basis of the problem is the construction and design of sequences that may be discriminated based on a collection of

their substrings observed through a noisy channel. We explain the connection between the sequence reconstruction

problem and the problem of DNA synthesis and sequencing, andintroduce the notion of a DNA storage channel.

We analyze the number of sequence equivalence classes underthe channel mapping and propose new asymmetric

coding techniques to combat the effects of synthesis and sequencing noise. In our analysis, we make use of restricted

de Bruijn graphs and Ehrhart theory for rational polytopes.

1. INTRODUCTION

Reconstructing sequences based on partial information about their subsequences, substrings, or composition

is an important problem arising in channel synchronizationsystems, phylogenomics, genomics, and proteomic

sequencing [3]–[5]. With the recent development of archival DNA-based storage devices [6], [7] and rewritable,

random-access storage media [8], a new family of reconstruction questions has emerged regarding how todesign

sequenceswhich can be easily and accurately reconstructed based on their substrings, in the presence of write

and read errors. The write process in DNA-based storage systems is DNA synthesis, a biochemical process of

creating moderately long DNA strings via the use of columns or microarrays [9]. Synthesis involves sequential

inclusion of bases into a growing string, and is accompaniedby chemical error correction. The read process in

DNA-based storage is DNA sequencing, where classical decoding is replaced by a combination of assembly and

error-control decoding. DNA sequencing operates by creating many copies of the same string and then fragmenting

them into a collection of substrings (reads) of approximately the same length,ℓ, so as to produce a large number of

overlapping “reads”. The larger the number of sequence replicas and reads, the larger thecoverageof the sequence

– the average number of times a symbol in the sequence is contained in a read. Assembly aims to reconstruct the

original sequence by stitching the overlapping fragments together; the assembly procedure is NP-hard under most

formulations [10]. Nevertheless, practical approximation algorithms based on Eulerian paths in de Bruijn graphs

have shown to offer good reconstruction performance under high-coverage [11]. Due to the high cost of synthesis,

most current DNA storage systems do not use sequence lengthsn exceeding several thousands nucleotides (nts).

Synthesis error rates range between0.1 and3% depending on the cost of the technology [9], [12], and the errors are

predominantly substitution errors. The read lengthℓ ranges anywhere between100 to 1500 nts. Substrings of short

length may be sequenced with an error-rate not exceeding1%; long substrings exhibit much higher sequencing

error-rates, often as high as15% [13]. In the former case, the dominant error events are substitution errors [14].
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Fellowship. This work has been appeared in part in ITW 2015 [1] and ISIT 2015 [2].
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Furthermore, due to non-uniform fragmentation, some proper substrings are not available for reading, leaving what

is known as coverage gaps in the original message.

More formally, to store and retrieve information in DNA one starts with a desired information sequence encoded

into a sequencex ∈ D = {A,T,G,C}n, whereD denotes the nucleotide alphabet. TheDNA storage channel,

shown in Fig. 1 and formally defined in Section 1, models a physical process which takes as its input the sequence

x of lengthn, and synthesizes (writes) it physically into a macromolecule string, denoted bỹx. Hence, the sequence

both encodes information and serves as a storage media. Ideally, one would like to synthesizex without errors,

which is not possible in practice. Hence, the sequencex̃ is a distorted version ofx in so far as it containsssyn
substitution errors, wheressyn is a suitably chosen integer value. When a user desires to retrieve the information, the

process proceeds to amplify the stringx̃ and then fragments all copies of the string, resulting in a highly redundant

mix of reads. This mix may contain multiple copies of the samesubstring, saỹx1 = x̃1 · · · x̃ℓ as well as multiple

copies of another substring̃xk = x̃k · · · x̃k+ℓ−1, with k 6= 1 identical to x̃1 (i.e., such that̃x1 = x̃k). Since the

concentration of all (not necessarily) distinct substrings within the mix is usually assumed to be uniform, one may

normalize the concentration of all subsequences by the concentration of the least abundant substring. As a result,

one actually observes substring concentrations reflectingthe frequency of the substrings inone copyof x̃. Hence,

in the DNA storage channel we model the output of the fragmentation block as anunordered subset of substrings

(reads)of the sequencẽx of lengthℓ, with ℓ < n, denoted byL̃(x) = {x̃i1 , . . . , x̃if }, wherei1 < i2 < . . . < if , and

wheref ≤ n− ℓ+1 is the number of reads. As an example, bothx̃1 andx̃k may be observed and hence included

in the unordered set of substrings, or only one or neither. Inthe latter two cases, we say that the substring(s) were

not covered during fragmentation.

Each of the observed substrings is allowed to have additional substitution errors, due to the next step of sequencing

or reading of the substrings. Substrings of short length maybe sequenced with an error-rate not exceeding1%;

long substrings exhibit much higher sequencing error-rates, often as high as15% [13]. For simplicity, we assume

that the total number of sequencing errors per substring equals sseq. The set of substrings at the output of the

DNA storage channel is denoted by the multisetL̂(x) = {x̂i1 , . . . , x̂if }, and eacĥxi is a substitution-distorted

version ofx̃i. The information contained in̂L(x) may be summarized by its multiplicity vector, also calledoutput

profile vector p̂(x), which is also our channel output. The profile vector is of length 4ℓ, and each entry in the

vector corresponds to exactly one of theℓ-length strings overD. The ordering of theℓ-strings is assumed to be

lexicographical. Furthermore, thejth entry inp̂(x) equals the number of times thej-th string in the lexicographical

order was observed in̂L(x) = {x̂i1 , . . . , x̂if}. Hence, for each1 ≤ j ≤ 4ℓ, thejth entry inp̂(x) is a value between

0 andn− ℓ+ 1.

The main contributions of the paper are as follows. The first contribution is to introduce the DNA storage

channel andmodel the read process (sequencing)through the use ofprofile vectors. A profile vector of a sequence

enumerates all substrings of the sequence, and profile vectors form a pseudometric space amenable for coding

theoretic analysis1. The second contribution of the paper is tointroduce a new family of codesfor three classes of

errors arising in the DNA storage channel due to synthesis, lack of coverage and sequencing, and show that they

may be characterized byasymmetric errorsstudied in classical coding theory. Our third contributionis a code design

technique which makes use of (a) codewords with different profile vectors or profile vectors at sufficiently large

distance from each other; and (b) codewords withℓ-substrings of high biochemical stability which are also resilient

to errors. For this purpose, we consider a number ofcodeword constraintsknown to influence the performance of

both the synthesis and sequencing systems, one of which we termed thebalanced content constraint.

1A pseudometric space is a generalization of a metric space inwhich one allows the distance between two distinct points tobe zero.
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Fig. 1. The DNA Storage Channel. Information is encoded in a DNA sequencex which is synthesized with potential errors. The output
of the synthesis process is̃x. During readout, the sequencẽx is read through the sequencing channel, which fragments thesequence and
possibly perturbs the fragments via substitution errors. The output of the channel is a set of DNA fragments, along with their frequency
count, the multiplicity vector ofL̂(x).

For the case when we allow arbitraryℓ-substrings, the problem of enumerating all valid profile vectors was

previously addressed by Jacquetet al. [15] in the context of “Markov types”. However, the method ofJacquetet

al. addressed Markov types which lead to substrings of lengthℓ = 2 only. Furthermore, the Markov type approach

does not extend to the case of enumeration of profiles with specific ℓ-substring constraints or profiles at sufficiently

large distance from each other, and hence the proof techniques used by the authors of [15] and those pursued in

this work are substantially different.

We cast our more general enumeration and code design question as a problem ofenumerating integer points in

a rational polytopeand use tools fromEhrhart theoryto provide estimates of the sizes of the underlying codes.

We also describe two decoding procedures for sequence profiles that combine graph theoretical principles and

sequencing by hybridization methods.

2. PROFILE VECTORS AND THEDNA STORAGE CHANNEL

We start this section by defining the relevant terminology and the DNA storage channel.

Let JqK denote the set of integers{0, 1, 2, . . . , q − 1} and consider a wordx of lengthn over JqK. Suppose that

ℓ < n. An ℓ-gram or a substringof x of length ℓ is a subsequence ofx with ℓ consecutive indices. Letp(x; q, ℓ)

denote the (ℓ-gram) profile vectorof length qℓ, indexed by all words ofJqKℓ ordered lexicographically. We refer

to thej-th word in this lexicographic order byz(j). In the profile vector, an entry indexed byz gives the number

of occurrences ofz as anℓ-gram ofx. For example,p(0000; 2, 2) = (3, 0, 0, 0), while p(0101; 2, 2) = (0, 2, 1, 0).

Observe that for anyx ∈ JqKn, the sum of entries inp(x; q, ℓ) equals(n− ℓ+ 1).

Before we proceed with a formal definition of the DNA storage channel, we introduce the system errors that

characterize such a channel. To this end, suppose that the data of interest is encoded by a vectorx ∈ JqKn and let

p̂(x) be the output profile of the DNA channel, as indicated in Fig. 1. The profile error vector,e , p(x; q, ℓ)−p̂(x)

arises due to the following error events.

(i) Substitution errors due to synthesis. Here, certain symbols in the wordx may be changed as a result of

erroneous synthesis. If one symbol is changed, in the perfect coverage case,ℓ ℓ-grams will decrease their

counts by one andℓ ℓ-grams will increase their counts by one. Hence, the error resulting fromssyn substitutions

equalse = e− − e+, wheree+, e− ≥ 0, and both vectors have weightssyn ℓ.

(ii) Coverage errors. Such errors occur when not allℓ-grams are observed during fragmentation and subsequently

sequenced. For example, suppose thatx = 00000, and thatp̂(x) is the channel output3-gram profile vector.

The coverage loss of one3-gram results in the count of000 in p̂(x) to be two instead of three. Note that

imperfect coverage oft ℓ-grams results in an asymmetric errore ≥ 0 of weight t.
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(iii) ℓ-gram substitution errors due to sequencing. Here, certain symbols in each fragmentx̃i may be changed

during the sequencing process. Suppose theℓ-gram x̃i is altered tox̂i , x̂i 6= x̃i. Then the count for̃xi will

decrease by one while the count forx̂i will increase by one. Hence, the error resulting fromsseq ℓ-gram

substitutions equalse = e− − e+, wheree+, e− ≥ 0, and both vectors have weightsseq.

For x, y ∈ JqKn, define the usualHamming distancebetween a pair of words to be the number of coordinates

where the two words differ. Foru, u ∈ Z
N , we define theL1-distancebetweenu andv to be the sum

∑N
i=1 |ui−vi|

and theL1-weightof u to be theL1-distance betweenu and0.

Definition 2.1. The DNA storage channel with parameters(n, q, ℓ; t, ssyn, sseq) is a channel which takes as its input

a vectorx ∈ JqKn and outputs a vector̂p(x) ∈ Z
qℓ such that there exists ãx ∈ JqKn and a vector̃p(x) ∈ Z

qℓ with

the following properties:

(i) the Hamming distance betweeñx andx is at mostssyn;

(ii) all entries ofp(x̃; q, ℓ)− p̃(x) are nonnegative and theL1-weight ofp(x̃; q, ℓ)− p̃(x) is at mostt;

(iii) the L1-distance betweeñp(x) and p̂(x) is at mostsseq.

Here, properties (i)–(iii) correspond to the error types (i)–(iii) discussed before the definition.

Example 2.1. For simplicity, letq = 2, ℓ = 2, t = 1, ssyn = 1, sseq = 2, and assume that one would want to store

the sequencex = 0110100. One synthesis error, the maximum allowed under the given parameter constraints,

would renderx into a sequencẽx, say x̃ = 1110100. The multiset ofℓ-grams belonging tõx is given by

{11, 11, 10, 01, 10, 00}, and some of theseℓ-grams may be subjected to sequencing errors and possibly not observed

due to coverage errors. Suppose that one copy of10 is lost due to coverage errors, so thatL̃(x) = {11, 11, 10, 01, 00},

and that the second and thirdℓ-grams are sequenced incorrectly, resulting in{11, 01, 11, 01, 00}. Hence, the DNA

storage channel output would be the unordered setL̂(x) = {11, 01, 11, 01, 00} which we summarize with the profile

vector p̂(x) = (1, 2, 0, 2). Note that none of the entries of̂p(x) exceedsn − ℓ + 1 = 6, and that the sum of the

entries equals five rather than six due to one coverage error.

Consider further a subsetS ⊆ JqKℓ. For x ∈ JqKn, we similarly definep(x;S) to be the vector indexed byS,

whose entry indexed byz ∈ JqKℓ gives the number of occurrences ofz as anℓ-gram ofx. We are interested in

vectorsx whoseℓ-grams belong toS. Once again, the sum of entries inp(x;S) equalsn− ℓ+ 1.

The choice ofS is governed by certain considerations in DNA sequence design, including

(i) Weight profiles of ℓ-grams. For the application at hand, one may want to chooseS to consist ofℓ-grams

with a fixed proportion ofC andG bases, as this proportion – known as the GC-content of the sequence –

influences the thermostability, folding processes and overall coverage of theℓ-grams. From the perspective of

sequencing, GC contents of roughly50% are desired2.

To make this modeling assumption more precise and general, we assume setsS of the form described below.

Suppose that0 ≤ w1 < w2 ≤ ℓ and1 ≤ q∗ ≤ q−1. Let [w1, w2] denote the set of integers{w1, w1+1, . . . , w2}.

For eachx ∈ JqKℓ, let theq∗-weightof x be the number of symbols inx that belong to[q − q∗, q − 1], and

denote the weight bywt(x; q∗). Let

S(q, ℓ; q∗, [w1, w2]) ,
{
x ∈ JqKℓ : wt(x; q∗) ∈ [w1, w2]

}

2The reason behind theGC constraint is based on the observation that in Watson-Crickpairings,G andC bond with three, whileA and
T bond with two hydrogen bonds. Hence, the bonds betweenG andC are stronger, and having largeGC content would make the DNA
sequence more stable, but at the same time harder to fragment. It is known thatGC rich substrings of DNA suffer most of the coverage
errors during sequencing. On the other hand, a largeAT content makes the DNA strand less stable and may cause protrusions in DNA
double helices. Hence, it is desirable to have a balance of GCbases in the string [16].
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be the set of all sequences withq∗ weights restricted to[w1, w2]. For example,

S(2, 4; 1, [2, 3])) = {0011, 0101, 0110, 0111, 1001, 1010, 1011, 1100, 1101, 1110}.

We remark that if we representA,T,G,C by 0, 1, 2, 3, respectively, and setq = 4 and q∗ = 2, the choice

w1 = w2 = ℓ/2 for evenℓ and the choicesw1 = ⌊ℓ/2⌋ andw2 = w1 +1 for odd ℓ enforce the balancedGC

constraint. Also, note thatS(q, ℓ; q∗, [0, ℓ]) = JqKℓ, for any choice ofq∗.

(ii) Forbidden ℓ-grams. Studies have indicated that certain substrings in DNA sequences – such asGCG, CGC

– are likely to cause sequencing errors (see [17]). Hence, one may also chooseS so as to avoid certain

ℓ-grams. Treatment of specialized sets of forbiddenℓ-grams is beyond the scope of this paper and is deferred

to future work.

Therefore, with an appropriate choice ofS, we may lower the probability of substitution errors due to synthesis,

lack of coverage and sequencing. Furthermore, as we show in our subsequent derivations, a carefully chosen setS

may improve the error-correcting capability by designing codewords to be at a sufficiently large “distance” from

each other. Next, we formally define the notion of sequence and profile distance as well as error-correcting codes

for the corresponding DNA channel.

3. ERROR-CORRECTING CODES FOR THEDNA STORAGE CHANNEL

Fix S ⊆ JqKℓ. Let N be an integer which usually denotes the number ofℓ-grams in the profile vector, i.e.

N = |S|. Let ZN
≥0 denote the set of vectors of lengthN whose entries are nonnegative integers. Foru ∈ Z

N
≥0,

we sometimes writeu ≥ 0. For any pair of wordsu,v ∈ Z
N
≥0, let ∆(u,v) ,

∑N
i=1max(ui − vi, 0) and define

the asymmetric distanceasdasym(u,v) = max (∆(u,v),∆(v,u)). A set C is called an(N, d)-asymmetric error

correcting code (AECC)if C ⊆ Z
N
≥0 andd = min{dasym(x,y) : x,y ∈ C,x 6= y}. For anyx ∈ C, let e ∈ Z

N
≥0

be such thatx− e ≥ 0. We say that anasymmetric errore occurred if the received word isx− e. We have the

following theorem characterizing asymmetric error-correction codes (see [18, Thm 9.1]).

Theorem 3.1. An (N, d+ 1)-AECC corrects any asymmetric error ofL1-weight at mostd.

Next, we let(JqKn ;S) denote allq-ary words of lengthn whoseℓ-grams belong toS and define theℓ-gram

distancebetween two wordsx,y ∈ (JqKn ;S) as

dgram(x,y;S) , dasym(p(x;S),p(y;S)).

Note that dgram is not a metric, asdgram(x,y;S) = 0 does not imply thatx = y. For example, we have

dgram(0010, 1001; J2K
2) = 0. Nevertheless,((JqKn;S), dgram) forms a pseudometric space. We convert this space

into a metric space via an equivalence relation called metric identification. Specifically, we say thatx
dgram

∼ y if

and only ifdgram(x,y;S) = 0. Then, by definingQ(n;S) , (JqKn;S)/
dgram

∼ , we can make(Q(n;S), dgram) into a

metric space. An elementX in Q(n;S) is an equivalence class, wherex,x′ ∈ X implies thatp(x;S) = p(x′;S).

We specify the choice ofrepresentativefor X in Section 8 and henceforth refer to elements inQ(n;S) by their repre-

sentative words. LetpQ(n;S) denote the set of profile vectors of words inQ(n;S). Hence,|pQ(n;S)| = |Q(n;S)|.

Let C ⊆ Q(n;S). If d = min{dgram(x,y;S) : x,y ∈ C,x 6= y}, then C is called an(n, d;S)-ℓ-gram

reconstruction code (GRC). The following proposition demonstrates that anℓ-gram reconstruction code is able

to correct synthesis and sequencing errors provided that its ℓ-gram distance is sufficiently large. We observe that

synthesis errors have effects that areℓ times stronger since the error in some sense propagates through multiple

ℓ-grams.
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Proposition 3.2. An (n, d;S)-GRC can correctssyn substitution errors due to synthesis,sseq substitution errors

due to sequencing andt coverage errors provided thatd > 2ssynℓ+ 2sseq + t.

Proof: Consider an(n, d;S)-GRC C and the setp(C) = {p(x;S) : x ∈ C}. By construction,p(C) is an

(N, d)-AECC with N = |S| that corrects all asymmetric errors ofL1-weight≤ 2ssynℓ+ 2sseq + t.

Suppose that, on the contrary,C cannot correctssyn substitution errors due to synthesis,sseq substitution errors

due to sequencing andt coverage errors. Then, there exist two distinct codewordsx,x′ ∈ C and error vectors

esyn,+, esyn,−, eseq,+, eseq,−, et, e
′
syn,+, e

′
syn,−, e

′
seq,+, e

′
seq,−, e

′
t, such that̂p(x) = p̂(x′), that is, such that

p(x;S) + esyn,+ − esyn,− + eseq,+ − eseq,− − et = p(x′;S) + e′syn,+ − e′syn,− + e′seq,+ − e′seq,− − et.

Here, esyn,− − esyn,+ and e′syn,− − e′syn,+ are the error vectors due to substitutions during synthesisin x and

x′, respectively; each of the vectorsesyn,−, esyn,+, e′syn,−, e
′
syn,+ hasL1-weight ssynℓ; the vectorseseq,− − eseq,+

and e′seq,− − e′seq,+ model substitution errors during sequencing inx and x′, respectively; each of the vectors

eseq,−, eseq,+, e
′
seq,−, e

′
seq,+ hasL1-weightsseq; andet ande′t are the coverage error vectors ofx andx′, respectively,

and bothet, e′t haveL1-weight t. Therefore,

p(x;S) − (esyn,− + eseq,− + et + e′syn,+ + e′seq,+) = p(x′;S)− (e′syn,− + e′seq,− + e′t + esyn,+ + eseq,+),

whereesyn,− + eseq,− + et + e′syn,+ + e′seq,+ ande′syn,− + e′seq,− + e′t + esyn,+ + eseq,+ are nonnegative vectors

of L1-weight at most2ssynℓ+ 2sseq + t. This contradicts the fact thatp(x;S) andp(x′;S) belong to a code that

corrects asymmetric errors withL1-weight at most2ssynℓ+ 2sseq + t.

Throughout the remainder of the paper, we consider the problem of enumerating the profile vectors inpQ(n;S)

and constructing(n, d;S)-ℓ-gram reconstruction codes for a general subsetS ⊆ JqKℓ. Our solutions are characterized

by properties associated with a class of graphs defined onS, which we introduce in Section 4. In the same section,

we collect enumeration results forQ(n;S). Section 5 is devoted to the proof of the main enumeration result using

Ehrhart theory. We further exploit Ehrhart theory and certain graph theoretic concepts to construct codes in Section

6 and summarize numerical results for the special case whereS = S(q, ℓ; q∗, [w1, w2]) in Section 7. Finally, we

describe practical decoding procedures in Section 8.

Remark 1.

(i) For the caseS = JqKℓ, given a wordx ∈ JqKn, Ukkonen made certain observations on the structure of certain

words in the equivalence class ofx, but was unable to completely characterize all words withinthe class [19].

Here, we focus on computing thenumberof equivalence classes for a general subsetS.

(ii) For ease of exposition, we abuse notation by identifying words inQ(n;S) with their corresponding profile

vectors inpQ(n;S) and refer to GRCs as being subsets ofQ(n;S) or pQ(n;S) interchangeably.

(iii) Given (n, d;S)-GRC C and the setp(C) = {p(x;S) : x ∈ C}, observe that all profile vectors inp(C) have

L1-weight n − ℓ + 1. In this case, the asymmetric distance between two profile vectorsu andv in p(C) is

given by half of theL1-weight of (u− v).

4. RESTRICTEDDE BRUIJN GRAPHS AND ENUMERATION OF PROFILE VECTORS

We use standard concepts and terminology from graph theory,following Bollobás [20].

A directed graph (digraph)D is a pair of sets(V,E), whereV is the set ofnodesandE is a set of ordered

pairs ofV , calledarcs. If e = (v, v′) is an arc, we callv the initial node andv′ the terminal node. We allow loops

in our digraphs: in other words, we allowv = v′. In some instances, we allow multiple arcs between nodes and

we term these digraphs asmultigraphs.
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The incidence matrixof a digraphD is a matrixB(D) in {−1, 0, 1}V ×E , where

B(D)v,e =





1 if e is not a loop andv is its terminal node,

−1 if e is not a loop andv is its initial node,

0 otherwise.

Observe that when a digraphD has loops, its incidence matrixB(D) has0-columns indexed by these loops. When

D is connected, it is known that the rank ofB(D) equals|V | − 1 (see [20, §II, Thm 9 and Ex. 38]).

A walk of lengthn in a digraph is a sequence of nodesv0v1 · · · vn such that(vi, vi+1) ∈ E for all i ∈ JnK. A walk

is closedif v0 = vn and acycleis a closed walk with distinct nodes, i.e.,vi 6= vj , for 0 ≤ i < j < n. We consider a

loop to be a cycle of length one. Given a subsetC of the arc set, letχ(C) ∈ {0, 1}E be its incidence vector, where

χ(C)e is one if e ∈ C and zero otherwise. In general, for any closed walkC in D, we haveB(D)χ(C) = 0.

A closed walk isEulerian if it includes all arcs inE. A cycle is Hamiltonian if it includes all nodes inV . A

digraph isstrongly connectedif for all v, v′ ∈ V , there exists a walk fromv to v′ and vice versa. A necessary and

sufficient condition for a strongly connected graph to have aclosed Eulerian walk is that the number of incoming

arcs is equal to the number of outgoing arcs for each node.

We are concerned with a special family of digraphs, namely, the de Bruijn graphs [21]. Givenq and ℓ, the

standardde Bruijn graphis defined on the node setJqKℓ−1. For v,v′ ∈ JqKℓ−1, the ordered pair(v,v′) belongs to

the arc set if and only ifvi = v′i−1 for 2 ≤ i ≤ ℓ.

Example 4.1. Let q = 2, ℓ = 4. Then the nodesv = 101 and v′ = 010 are connected by the arc1010 which

originates fromv and terminates inv′ as the suffix ofv of lengthℓ− 2 = 2 equals01, which is also the prefix of

length ℓ− 2 of v′.

The notion of restricted de Bruijn graphs was introduced by Ruskeyet al. [22] for the case of a binary alphabet.

For a fixed subsetS ⊆ JqKℓ, we define the correspondingrestricted de Bruijn graph, denoted byD(S) as follows.

The nodes ofD(S), denoted byV (S), are the(ℓ − 1)-grams appearing in the setS. The pair(v,v′) belongs to

the arc set if and only ifvi = v′i−1 for 2 ≤ i ≤ ℓ andv1v2 · · · vℓ−1v
′
ℓ−1 ∈ S. Note that the standard de Bruijn graph

is simplyD(JqKℓ). We refer the readers to Fig. 2 for an illustration of a de Bruijn and restricted de Bruijn graph

with setsJ2K3 andS(2, 4; 1, [2, 3]), respectively.

Example 4.2.Continuing Example 4.1, letq = 2, ℓ = 4 andS = S(2, 4; 1, [2, 3]). Since the word1010 belongs to

S, the arc fromv = 101 andv′ = 010 belongs toD(S). We also observe that1010 is word of lengthn = 4 and

it can be represented by the walk of lengthn− ℓ+ 1 = 1 from v to v′.

In general, a word of lengthn whoseℓ-grams belong toS can be represented by a walk of lengthn− ℓ+ 1 in

D(S). For example, the word011001101011 of length twelve corresponds to the walk

ONMLHIJK011
0110 // ONMLHIJK110

1100 // ONMLHIJK100
1001 // ONMLHIJK001

0011 // ONMLHIJK011
0110 // ONMLHIJK110

1101 // ONMLHIJK101
1010 // ONMLHIJK010

0101 // ONMLHIJK101
1011 // ONMLHIJK011

of length nine. Conversely, given the abovewalk of length nine, it is not difficult to obtain the binary word of

length twelve. For each arcz in S, we observe that the number of timesz is traversed by the walk gives the

number of times ofz appears as a4-gram of the word. Hence, if we label each arcz by this number, we obtain a

representation of the profile vector onD(S). We refer the readers to Fig. 2 for an illustration.

In their paper, Ruskeyet al. showed thatD(S) is Eulerian whenS = S(2, ℓ; 1, [w − 1, w]) for w ∈ [ℓ].

Nevertheless, the results of [22] can be extended for general q, q∗ and more general range of weights. As these

extensions are needed for our subsequent derivation, we provide their technical proofs in Appendix A. For purposes



8

D(J2K3) p(0001000; 2, 3)

GFED@ABC00

001

��

000

&& GFED@ABC10
100oo

101

zzGFED@ABC01
011

//

010

::

GFED@ABC11

110

OO

111

ff

GFED@ABC00

1

��

2

&& GFED@ABC10
1oo

0

zzGFED@ABC01
0

//

1

::

GFED@ABC11

0

OO

0

ff

D(2, 4; 1, [2, 3]) p(011001101011;S(2, 4; 1, [2, 3]))

ONMLHIJK001
0011 // ONMLHIJK011

0110

��

0111

""❊
❊❊

❊❊
❊❊

❊

ONMLHIJK010
0101 ,, ONMLHIJK101
1010
ll

1011
<<②②②②②②②② ONMLHIJK111

1110||②②
②②
②②
②②

ONMLHIJK100

1001

OO

ONMLHIJK110

1101

bb❊❊❊❊❊❊❊❊

1100
oo

ONMLHIJK001
1 // ONMLHIJK011

2

��

0

""❊
❊❊

❊❊
❊❊

❊

ONMLHIJK010
1 ,, ONMLHIJK101
1

ll

1
<<②②②②②②②② ONMLHIJK111

0||②②
②②
②②
②②

ONMLHIJK100

1

OO

ONMLHIJK110

1

bb❊❊❊❊❊❊❊❊
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Fig. 2. Examples of two de Bruijn and restricted de Bruijn graphs. The upper left corner shows a classical de Bruijn graph with q = 2 and
ℓ = 3. Note that the nodes of the graph are all binary tuples of length ℓ− 1 = 2, and arcs in the graph connect any pair of nodes for which
the last symbol of the origin node equals the first symbol of the terminal node. The arcs are labeled by the “overlap” sequence of the node
labels. In the right hand corner, the same graph is depicted with respect to a input sequencex which induces weights on the arcs, indicating
how many times theℓ-gram corresponding to the arc appeared inx. For example, inx = 0001000, the ℓ = 3-gram appears twice, leading
to the label2 for the self-loop around the node00. This example is extended for the case of a restricted de Bruijn graph defined on the
setS(2, 4; 1, [2, 3]) as depicted in the second row. Note that the graph in the lowerleft corner contains only arcs labeled byℓ = 4-tuples
of weight 2 and 3, as required by the definition ofS(2, 4; 1, [2, 3]). The corresponding4-gram profile vector for011001101011 on the
aforementioned restricted de Bruijn graph is shown in the lower right corner. As an example, observe that the sequencex = 011001101011
has two substrings0110, and hence the arc from the node labeled by011 to the node labeled by110 has weight2.

of brevity, we writeD(S(q, ℓ; q∗, [w1, w2])) andD(JqKℓ) asD(q, ℓ; q∗, [w1, w2]) andD(q, ℓ), respectively.

Proposition 4.1. Fix q andℓ. Let 1 ≤ q∗ ≤ q − 1 and1 ≤ w1 < w2 ≤ ℓ. ThenD(q, ℓ; q∗, [w1, w2]) is Eulerian. In

addition,D(q, ℓ) is Hamiltonian.

Observe that whenq∗ = q − 1, w1 = 0, w2 = ℓ, we recover the classical result that the de Bruijn graphD(q, ℓ)

is Eulerian and Hamiltonian.

We provide next the main enumeration results forQ(n;S), or equivalently, forpQ(n;S). We first assume that

D(S) is strongly connected. In addition, we consider closed walks inD(S). Observe from Example 4.2 that a walk

from nodev to nodev′ in D(S) is equivalent to a word whoseℓ-grams belong toS that starts withv and ends

with v′. Therefore, we defineclosed wordsto be words that start and end with the same(ℓ−1)-gram to correspond

with closed walks inD(S). We denote the set of closed words inQ(n;S) by Q̄(n;S), and the corresponding set

of profile vectors bypQ̄(n;S).

Suppose thatu belongs topQ̄(n;S). Then the following system of linear equations that we referto as theflow

conservation equations, hold true:

B(D(S))u = 0. (1)

Let 1 denote the all-ones vector. Since the number ofℓ-grams in a word of lengthn is n− ℓ+ 1, we also have

1Tu = n− ℓ+ 1. (2)
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Let A(S) beB(D(S)) augmented with a top row1T ; let b be a vector of length|V (S)|+ 1 with a one as its

first entry, and zeros elsewhere. Equations (1) and (2) may then be rewritten asA(S)u = (n− ℓ+ 1)b.

Consider the following two sets of integer points

F(n;S) , {u ∈ Z
|S| : A(S)u = (n − ℓ+ 1)b, u ≥ 0}, (3)

E(n;S) , {u ∈ Z
|S| : A(S)u = (n − ℓ+ 1)b, u > 0}. (4)

The preceding discussion asserts that the profile vector of any closed word must lie inF(n;S). Conversely, the

next lemma shows that any vector inE(n;S) is a profile vector of some word in̄Q(n;S).

Lemma 4.2. Suppose thatD(S) is strongly connected. Ifu ∈ E(n;S), then there exists a wordx ∈ Q̄(n;S) such

thatp(x;S) = u. That is,E(n;S) ⊆ pQ̄(n;S).

Proof: Construct a multidigraphDu on the node setV (S) such that there areuz copies of the arcz for all

z ∈ S. Since eachuz is positive andD(S) is strongly connected,Du is also strongly connected. Sinceu ∈ E(n;S),

u also satisfies the flow conservation equations andDu is consequently Eulerian. Also, asDu hasn− ℓ+ 1 arcs,

an Eulerian walk onDu yields one such desired wordx.

Therefore, we have the following relation,

E(n;S) ⊆ pQ̄(n;S) ⊆ F(n;S). (5)

We first state our main enumeration result and defer its proofto Section 5. Specifically, under the assumption

that D(S) is strongly connected, we show that both|E(n;S)| and |F(n;S)| are quasipolynomials inn whose

coefficients are periodic inn. Following Beck and Robins [23], we define aquasipolynomialf as a function in

n of the form cD(n)n
D−1 + cD−1(n)n

D−1 + · · · + c0(n), wherecD, cD−1, . . . , c0 are periodic functions inn. If

cD is not identically equal to zero,f is said to be ofdegreeD. The period of f is given by the lowest common

multiple of the periods ofcD, cD−1, . . . , c0.

In order to state our asymptotic results, we adapt the standard Ω andΘ symbols. We usef(n) = Ω′(g(n)) to state

that for a fixed value ofℓ, there exists an integerλ and a positive constantc so thatf(n) ≥ cg(n) for sufficiently

largen with λ|(n− ℓ+1). In other words,f(n) ≥ cg(n) whenevern is sufficiently large and is congruent toℓ− 1

moduloλ. We write f(n) = Θ′(g(n)) if f(n) = O(g(n)) andf(n) = Ω′(g(n)).

Theorem 4.3. SupposeD(S) is strongly connected and letλ be the least common multiple of the lengths of all

cycles inD(S). Then |E(n;S)| = |F(n;S)|Θ′
(
n|S|−|V (S)|

)
. In particular,|pQ̄(n;S)| = Θ′

(
n|S|−|V (S)|

)
.

Before we end this section, we look at certain implications of Theorem 4.3. First, we show that the estimate on

|pQ̄(n;S)| extends to|pQ(n;S)| whenD(S) is strongly connected.

Corollary 4.4. SupposeD(S) is strongly connected. For anyz, z′ ∈ V (S), consider the set of words inQ(n;S)

that begin withz and end withz′ and letpQ(n;S, z → z′) be the corresponding set of profile vectors. Similarly,

let pQ(n;S, z → ∗) andpQ(n;S, ∗ → z′) denote the set of profile vectors of words beginning withz and words

ending withz′, respectively. Then

|pQ(n;S)| = Θ′(|pQ(n;S, z → z′)|) = Θ′(|pQ(n;S, ∗ → z′)|) = Θ′(|pQ(n;S, z → ∗)|) = Θ′
(
n|S|−|V (S)|

)
.

Proof: Let z, z′ ∈ V (S). SinceD(S) is strongly connected, we consider the shortest path fromz to z′ in

D(S). Let w = zw′ be the correspondingq-ary word andL(z, z′) be the length of the path, or equivalently, the

length of the wordw′. Consideru(z → z′) = p(w;S) the profile vector ofw and observe that both the length
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L(z, z′) and the vectoru(z → z′) are independent ofn.

We demonstrate the following inequality:

|E(n − L(z, z′);S)| ≤ |pQ(n;S, z → z′)| ≤ |pQ̄(n+ L(z′, z);S)|. (6)

To demonstrate the first inequality, we construct an injective mapφ1 : E(n − L(z, z′);S) → pQ(n;S, z → z′)

defined byφ1(u) = u + u(z → z′). Now, sinceu ∈ E(n − p(z, z′);S), we obtain from Lemma 4.2 a word of

lengthn−L(z, z′) whose profile vector isu. Without loss of generality, we let this word bex and assume that it

starts and ends withz. Thenxw is a word of lengthn whose profile vector isu + u(z → z′). Therefore,φ1(u)

lies in pQ(n;S, z → z′) andφ1 is a well-defined map. Supposeu andu′ are vectors inE(n − L(z, z′);S) such

that φ1(u) = φ1(u
′). Sinceu = φ1(u)− u(z → z′) = φ1(u

′)− u(z → z′) = u′, we concludeφ1 is injective and

hence, the first inequality follows.

Similarly, for the other inequality, we consider another map φ2 : pQ(n;S, z → z′) → pQ̄(n+L(z′, z);S) where

φ2(u) = u+u(z′ → z). As before, letu be the profile vector of a wordx of lengthn that starts withz and ends

with z′. Let w = z′w′ be theq-ary word corresponding to the shortest path fromz′ to z in D(S). Concatenating

x with w′ yieldsxw′, which is a word of lengthn+L(z′, z) and starts and ends withz. Hence, its profile vector

u + u(z′ → z) lies in pQ̄(n + L(z′, z);S). As with φ1, the mapφ2 is a well-defined and can be shown to be

injective.

Combining (6) with Theorem 4.3 yields the result|pQ(n;S, z, z′)| = Θ′
(
n|S|−|V (S)|

)
.

Next, we demonstrate that|pQ(n;S)| = Θ′
(
n|S|−|V (S)|

)
, and observe that the other asymptotic equalities may

be derived similarly.

Let P , max{L(z, z′) : z, z′ ∈ V (S)} be the diameter of the digraphD(S). Then,

|pQ(n;S)| =
∑

z,z′∈V (S)

|Q(n;S, z, z′)| ≤
∑

z,z′∈V (S)

|Q̄(n+ L(z′, z);S)|

≤ |V (S)|2|Q̄(n+ P ;S)| = O
(
n|S|−|V (S)|

)
.

Since|Q(n;S)| ≥ |Q̄(n;S)| = Ω′
(
n|S|−|V (S)|

)
, the corollary follows.

In the special case whereS = JqKℓ, Jacquetet al. demonstrated a stronger version of Theorem 4.3 for the special

caseℓ = 2 using analytic combinatorics. In addition, using a carefulanalysis similar to the proof of Corollary 4.4,

Jacquetet al. also provided a tighter bound for|pQ(n; JqKℓ)| for the caseℓ = 2. Note thatf(n) ∼ g(n) stands for

limn→∞ f(n)/g(n) = 1.

Theorem 4.5(Jacquetet al. [15]). Fix q, ℓ. Let E(n; JqKℓ), F(n; JqKℓ), pQ(n; JqKℓ) andpQ̄(n; JqKℓ) be defined as

above. Then

|E(n; JqKℓ)| ∼ |F(n; JqKℓ)| ∼ |pQ̄(n; JqKℓ)| ∼ c(q, ℓ)nq
ℓ−qℓ−1

, (7)

where c(q, ℓ) is a constant. Furthermore, whenℓ = 2, we have|pQ(n; JqKℓ)| = (q2 − q + 1)|pQ̄(n; q, 2)|(1 −

O(n−2q)).

Next, we extend Theorem 4.3 to provide estimates onQ̄(n;S) andQ(n;S) for generalS, whereD(S) is not

necessarily strongly connected.

Given D(S), let V1, V2, . . . , VI be a partition ofV (S) such that the induced subgraph(Vi, Si) is a maximal

strongly connected component for all1 ≤ i ≤ I. Defineδi , |Si| − |Vi|. Then by Theorem 4.3, there areΘ′(nδi)

closed words belonging tōQ(n;Si) and therefore,Q̄(n;S). Suppose∆̄ = max{δi : i ∈ I}. Then Q̄(n;S) =

Ω′(n∆̄).
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Fig. 3. Constructing a weighted digraph from the connected components ofD(S).

On the other hand, any closed wordx in Q̄(n;S) corresponds to a closed walk inD(S) and a closed walk in

D(S) must belong to some strongly connected component(Vi, Si). In other words,x must belong toQ̄(n;Si) for

some1 ≤ i ≤ I. Hence, we have|Q̄(n;S)| = O(n∆̄).

Corollary 4.6. GivenD(S), let V1, V2, . . . , VI be a partition ofV (S) such that the induced subgraph(Vi, Si) is

strongly connected for all1 ≤ i ≤ I. Define∆̄ , max{|Si| − |Vi| : 1 ≤ i ≤ I}. Then|Q̄(n;S)| = Θ′(n∆̄).

Example 4.3. Let S = {00, 01, 10, 12, 23, 32, 33} with q = 4 andℓ = 2. ThenD(S) is as shown below.

?>=<89:;0

00

**
01

++ ?>=<89:;1
12 //

10

kk ?>=<89:;2
23

++ ?>=<89:;3
32

kk

33

tt

We have two strongly connected components, namely,V1 = {0, 1} andV2 = {2, 3}. So,(V1, S1 = {00, 01, 10})

and (V2, S2 = {23, 32, 33}) are both strongly connected digraphs with|pQ̄(n;S1)| = |pQ̄(n;S2)| = ⌈n/2⌉ =

Θ′(n). Hence,|pQ̄(n;S)| = |pQ̄(n;S1)|+ |pQ̄(n;S2)| = Θ′(n), in agreement with Corollary 4.6.

On the other hand, let us enumerate the elements ofQ(n;S) or pQ(n;S). Let u ∈ pQ(n;S). If u12 = 0, then

u belongs topQ(n;S1) or pQ(n;S2). Otherwise,u12 = 1 and we haveu = u1+χ(12)+u2 with u1 ∈ pQ(n1+

1;S1, ∗ → 1), u2 ∈ pQ(n2+1;S2, 2 → ∗) andn1+n2+1 = n−1. Now, |pQ(n;S1)| = |pQ(n;S2)| = n+⌊n/2⌋

and |pQ̄(n;S1, ∗ → 1)| = |pQ̄(n;S2, 2 → ∗)| = n− 1 for n ≥ 2. Hence,

|pQ(n;S)| = 2
(
n+

⌊n
2

⌋)
+ 2(n− 2) +

n−3∑

n1=1

n1(n− 2− n1) = Θ′(n3).

Therefore, whenD(S) is not strongly connected, it is not necessarily true that|pQ̄(n;S)| and |pQ(n;S)| differ

only by a constant factor. Furthermore, we can extend the methods in this example to obtain|pQ(n;S)| for general

digraphs.

To determine|pQ(n;S)|, we construct an auxiliary weighted digraph with nodesv1, v2, . . . , vI , vsource andvsink.

If there exists an arc from the componentVi to componentVj for 1 ≤ i, j ≤ I, we add an arc fromvi to vj.

Further, we add an arc fromvsource to vi and fromvi to vsink for all 1 ≤ i ≤ I. The arcs leavingvsource have zero

weight. For all1 ≤ i ≤ I, the arcs leavingvi have weightδi = |Si|− |Vi| if their terminal node isvsink, and weight

δi + 1 otherwise. (see Fig. 3 for the transformation).

Let D′ be the resulting digraph and observe thatD′ is acyclic. Hence, we can find the longest weighted path
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from vsource to vsink in linear time (see Ahujaet al. [24, Ch. 4]). Furthermore, suppose that∆ is the weight of the

longest path. Then the next corollary states that|pQ(n;S)| = Θ′(n∆).

Corollary 4.7. GivenD(S), let V1, V2, . . . , VI be a partition ofV (S) such that the induced subgraph(Vi, Si) is

strongly connected for all1 ≤ i ≤ I. ConstructD′ as above (see Fig. 3) and let∆ be the weight of the longest

weighted path fromvsource to vsink. Then |pQ(n;S)| = Θ′(n∆).

Proof: Let K ⊂ {1, . . . , I} be the set of indicesk such thatSk = ∅. In other words, the induced subgraph

(Vk, Sk) is an isolated node. Defineǫj to be0 if j ∈ K andδj otherwise.

For eachu ∈ pQ(n;S), we have a set of indices{i1, i2, . . . , it} ⊆ {1, 2, . . . , I}, a set of vectorsu1,u2, . . . ,ut,

e1, e2, . . . , et−1, and integersn1, n2, . . . , nt such that the following hold:

(i) u = u1 + e1 + u2 + e2 + · · ·+ et−1 + ut;

(ii) for 1 ≤ j ≤ t − 1, ei is the incidence vector of some arc(zj , z′j+1) in D(S) such thatzj ∈ Vij and

z′j+1 ∈ Vij+1
;

(iii) for 1 ≤ j ≤ t, the vectoruj belongs topQ(nj ;Sij );

(iv) (t− 1) +
∑t

j=1 nj = n− ℓ+ 1;

(v) vsourcevi1vi2 · · · vitvsink is a path inD′.

Note that Condition (iii) implies thatnj = 0 wheneverij ∈ K. Note that ifu,u′ are vectors inpQ(n;S) having

the same set of indices{i1, . . . , it} and the same vectorsu1, . . . ,ut, thenu = u′. Thus, we may obtain an upper

bound on|pQ(n; s)| by bounding the number of ways to produce such index sets and vectors.

For a fixed subset{i1, i2, . . . , it} ⊆ [I], let k = |{i1, . . . , it} ∩K|. Let T be the set of tuples(n1, . . . , nt) such

that
∑t

j=1 nj = (n− ℓ+ 1)− (t− 1) and such thatnj = 0 wheneverij ∈ K. If k < t, then|T | ≤ nt−1−k, so we

have

∑

(n1,...,nt)∈T

t∏

j=1

∣∣pQ(nj ;Sij )
∣∣ = |T |O(nǫi1+···+ǫit ) = O(nt−1−k)O(nδi1+···+δit+k) = O(nδi1+···+δit+(t−1)) = O(n∆).

Here, the first inequality follows from Corollary 4.4, whilethe last inequality follows from the fact that(t−1)+∑t
j=1 δij measures the weight ofvsourcevi1vi2 · · · vitvsink and this value is upper bounded by∆. On the other hand,

if k = t, that is, if{i1, . . . , it} ⊂ K, then|T | = 0 if t−1 < n− ℓ+1 and|T | = 1 otherwise. Hence in this case we

also have
∑

(n1,...,nt)∈T

∏T
j=1

∣∣pQ(nj ;Sij )
∣∣ = O(n∆). Since the number of subsets of{1, 2, . . . I} is independent

of n, and since each subset corresponds to at mostO(n∆) vectors inpQ(n;S), we have|pQ(n;S)| = O(n∆).

Conversely, supposevsourcevi1vi2 · · · vitvsink is a path inD′ of maximum weight∆. With T defined as before

relative to{i1, . . . , it}, we then have

|pQ(n;S)| ≥
∑

(n1,...,nt)∈T

t∏

j=1

|pQ(nj ;Sij )| ≥ C1

∑

(n1,...,nt)∈T

n
ǫi1
1 n

ǫi1
2 · · ·n

ǫit
t

for some positive constantC1, by Corollary 4.4. Letk = |K ∩ {i1, . . . , it}| as before, and letT ′ ⊂ T be the set

defined by

T ′ =
{
(n1, . . . , nt) ∈ T : nj ≥

n

2t
wheneverij /∈ K

}
.

Observe that there is a positive constantC2 such that forn sufficiently large,|T ′| ≥ C2n
(t−1)−k. Now we have

∑

(n1,...,nt)∈T ′

n
ǫi1
1 · · ·n

ǫit
t ≥ (2t)−t

∑

(n1,...,nt)∈T ′

nǫi1+···+ǫit

≥ (2t)−tC2n
δi1+···+δit+(t−1) = C3n

∆.
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5. EHRHART THEORY AND PROOF OFTHEOREM 4.3

We assumeD(S) to be strongly connected and provide a detailed proof of Theorem 4.3. For this purpose,

in the next subsection, we introduce some fundamental results from Ehrhart theory. Ehrhart theory is a natural

framework for enumerating profile vectors and one may simplify the techniques of [15] significantly and obtain

similar results for a more general family of digraphs. Furthermore, Ehrhart theory also allows us to extend the

enumeration procedure to profiles at a prescribed distance.

A. Ehrhart Theory

As suggested by (3) and (4), in order to enumerate codewords of interest, we need to enumerate certain sets of

integer points or lattice points in polytopes. The first general treatment of the theory of enumerating lattice points

in polytopes was described by Ehrhart [25], and later developed by Stanley from a commutative-algebraic point of

view (see [26, Ch. 4]). Here, we follow the combinatorial treatment of Beck and Robins [23]. Recall thatv ≥ 0

means that all entries inv are nonnegative. We extend the notation so thatv ≥ u denotesv − u ≥ 0.

Consider the setP of points given by

P , {u ∈ R
n : Au ≤ b},

for some integer matrixA and some integer vectorb. We then call this setP a rational polytope. A rational

polytope isinteger if all of its vertices (see Definition 5.1) have integer coordinates. Thelattice point enumerator

LP(t) of P is given by

LP(t) , |Zn ∩ tP|, for all postive integerst.

Ehrhart [25] introduced the lattice point enumerator for rational polytopes and showed thatLP(t) is a quasipoly-

nomial of degreeD, whereD is given by the dimension of the polytopeP. Here, we define thedimensionof a

polytope to be the dimension of the affine space spanned by points inP. A formal statement of Ehrhart’s theorem

is provided below.

Theorem 5.1 (Ehrhart’s theorem for polytopes [23, Thm 3.8 and 3.23]). If P is a rational convex polytope of

dimensionD, thenLP(t) is a quasipolynomial of degreeD. Its period divides the least common multiple of the

denominators of the coordinates of the vertices ofP. Furthermore, ifP is integer, thenLP(t) is a polynomial of

degreeD.

Motivated by (4), we consider therelative interior of P. For the case whereP is convex, the relative interior,

or interior, is given by

P◦ , {u ∈ P : for all u′ ∈ P, there exists anǫ > 0 such thatu+ ǫ(u− u′) ∈ P}.

For a positive integert, we consider the quantity

LP◦(t) = |Zn ∩ tP◦|.

Ehrhart conjectured the following relation betweenLP(t) andLP◦(t), proved by Macdonald [27].

Theorem 5.2 (Ehrhart-Macdonald reciprocity [23, Thm 4.1]). If P is a rational convex polytope of dimensionD,

then the evaluation ofLP(t) at negative integers satisfies

LP(−t) = (−1)DLP◦(t).
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B. Proof of Theorem 4.3

Recall the definitions ofA(S) andb in (3), and consider the polytope

P(S) , {u ∈ R
|S| : A(S)u = b,u ≥ 0}, (8)

Using lattice point enumerators, we may write|F(n;S)| = LP(S)(n − ℓ + 1). Therefore, in view of Ehrhart’s

theorem, we need to determine the dimension of the polytopeP(S) and characterize the interior and the vertices

of this polytope.

Lemma 5.3. Suppose thatD(S) is strongly connected. Then the dimension ofP(S) is |S| − |V (S)|.

Proof: We first establish that the rank ofA(S) is |V (S)|. SinceD(S) is connected, the rank ofB(D(S)) is

|V (S)| − 1. We next show that1T does not belong to the row space ofB(D(S)). As D(S) is strongly connected,

D(S) contains a cycle, sayC. SinceB(D(S))χ(C) = 0 but 1χ(C) = |C| 6= 0, 1 does not belong to the row

space ofB(D(S)), so augmenting the matrix with the all-one row increases itsrank by one. Therefore, the nullity

of A(S) is |S| − |V (S)|. Hence, the dimension ofP(S) is at most|S| − |V (S)|.

Next, we show that there exists au > 0 such thatA(S)u = b. Since the nullity ofB(D(S)) is positive, there

exists au′ such thatA(S)u′ = b. SinceD(S) is strongly connected, there exists a closed walk onD(S) that visits

all arcs at least once. In other words, there exists a vectorv > 0 such thatA(S)v = µb for µ > 0. Chooseµ′

sufficiently large so thatu′ + µ′v > 0 and setu = (u′ + µ′v)/(1 + µ′µ). One can easily verify thatA(S)u = b.

To complete the proof, we exhibit a set of|S| − |V (S)|+1 affinely independent points inP(S). Let u1,u2, . . .,

u|S|−|V (S)| be linearly independent vectors that span the null space ofA(S). Sinceu has strictly positive entries,

we can findǫ small enough so thatu+ ǫui belongs toP(S) for all i ∈ [|S| − |V (S)|]. Therefore{u,u+ ǫu1,u+

ǫu2, . . . ,u+ ǫu|S|−|V (S)|} is the desired set of|S| − |V (S)| + 1 affinely independent points inP(S).

Lemma 5.4. SupposeD(S) is strongly connected. ThenP◦(S) = {u ∈ R
|S| : A(S)u = b,u > 0}. Therefore,

|E(n;S)| = LP◦(S)(n− ℓ+ 1).

Proof: Let u > 0 be such thatA(S)u = b. For anyu′ ∈ P(S), we haveA(S)u′ = b and hence,A(S)(u−

u′) = 0. Sinceu has strictly positive entries, we chooseǫ small enough so thatu + ǫ(u − u′) ≥ 0. Therefore,

u+ ǫ(u− u′) belongs toP(S) andu belongs to the interior ofP(S).

Conversely, letu ∈ P(S), with uz = 0 for somez ∈ S. SinceD(S) is strongly connected, from the proof of

Lemma 5.3, there exists au′ ∈ P(S) with u′ > 0. Hence, for allǫ > 0, thez-coordinate ofu+ ǫ(u−u′) is given

by −ǫu′z, which is always negative. In other words,u does not belong toP◦(S).

Therefore, using Ehrhart’s theorem and Ehrhart-Macdonaldreciprocity along with Lemmas 5.3 and 5.4, we arrive

at the fact that|E(n;S)| and |F(n;S)| are quasipolynomials inn whose coefficients are periodic inn.

In order to determine the period of the quasipolynomials, wecharacterize the vertex set ofP(S).

Definition 5.1. A point v in a polytope is avertexif v cannot be expressed as a convex combination of the other

points.

Lemma 5.5. The vertex set ofP(S) is given by{χ(C)/|C| : C is a cycle inD(S)}.

Proof: First, observe thatχ(C)/|C| belongs toP(S) for any cycleC in D(S).

Let v ∈ P(S) and supposev is a vertex. SinceP(S) is rational, its vertexv has rational coordinates (see [23,

Section 2.8, Appendix A]) Chooseµ > 0 so thatµv has integer entries. Construct the multigraphD′ on V (S) by

addingµvz copies of the arcz for all z ∈ S. Sincev ∈ P(S), B(S)µv = 0 and hence, each of the connected



15

components ofD′ are Eulerian. Therefore, the arc set ofD′ can be decomposed into disjoint cycles. Sincev is a

vertex, there can only be one cycle and hence,v = χ(C)/|C| for some cycleC.

Conversely, we show that for any cycleC in D(S), χ(C)/|C| cannot be expressed as a convex combination of

other points inP(S). Suppose otherwise. Then there exist cyclesC1, C2, . . . , Ct distinct fromC and nonnegative

scalarsα1, α2, . . . , αt such thatχ(C) =
∑t

i=1 αiχ(Ci). For eachj, let ej be an arc that belongs toCj but notC.

Then

0 = χ(C)ej =
∑

1≤i≤t

αiχ(Ci)ej ≥ αjχ(Cj)ej = αj.

Hence,αj = 0 for all j. Therefore,χ(C) = 0, a contradiction.

Let λS = lcm{|C| : C is a cycle inD(S)}, wherelcm denotes the lowest common multiple. Then the period

of the quasipolynomialLP(S)(n− ℓ+ 1) dividesλS by Ehrhart’s theorem.

Let us dilate the polytopeP(S) by λS and consider the polytopeλSP(S) andLλSP(S)(t). SinceλSP is integer,

bothLλSP(S)(t) andLλSP◦(S)(t) are polynomials of degree|S| − |V (S)|. Hence,

|Q̄(n;S)| ≥ LλSP◦(S)(t) = Ω
(
t|S|−|V (S)|

)
, whenevern− ℓ+ 1 = λSt or λS|(n − ℓ+ 1),

and therefore,|Q̄(n;S)| = Θ′
(
n|S|−|V (S)|

)
. This completes the proof of Theorem 4.3.

In the special case whereD(S) contains a loop, we can show further that the leading coefficients of the

quasipolynomials|E(n; JqKℓ)| and |F(n; JqKℓ)| are the same and constant. This result is a direct consequence of

Ehrhart-Macdonald reciprocity and the fact that|E(n; JqKℓ)| is monotonically increasing. We demonstrate the latter

claim in Appendix B.

Note that whenS = JqKℓ, Corollary 5.6 yields (7), a result of Jacquetet al. [15].

Corollary 5.6. SupposeD(S) is strongly connected. IfD(S) contains a loop, then

|E(n;S)| ∼ |Q̄(n;S)| ∼ |F(n;S)| ∼ c(S)n|S|−|V (S)| +O(n|S|−|V (S)|−1), for some constantc(S). (9)

6. CONSTRUCTIVE LOWER BOUNDS

Fix S ⊆ JqKℓ and recall thatpQ(n;S) denotes the set of allℓ-gram profile vectors of words inQ(n;S). For

ease of exposition, we henceforth identify words inQ(n;S) with their corresponding profile vectors inpQ(n;S).

In Section 8, we provide an efficient method to map a profile vector in pQ(n;S) back to aq-ary codeword in

Q(n;S), Therefore, in this section, we construct GRCs as sets of profile vectorspQ(n;S) which we may map

back to correspondingq-ary codewords inQ(n;S).

Suppose thatC is an (N, d)-AECC. We construct GRCs fromC via the following methods:

(i) WhenN = |S|, we intersectC with pQ(n;S) to obtain anℓ-gram reconstruction code. In other words, we

pick out the codewords inC that are also profile vectors. Specifically,C ∩ pQ(n;S) is an (n, d;S)-GRC.

However, the size|C ∩ pQ(n;S)| is usually smaller than|C| and so, we provide estimates to|C ∩ pQ(n;S)|

for a classical family of AECCs in Section 6-A.

(ii) When N < |S|, we extend each codeword inC to a profile vector of length|S| in pQ(n; q, ℓ). In contrast

to the previous construction, we may in principle obtain an(n, d; q, ℓ)-GRC with the same cardinality asC.

However, one may not always be able to extend an arbitrary word to a profile vector. Section 6-B describes

one method of mapping words inJmKN to pQ(n; q, ℓ) that preserves the code size for a suitable choice of

the parametersm andN . In addition, this mapping also preserves the distance of the orginal codeC.
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A. Intersection withpQ(n;S)

In this section, we assumeN = |S| and we estimate|C ∩ pQ(n;S)| whenC belongs to a classical family of

AECCs proposed by Varshamov [28]. Fixd and letp be a prime such thatp > d andp > N . ChooseN distinct

nonzero elementsα1, α2, . . . , αN in Z/pZ and consider the matrix3

H ,




α1 α2 · · · αN

α2
1 α2

2 · · · α2
N

...
...

. . .
...

αd
1 αd

2 · · · αd
N



.

Pick any vectorβ ∈ (Z/pZ)d and define the code

C(H,β) , {u : Hu ≡ β mod p}. (10)

Then,C(H,β) is an(N, d+1)-AECC [28]. Hence,C(H,β)∩pQ(n;S) is an(n, d+1;S)-GRC for allβ ∈ (Z/pZ)d.

Therefore, by the pigeonhole principle, there exists aβ such that|C(H,β) ∩ pQ(n;S)| is at least|pQ(n;S)|/pd.

However, the choice ofβ that guarantees this lower bound is not known.

In the rest of this section, we fix a certain choice ofH and β and provide lower bounds on the size of

C(H,β)∩ pQ(n;S) as a function ofn. As before, instead of looking atpQ(n;S) directly, we consider the set of

closed wordsQ̄(n;S) and the corresponding set of profile vectorspQ̄(n;S).

Let β = 0 and chooseH andp based on the restricted de Bruijn digraphD(S). For an arbitrary matrixM, let

Null>0M denote the set of vectors in the null space ofM that have positive entries. We assumeD(S) to be strongly

connected so thatNull>0B(D(S)) is nonempty. Hence, we chooseH andp such thatC(H,0) ∩Null>0B(D(S))

is nonempty.

Define the(|V (S)| + 1 + d)× (|S|+ d)-matrix

A(H, S) ,

(
A(S) 0

H −pId

)
,

whereA(S) is as described in Section 4. Letb be a vector of length|V (S)| + 1 + d that has1 as the first entry

and zeros elsewhere, and define the polytope

PGRC(H, S) , {u ∈ R
|S|+d : A(H, S)u = b,u ≥ 0} (11)

SinceE(n;S) ⊆ pQ̄(n;S) ⊆ pQ(n;S), |C(H,0) ∩ E(n;S)| is a lower bound for|C(H,0) ∩ pQ(n;S)|. The

following proposition demonstrates that|C(H,0) ∩ E(n;S)| is given by the number of lattice points in the interior

of a dilation ofPGRC(H, S).

Proposition 6.1. Let C(H,0) andPGRC(H, S) be defined as above. IfD(S) is strongly connected andC(H,0)∩

Null>0B(D(S)) is nonempty, then|C(H,0) ∩ E(n;S)| =
∣∣ZN+d ∩ (n− ℓ+ 1)P◦

GRC(H, S)
∣∣.

Proof: Similar to Lemma 5.4, we have thatP◦
GRC(H, S) = {u ∈ R

|S|+d : A(H, S)u = b,u > 0}, and we

defer the proof of this claim to Appendix C.

To prove the desired sets have the same cardinality, we construct a bijection between the two maps. Letu > 0

be such thatA(H, S)u = (n− ℓ+1)b. Let u = (u0,β
′), where the vectoru0 is the vectoru restricted to the first

3The value ofp may be determined in time polynomial inN since there always exists a prime number betweenN and2N by Bertrand’s
postulate [29] and the running time of a primality test is polynomial in logN [30]. The constructionH can be completed in time polynomial
in N , since multiplication in the fieldFp has time complexity polynomial inlogN and there aredN entries to fill inH.
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N coordinates andβ′ is the vectoru restricted to the lastd coordinates. ThenA(S)u0 = (n − ℓ + 1)b0, where

b0 is a vector of length|V (S)| + 1 with one in its first coordinate and zeros elsewhere. Hence,u0 ∈ E(n;S).

On the other hand,Hu0 = pβ′ and so,Hu0 ≡ 0 mod p, implying thatu0 ∈ C(H,0). Therefore,φ(u) = u0 is

well-defined map from{u ∈ Z
N+d : A(H, S)u = (n − ℓ+ 1)b andu > 0} to C(H,0) ∩ E(n;S).

Next, consideru0 ∈ C(H,0) ∩ E(n;S). ThenA(S)u0 = (n − ℓ + 1)b0. Also, Hu0 ≡ 0 mod p and hence,
1
p
Hu0 has integer coordinates. Thenψ(u0) = (u0,

1
p
Hu0) is a well-defined map fromC(H,0) ∩ E(n;S) to

{u ∈ Z
N+d : A(H, S)u = (n− ℓ+ 1)b andu > 0}.

Finally, to demonstrate that bothφ andψ are bijections, we verify thatψ ◦ φ andφ ◦ ψ are both identify maps

on {u ∈ Z
N+d : A(H, S)u = (n− ℓ+ 1)b andu > 0} andC(H,0) ∩ E(n;S), respectively. Indeed,

ψ ◦ φ((u0,β
′)) = ψ(u0) = (u0,

1

p
Hu0) = (u0,β

′),

φ ◦ ψ(u0) = ψ((u0,
1

p
Hu0)) = u0.

Hence, the two sets have the same cardinality.

As before, we compute the dimension ofPGRC(H, S) and characterize its vertex set. Since the proofs are similar

to the ones in Section 5, the reader is referred to Appendix C for a detailed analysis.

Lemma 6.2. Let C(H,0) andPGRC(H, S) be defined as above. Suppose further thatD(S) is strongly connected

andC(H,0) ∩ Null>0B(D(S)) is nonempty. The dimension ofPGRC(H, S) is |S| − |V (S)|, while its vertex set

is given by {(
χ(C)

|C|
,
Hχ(C)

p|C|

)
: C is a cycle inD(S)

}
.

LetλGRC = lcm{|C| : C is a cycle inD(S)}∪{p}. Then Lemma 6.2, Ehrhart’s theorem and Ehrhart-Macdonald’s

reciprocity imply thatLP◦

GRC(H,S)(t) is a quasipolynomial of degree|S| − |V (S)| whose period dividesλGRC. As

in Section 5, we dilate the polytopePGRC(H, S) by λGRC to obtain an integer polytope and assume that the

polynomialLλGRCPGRC(H,S)(t) has leading coefficientc. Hence, whenevern − ℓ + 1 = λGRCt, that is, whenever

λGRC|(n− ℓ+ 1),

|C(H,0) ∩ E(n;S)| = LλGRCP◦

GRC(H,S)(t) = ct|S|−|V (S)| +O(t|S|−|V (S)|−1)

= c(n/λGRC)
|S|−|V (S)| +O(n|S|−|V (S)|−1).

We denotec/λ|S|−|V (S)|
GRC by c(H, S) and summarize the results in the following theorem.

Theorem 6.3. Fix S ⊆ JqKℓ and d. ChooseH and p so thatC(H,0) is an (|S|, d + 1)-AECC andC(H,0) ∩

Null>0B(D(S)) is nonempty. Suppose thatλGRC = lcm{{|C| : C is a cycle inD(S)} ∪ {p}}. Then there exists

a constantc(H, S) such that wheneverλGRC|(n − ℓ+ 1),

|C(H,0) ∩ pQ(n;S)| ≥ c(H, S)n|S|−|V (S)| +O(n|S|−|V (S)|−1).

Hence, it follows from Theorem 6.3, we haveC(n, d;S) = Ω′(n|S|−|V (S)|) whend is constant. SinceC(n, d;S) ≤

|Q(n;S)| = O(n|S|−|V (S)|), we haveC(n, d;S) = Θ′(n|S|−|V (S)|).

B. Systematic Encoding of Profile Vectors

In this subsection, we look at efficient one-to-one mappingsfrom JmKN to pQ(n;S). As with usual constrained

coding problems, we are interested in maximizing the numberof messages, i.e. the size ofmN , so that the number
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of messages is close to|pQ(n;S)| = Θ′(n|S|−|V (S)|). We achieve this goal by exhibiting a systematic encoder with

m = Θ(n) andN = |S| − |V (S)| − 1. More formally, we prove the following theorem.

Theorem 6.4 (Systematic Encoder). Fix n andS ⊆ JqKℓ. Pick anym so that

m ≤
n− ℓ+ 1

(|V (S)|
2

)
(q − 1) + |S| − |V (S)| − 1

. (12)

Suppose further thatD(S) is Hamiltonian and contains a loop. Then, there exists a setI ⊆ S of coordinates of size

|S|− |V (S)|−1 with the following property: for anyv ∈ JmKI , there exists anℓ-gram profile vectoru ∈ pQ(n;S)

such thatu|I = v. Furthermore,u can be found in timeO(|V (S)|).

In other words, given any wordv of lengthN = |I| = |S| − |V (S)| − 1, one can always extend it to obtain a

profile vectoru ∈ pQ(n;S) of length|S|. As pointed out earlier, this theorem provides a simple way of constructing

ℓ-gram codes from AECCs and we sketch the construction in whatfollows.

Let φsys(v) denote the profile vector resulting from Theorem 6.4 given inputv. Consider anm-ary (N, d)-AECC

C with N = |S| − |V (S)| − 1 andm satisfying (12). Letφsys(C) , {φsys(v) : v ∈ C}. Thenφsys(C) ⊆ pQ(n;S).

Furthermore,φsys(C) has asymmetric distance at leastd since restricting the codeφsys(C) on the coordinates inI

yields C. Hence, we have the following corollary.

Corollary 6.5. Fix n andS ⊆ JqKℓ and pickm satisfying (12). SupposeD(S) is Hamiltonian and contains a loop.

If C is anm-ary (|S| − |V (S)| − 1, d)-AECC, thenφsys(C) , {φsys(v) : v ∈ C} is a (n, d;S)-GRC.

For compactness, we writeV , A andB, instead ofV (S), A(S) andB(D(S)). To prove Theorem 6.4, consider

the restricted de Bruijn digraphD(S). By the assumptions of the theorem, denote the set of|V | arcs in a Hamiltonian

cycle asH and the arc corresponding to a loop bya0. We setI to beS \ (H ∪ {a0}).

We reorder the coordinates so that the arcs inH are ordered first, followed by the arca0 and then the arcs

in I. So, givenv = (v1, v2, . . . , v|I|) ∈ JmK|I|, the proof of Theorem 6.4 essentially reduces to finding integers

x1, x2, . . . , x|V |, y such that

A
(
x1, x2, . . . , x|V |, y, v1, v2, . . . , v|I|

)T
= (n− ℓ+ 1)b. (13)

Considering the first row ofA separately from the remaining rows, we see that (13) is equivalent to the following

system of equations:

|V |∑

i=1

xi + y = (n − ℓ+ 1)−

|I|∑

i=1

vi, (14)

0 = B




x1
...

x|V |

y

u1
...

u|I|




= B




x1
...

x|V |

0

0
...

0




+B




0
...

0

y

0
...

0




+B




0
...

0

0

u1
...

u|I|




. (15)
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Since the first|V | columns ofB correspond to the arcs inH, we have

B
(
x1, . . . , x|V |, 0, 0, . . . , 0

)T
=




x2 − x1

x3 − x2
...

x1 − x|V |



.

Since the(|V |+ 1)-th column ofB is a 0-column, we haveB (0, . . . , 0, y, 0, . . . , 0)T = 0 for any y.

For the final summand, letB
(
0, . . . , 0, 0, v1, . . . , v|I|

)T
= (r1, r2, . . . , r|V |)

T . We can then rewrite (15) as

xi − xi+1 = ri, for 1 ≤ i ≤ |V | − 1. (16)

Since1TB = 0T , we have1T (r1, r2, . . . , r|V |)
T =

∑|V |
i=1 ri = 0. Furthermore, we assume without loss of generality

that
∑j

i=1 ri ≥ 0, for all 1 ≤ j ≤ |V |. This can be achieved by cyclically relabelling the nodes and we prove this

in Appendix D.

It suffices to show that an integer solution for (16) and (14) exists, satisfyingy ≥ 1 andxi ≥ 1 for i ∈ [|V |].

Consider the following choices ofxi andy:

xi = 1 +

i−1∑

j=1

rj ,

y = (n− ℓ+ 1)−

|I|∑

i=1

vi −

|V |∑

i=1

xi.

Clearly,xi andy satisfy (14) and (16). Since eachvi is an integer, allri are integers, soxi andy are also integers.

Furthermore, eachxi ≥ 1, since we chose the labeling so that
∑i−1

j=1 rj ≥ 0. We still must show thaty ≥ 1.

First, we observe thatri < (q − 1)m for all i, since each node has at most(q − 1) incoming arcs inI and by

design, eachvi is strictly less thanm. Thus, eachxi satisfies

xi < 1 + (i− 1)(q − 1)m.

Summing over alli, we have

|V |∑

i=1

xi ≤

|I|∑

i=1

(i− 1)(q − 1)m = (q − 1)m

(
|V |

2

)
.

Since also eachvi ≤ m, we have

y ≥ (n− ℓ+ 1)−m

[
|I|+ (q − 1)

(
|V |

2

)]
.

By the choice ofm, it follows that y ≥ 0. This completes the proof of Theorem 6.4.

Example 6.1. Let S = J2K3 and letn = 20. Then Theorem 6.4 states that there is a systematic encoder that maps

words fromJ2K3 into pQ(20; 2, 3). Following the convention in Fig. 2 and Example 4.2, we list all eight encoded

profile vectors (as edge labellings onD(J2K3)) with their systematic componentshighlighted in boldface.
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1
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For instance, the codeword000 ∈ J2K3 is mapped to the profile vector(14, 1,0, 1, 1,0, 1,0). Via the EULER map

described in Section 8, this profile vector is mapped to00 · · · 01100 ∈ Q(20, 2, 3).

Observe that we can systematically encodeJ2K3 into pQ(n; 2, 3) even whenn is smaller than 20. In fact, in

this example, we can systematically encodeJ2K3 into pQ(10; 2, 3). In general, we can can systematically encode

JmK3 into pQ(4m + 2; 2, 3). In this case, the size of the message set is approximatelyn3/8 while the number of

all possible closed profile vectors is approximatelyn4/288 [15].

In Section 7 and Example 7.1, we observe that the construction given in Section 6-A yields a larger code

size. Nevertheless, the systematic encoder is conceptually simple and furthermore, the systematic property of the

construction in Section 6-B can be exploited to integrate rank modulation codes into our coding schemes for DNA

storage, useful for automatic decoding viahybridization. We describe this procedure in detail in Section 8.

7. NUMERICAL COMPUTATIONS FORS = S(q, ℓ; q∗, [w1, w2])

In what follows, we summarize numerical results for code sizes pertaining to the special case whenS =

S(q, ℓ; q∗, [w1, w2]).

By Proposition 4.1,D(q, ℓ; q∗, [w1, w2]) is Eulerian and therefore strongly connected. In other words, Theorem 4.3

applies and we have|Q(n;S)| = Θ′(n|S|−|V (S)|), where|S| is given by|S(q, ℓ; q∗, [w1, w2])| =
∑w2

w=w1

(
ℓ
w

)
(q∗)w(q−

q∗)ℓ−w, while |V (S)| is given by|S(q, ℓ− 1; q∗, [w1 − 1, w2])| =
∑w2

w=w1−1

(
ℓ−1
w

)
(q∗)w(q − q∗)ℓ−1−w.

Let D = |S| − |V (S)|. We determine next the coefficient ofnD in |Q(n;S)|. Whenw2 = ℓ, the digraph

D(q, ℓ; q∗, [w1, ℓ]) contains the loop that corresponds to theℓ-gram 1T . Hence, by Corollary 5.6, the desired

coefficient is constant and we denote it byc(q, ℓ; q∗, [w1, ℓ]). WhenS = JqKℓ, we denote this coefficient byc(q, ℓ)

and remark that this value corresponds to the constant defined in Theorem 4.5.

Whenw2 < ℓ, the digraphD(q, ℓ; q∗, [w1, w2]) does not contain any loops. Recall from Section 5 the definitions

of P(S), λS andLP(S)(n − ℓ + 1). In particular, recall that the lattice point enumeratorLP(S)(n − ℓ + 1) is a

quasipolynomial of degreeD whose period dividesλS and that consequently, the coefficient ofnD in |Q(n;S)|

is periodic. For ease of presentation, we only determine thecoefficient of nD for those values for whichλS
divides (n − ℓ + 1) or n − ℓ + 1 = λSt for some integert. In this instance, the desired coefficient is given by

c(q, ℓ; q∗, [w1, w2]) , c/λDS , wherec is the leading coefficient of the polynomialLλSP(S)(t).

In summary, we have the following corollary.

Corollary 7.1. ConsiderS = S(q, ℓ; q∗, [w1, w2]) and define
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TABLE I
COMPUTATION OF c(q, ℓ)

q ℓ D c(q, ℓ)

2 2 2 1/4*
3 2 6 1/8640*
4 2 12 1/45984153600*
5 2 20 37/84081093402584678400000*
2 3 4 1/288*
3 3 18 887/358450977137334681600000
2 4 8 283/9754214400
2 5 16 722299813/94556837526637331349504000000

Entries marked by an asterisk refer to values that were also derived by Jacquetet al. [15].

D =

w2∑

w=w1

(
ℓ

w

)
(q∗)w(q − q∗)ℓ−w −

w2∑

w=w1−1

(
ℓ− 1

w

)
(q∗)w(q − q∗)ℓ−1−w.

Suppose thatλS = lcm{|C| : C is a cycle inD(S)}. Then for some constantc(q, ℓ; q∗, [w1, w2]),

(i) If w2 = ℓ, |Q(n;S)| = c(q, ℓ; q∗, [w1, ℓ])n
D +O(nD−1) for all n;

(ii) Otherwise, ifw2 < ℓ, |Q(n;S)| = c(q, ℓ; q∗, [w1, w2])n
D +O(nD−1) for all n such thatλS|(n − ℓ+ 1).

WhenS = JqKℓ, we write c(q, ℓ) instead ofc(q, ℓ; 1, [0, ℓ]).

We determinec(q, ℓ; q∗, [w1, w2]) via numerical computations. Computing the lattice point enumerator is a

fundamental problem in discrete optimization and many algorithms and software implementations have been

developed for such purposes. We make use of the softwareLattE, developed by Baldoniet al. [31], which

is based on an algorithm of Barvinok [32]. Barvinok’s algorithm essentially triangulates the supporting cones of

the vertices of a polytope to obtain simplicial cones and then decompose the simplicial cones recursively into

unimodular cones. As the rational generating functions of the resulting unimodular cones can be written down

easily, adding and subtracting them according to the inclusion-exclusion principle and Brion’s theorem gives the

desired rational generating function of the polytope. The algorithm is shown to enumerate the number of lattice

points in polynomial time when the dimension of the polytopeis fixed.

Using LattE, we computed the desired coefficients for various values of(q, ℓ; q∗, [w1, w2]). As an illustrative

example,LattE determinedc(2, 4) = 283/9754214400 with computational time less than a minute. This shows

that although the exact evaluation ofc(q, ℓ) is prohibitively complex (as pointed by Jacquetet al. [15]), numerical

computations ofc(q, ℓ) andc(q, ℓ; q∗, [w1, w2]) are feasible for certain moderate values of parameters. We tabulate

these values in Table I and II.

Next, we provide numerical results for lower bounds on the code sizes derived in Section 6-A.

When S = S(q, ℓ; q∗, [w1, w2]), the digraphD(S) is Eulerian by Proposition 4.1 and hence,1 belongs to

Null>0B(D(S)). Therefore, ifC(H,0) contains the vector1 as well,C(H,0)∩Null>0B(D(S)) is nonempty and

the condition of Theorem 6.3 is satisfied. Hence, we have the following corollary.

Corollary 7.2. Let S = S(q, ℓ; q∗, [w1, w2]). Fix d and chooseH andp such thatC(H,0) is an(|S|, d+1)-AECC

containing1. Suppose thatλGRC = lcm{{|C| : C is a cycle inD(S)} ∪ {p}}. Then there exists a constantc(H, S)

such that wheneverλGRC|(n − ℓ+ 1),

|C(H,0) ∩ pQ(n;S)| ≥ c(H, S)nD +O(nD−1),
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TABLE II
COMPUTATION OFc(q, ℓ; q∗, [w1, w2]). WE FIXED q = 2 AND q∗ = 1.

ℓ w1 w2 D λS c(2, ℓ; 1, [w1, w2])

4 2 3 3 60 1/360
4 2 4 4 – 1/1440
5 2 3 6 120 1/5184000
5 2 4 10 27720 40337/34566497280000000
5 2 5 11 – 3667/34566497280000000
5 3 4 4 420 23/302400
5 3 5 5 – 23/1512000
6 3 4 10 65520 43919/754932300595200000
6 3 5 15 5354228880 1106713336565579/739506679855711968646397952000000000
6 4 5 5 840 1/518400

whereD = |S| − |V (S)| =
∑w2

w=w1

(
ℓ
w

)
(q∗)w(q − q∗)ℓ−w −

∑w2

w=w1−1

(
ℓ−1
w

)
(q∗)w(q − q∗)ℓ−1−w.

Example 7.1. Let S = J2K3 andd = 2. Choosep = 13 and

H =

(
1 2 3 5 8 10 11 12

1 4 9 12 12 9 4 1

)
.

ThenC(H,0) is an(8, 3)-AECC containing1. We haveλGRC = lcm{{1, 2, . . . , 8} ∪ {13}} = 156. UsingLattE,

we compute the lattice point enumerator ofλGRCP
◦
GRC(H, S) to be12168t4 − 1248t3 + 131t2 − 16t+ 1. Hence,

for n = 156t+2, the number of codewords inC(H,0)∩E(n; 2, 3) is given by12168t4−1248t3+131t2−16t+1.

When t = 1 or n = 158, there exist a(158, 3; 2, 3)-GRC of size at least11036.

We compare this result with the one provided by the construction using the systematic encoder described in Section

6-B and in particular, Example 6.1. Whenn = 158, we can systematically encode words inJ39K3 into pQ(158; 2, 3).

Hence, we consider a39-ary (3, 3)-AECC. Using Varshamov’s construction withp1 = 5 andH1 =

(
1 2 3

1 4 4

)
,

we obtain a39-ary (3, 3)-AECC of size2368. Applying the systematic encoder in Theorem 6.4, we construct a

(158, 3; 2, 3)-GRC of size2368.

UsingLattE, we determinedc(H, S) for moderate parameter values and summarize the results in Table III.

We conclude this section with a conjecture on the relation betweenc(q, ℓ) andc(H, S).

Conjecture 7.3. Fix q, ℓ, d. ChooseH andp such thatC(H,0) is an (N, d + 1)-AECC containing1. Let c(q, ℓ)

andc(H, S) be the constants defined in Corollaries 7.1 and 7.2, respectively. Thenc(H, S) ≥ c(q, ℓ)/pd.

Roughly speaking, the conjecture states that asymptotically, |C(H,0) ∩ E(n; q, ℓ)| is at least|Q̄(n; q, ℓ)|/pd. In

other words, for our particular choice ofH and β, we asymptotically achieve the code size guaranteed by the

pigeonhole principle.

8. DECODING OFPROFILE VECTORS

Recall the DNA storage channel illustrated in Fig. 1. The channel takes as its input a wordx ∈ Q(n;S) and

outputs a profile vector̂p(x) ∈ Z
|S|. Assuming no errors, the vector̂p(x) corresponds to the correct profile vector

p(x;S) ∈ pQ(n;S). In this channel model and the code constructions in Section6, we have implicitly assumed

the existence of an efficient algorithm that decodesp̂(x) ∈ Z
|S| back to the messagex. We now describe this

two-step algorithm in more detail.
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TABLE III
COMPUTATIONS OFc(H, S)

WhenS = J2K3, we havec(2, 3) = 1/288.

d p D λGRC c(H, S) c(2, 3)/pd

1 11 4 132 1/3168 1/3168
2 13 4 156 1/48672 1/48672
3 13 4 156 1/632736 1/632736
4 17 4 204 1/24054048 1/24054048
5 17 4 204 1/24054048 1/408918816
6 17 4 204 1/24054048 1/6951619872

WhenS = J2K4, we havec(2, 4) = 283/9754214400.

d p D λGRC c(H, S) c(2, 4)/pd

1 17 8 14280 283/165821644800 283/165821644800
2 17 8 14280 283/2818967961600 283/2818967961600
3 17 8 14280 283/47922455347200 283/47922455347200

WhenS = S(2, 5; 1, [2, 3]), we havec(2, 5; 1, [2, 3]) = 1/5184000.

d p D λGRC c(H, S) c(2, 5; 1, [2, 3])/pd

1 23 6 2760 1/119232000 1/119232000
2 29 6 3480 1/4359744000 1/4359744000
3 29 6 3480 1/126432576000 1/126432576000

The first step of decoding is to correct errors inp̂(x) ∈ Z
|S| to arrive at a profile vector of the valid codeword

p(x;S) ∈ pQ(n;S). For this purpose, one can use the conceptually simple Varshamov’s decoding algorithm

described in [18]. The algorithm reduces to recursive computations of residues of the channel output profile vectors

with respect to the rows of the matrixH defining the code in (10) and solving a system of equations over a finite

field.

The second step of decoding consists of converting the corrected profile vector into the corresponding codeword.

For the purpose of describing this process, letu be a profile vector inpQ(n;S) so thatu = p(x;S) for some

x ∈ Q(n;S). As it was done in the proof of Lemma 4.2, we construct a multigraph on the node setV (S) by

addinguz arcs for eachz ∈ V (S). We remove any isolated nodes to arrive at a connected Eulerian multidigraph.

We subsequently apply any linear-time algorithm like Hierholzer’s algorithm [33] to this multidigraph to obtain an

Eulerian walk. Hierholzer’s algorithm uses two straightforward search steps:

• One starts by choosing a starting node in the multidigraphv and then proceeds by following a connected

sequence of edges until returning tov. Note that the multidigraph is Eulerian so such a closed pathwill

always exist. Note that one closed path may not cover all edges (or nodes) in the graph.

• If the path does not cover all edges, as long as there exists a nodeu on the last identified closed path that

has emanating edges terminating in nodes not on the closed path, initiate another closed walk from the node

u that does not share any edges with the current closed path. Merge the current path with the path initiated

from u.

Most implementations of the Hierholzer’s algorithm involve an arbitrary choice for the starting node and the

subsequent nodes to visit. Hence, it is possible for the algorithm to produce different walks based on the same

multigraph. Nevertheless, we may fix an order for the nodes and have the algorithm always choose the ‘smallest’

available node. Under these assumptions, EULER(u) is always well defined. Let EULER(u) denote the word of
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(a)

Fragmentation
Detecting presence or
absence of3-grams

Sequencing

✲00000110111100 ✲





000 : 3 100 : 1
001 : 1 101 : 1
010 : 0 110 : 2
011 : 2 111 : 2





✲





001, 100,
001, 101,

110,
011, 111





(b)

Fragmentation
Detecting relative order
of 010, 101 and111.

Sequencing

✲00000110111100 ✲





000 : 3 100 : 1
001 : 1 101 : 1
010 : 0 110 : 2
011 : 2 111 : 2





✲010 ≺ 101 ≺ 111

Fig. 4. Sequencing by hybridization. Instead of obtaining the exact count of theℓ-grams, we obtain auxiliary information on the count: (a)
we obtain the set of3-grams present in00111011000000; (b) we obtain the relative order of the counts of010, 101 and111.

JQKn obtained from this restricted Eulerian walk. It remains to verify that EULER(u) = x.

As mentioned in Section 1, an element inQ(n;S) is an equivalence classX ⊂ JqKn, wherex,x′ ∈ X implies

thatp(x;S) = p(x′;S). Here, we fix the choice of representative forX. As hinted by the previous discussion, we

let this representative be EULER (p(y;S)) for somey ∈ Y and observe that this definition is independent of the

choice ofy. Then with this choice of representatives, the function EULER indeed decodes a profile vector back to

its representative codeword.

In summary, we identify the elements inQ(n;S) with the set of representatives{EULER(u) : u ∈ pQ(n;S}.

Then for anyx ∈ Q(n;S), the function EULER decodesp(x;S) to x in linear-time.

A. Practical Methods for Countingℓ-grams

An interesting feature of the described coding scheme is that one can avoid common problems with DNA sequence

assembly by designing codewords that have distinct profile vectors and profiles at sufficiently large distance.

However, there are computational challenges associated with counting the number ofℓ-grams and determining

the profile vector of an arbitrary word, given that modern high-throughput sequences may produce hundreds of

millions of reads. We examine next a number of practical methods for profile counting which represents a crucial

step in decoding and address emerging issues via known coding solutions.

In particular, we look at an older technology – sequencing byhybridization (SBH), proposed in [34] – as a

means of automated decoding. The idea behind SBH is to build an array ofℓ-grams orprobes; this array of probes

is commonly referred to as asequencing chip. A sample of single stranded DNA to be sequenced is fragmented,

labelled with a radioactive or fluorescent material, and then presented to the chip. Each probe in the array hybridizes

with its reverse complement, provided the correspondingℓ-gram is present in the sample. Then an optical detector

measures the intensity of hybridization of the labelled DNAand hence infers the number ofℓ-grams present

in the sample. The advantage of using SBH for countingℓ-grams is massive parallelism, and hence increased

speed of decoding. Furthermore, SBH allows one to bypass thereading step in sequencing as this is automatically

accomplished via hybridization to a proper target.

We first present an analysis of the simplest form of SBH, in which hybridization results may only indicated the

presence or absence of certainℓ-grams. This simple and inexpensive sequencing method may be used to significantly

reduce the space of possible profile vectors, and this information may be used to design a more cost efficient and

accurate SBH sequencer having fewer probes and more preciseprobe binding intensity – and henceℓ-gram counts.
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In our discussion, we assume thatS = JqKℓ. Furthermore, in our terminology, ifx is the codeword, the channel

outputs a subset ofJqKℓ given bysupp(p(x; q, ℓ)), wheresupp(u) denotes the set of coordinatesz with uz ≥ 1 (see

Fig. 4(a)). Then, we can defined∗gram(x,y; q, ℓ) , |supp(p(x; q, ℓ))∆supp(p(y; q, ℓ))| for any pair ofx,y ∈ JqKn.

Intuitively, d∗gram measures how dissimilar the sets ofℓ-grams contained in two sequences are.

As before,(JqKn , d∗gram) forms a pseudometric space and we convert this space into a metric space via an

equivalence relation – we sayx
ℓ∗
∼ y if and only if d∗gram(x,y; q, ℓ) = 0. Then, by definingQ∗(n; q, ℓ) , JqKn /

ℓ∗
∼,

we obtain a metric space.

Let C ⊆ Q∗(n; q, ℓ). If d = min{d∗gram(x,y; ℓ) : x,y ∈ C,x 6= y}, then C is said to be(n, d; q, ℓ)-ℓ∗-gram

reconstruction code (∗-GRC). Intuitively, a∗-GRC with high distance allows for the reconstruction of anycodeword

sequence via the measurement of a sufficiently large subset of the ℓ-grams. We have the following proposition that

is an analogue of Proposition 3.2.

Proposition 8.1. Given an (n, d; q, ℓ)-∗-GRC, a set ofn − ℓ + 1 − ⌊(d− 1)/2⌋ ℓ-grams suffices to identify a

codeword.

Proof: Let t = n − ℓ + 1 − ⌊(d− 1)/2⌋. Suppose otherwise that there exists a pair of distinct codewordsx

andy that contain a common set oft ℓ-grams. Then

d∗gram(x,y; ℓ) = |supp(p(x; q, ℓ))∆supp(p(y; q, ℓ))|

≤ (n− ℓ+ 1− t) + (n− ℓ+ 1− t) = 2 ⌊(d− 1)/2⌋) ≤ d− 1 < d,

resulting in a contradiction.

Determining the maximum size of an(n, d; q, ℓ)-∗-GRC turns out to be related to certain well studied combina-

torial problems.

Case d = 1. The maximum size of an(n, 1; q, ℓ)-∗-GRC is given by|Q∗(n; q, ℓ)|. Equivalently, this count

corresponds to the number of possible sets ofℓ-grams that can be obtained from words of lengthn. Observe that

|Q∗(n; q, ℓ)| ≤ 2q
ℓ

and hence|Q∗(n; q, ℓ)| cannot be a quasipolynomial inn with degree at least one. Therefore,

it appears that Ehrhart theory is not applicable in this context. Nevertheless, preliminary investigations of this

quantity forq = 2 have been performed by Tan and Shallit [35]. In particular, Tan and Shallit proved the following

proposition forn < 2ℓ.

Proposition 8.2 ( [35, Corollary 19]). For ℓ ≤ n < 2ℓ, we have

Q(n, ℓ) = 2n −
n−ℓ+1∑

k=1

k − 1

k

∑

d|k

µ

(
k

d

)
2d,

whereµ(·) is the Möbius function defined as

µ(n) =





1, if n is a square-free positive integer with an even number of prime factors;

1, if n is a square-free positive integer with an odd number of primefactors;

0, otherwise.

Cased = 2(n− ℓ+ 1). For the other extreme, we see that the problem is related to edge-disjoint path packings

and decompositions of graphs (see [36], [37]). Formally, consider a graphG. A set C of paths inG is said to be

an edge-disjoint path packingof G if each edge inG appears in at most one path inC. An edge-disjoint path

packingC of G is an edge-disjoint path decompositionof G if each edge inG appears in exactly one path inC.

Edge-disjoint cycle packings and decompositions are defined similarly.
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Now, an(n, 2(n− ℓ+1); q, ℓ)-∗-GRC is equivalent to an edge-disjoint path packing ofD(q, ℓ), where each path

is of length(n− ℓ+1). Furthermore, an edge-disjoint path decomposition ofD(q, ℓ) into paths of lengthn− ℓ+1

yields an optimal(n, 2(n − ℓ+ 1); q, ℓ)-∗-GRC of sizeqℓ/(n − ℓ+ 1).

Since an edge-disjoint cycle decomposition is also an edge-disjoint path decomposition, we examine next edge-

disjoint cycle decomposition of de Bruijn graphs. These combinatorial objects were studied by Cooper and Graham,

who proved the following theorem.

Theorem 8.3 ( [38, Proposition 2.3, Corollary 2.5]).

(i) There exists an edge-disjoint cycle decomposition ofD(q, ℓ) into q cycles of lengthqℓ−1, for any q andℓ.

(ii) There exists an edge-disjoint cycle decomposition ofD(r2k+1, 3) into 8k cycles of length8r3, for anyk ≥ 0

andr ≥ 1.

Therefore, Theorem 8.3 demonstrates the existence of an optimal (qℓ−1+ ℓ− 1, 2qℓ−1; q, ℓ)-∗-GRC of sizeq and

an optimal(8r3 + 2, 16r3; r2k+1, 3)-∗-GRC of size8k for any k ≥ 0 andr ≥ 1.

B. Decoding Rank Modulation Encoded Profiles

As mentioned earlier, it is difficult to infer accurately thenumber ofℓ-grams present from the hybridization

results. However, we may significantly more accurately determine whether the count of a certainℓ-gram is greater

than the count of another. In other words, we may view the sequencing channel outputs asrankingsor orderings

on theqℓ ℓ-grams counts or apermutationof lengthqℓ reflecting theℓ-gram counts.

This suggests that we consider codewords whose profile vectors carry information about order. More precisely,

let Perm(N) denote the set of permutations over the setJNK. We consider codewords whose profile vectors belong

to Perm(N) and consider a metric onPerm(N) that relates to errors resulting from changes in order. The Kendall

metric was first proposed by Jianget al. [39] in rank modulation schemes for nonvolatile flash memories and codes

in this metric have been studied extensively since (see [40]and the references therein). The Ulam metric was later

proposed by Farnoudet al. for permutations [41] and multipermutations [42].

Unfortunately, due to the flow conservation equations (1), the profile vector of aq-ary word is unlikely to have

distinct entries and hence be a permutation. Nevertheless,we appeal to the systematic encoder provided by Theorem

6.4. We setm = qℓ−qℓ−1−1. Then, providedn is sufficiently large, there exists a setI of m coordinates that allow

us to extend any wordv in JmKm to a profile vector inφsys(v) ∈ pQ(n; q, ℓ). In particular, sincePerm(m) ⊆ JmKm,

any permutationv of lengthm may be extended to a profile vector inφsys(v) ∈ pQ(n; q, ℓ).

This implies that for the design of the sequencing chip, we donot need to haveqℓ probes for all possibleℓ-grams.

Instead, we require onlym = qℓ − qℓ−1 − 1 probes that correspond to theℓ-grams inI. Hence, the sequencing

channel outputs an ordering on this set ofm ℓ-grams (see Fig. 4(b)).

This setup allows us to integrate known rank modulation codes (in any metric) into our coding schemes for DNA

storage. In particular, to encode information we perform the following procedure. First, we encode a message is

into a permutation using a rank modulation encoder. Then thepermutation is extended into a profile vector and

then mapped by EULER to the profile vector of aq-ary codeword (see Fig. 5 for an illustration).

Example 8.1. Suppose thatS = J2K3. Hence, we setm = 3 and recall the systematic encoderφsys described

in Example 6.1 that mapsJ3K3 into pQ(14; 2, 3). Suppose thatv = (0, 1, 2) ∈ Perm(3) belongs to some rank

modulation code. Thenu = φsys(v) = (3, 1,0, 2,1, 1, 2,2) belongs topQ(14; 2, 3). Finally, EULER mapsu to a

codeword00000110111100 ∈ J2K14.

Now, if we were to detect the relative order of the3-grams010, 101 and111, we obtain the permutation(0, 1, 2)

as desired (see also Fig. 4(b)).
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Fig. 5. Encoding messages for a DNA storage channel that outputs the relative order on the counts of particularℓ-grams.

APPENDIX A

EULERIAN PROPERTY OFCERTAIN RESTRICTEDDE BRUIJN DIGRAPHS

In this section, we provide a detailed proof of Proposition 4.1. Specifically, forq, ℓ, 1 ≤ q∗ ≤ q − 1 and

1 ≤ w1 < w2 ≤ ℓ, we demonstrate that the digraphD(q, ℓ; q∗, [w1, w2]) is Eulerian. Our analysis follows that of

Ruskeyet al. [22].

Recall that the arc set ofD(q, ℓ; q∗, [w1, w2]) is given byS = S(q, ℓ; q∗, [w1, w2]), while the node set is given

by V (S) = S(q, ℓ− 1; q∗, [w1 − 1, w2]), which we denote byV for short. In addition, we introduce the following

subsets ofJqK. For a nodez in V , let Pref(z) be the set of symbols inJqK that when prepended toz results in an

arc inS. Similarly, let Suff(z) be the set of symbols inJqK that when appended toz result in an arc inS. Hence,

{σz : σ ∈ Pref(z)} and{zσ : σ ∈ Suff(z)} are the respective sets of incoming and outgoing arcs for thenodez.

Lemma A.1. Every node ofD(q, ℓ; q∗, [w1, w2]) has the same number of incoming and outgoing arcs.

Proof: Let z belong toV . Observe that for alls ∈ JqK, s z ∈ S if and only if z s ∈ S. Hence,Pref(z) = Suff(z)

and the lemma follows.

It remains to show thatD(q, ℓ; q∗, [w1, w2]) is strongly connected. We do it via the following sequence oflemmas.

Lemma A.2. Let z, z′ belong toV and have the property that they differ in exactly one coordinate. Then there

exists a path fromz to z′.

Proof: Observe the following characterization ofPref(z) = Suff(z):

Pref(z) = Suff(z) =





[q − q∗, q − 1], if wt(z; q∗) = w1 − 1;

Jq∗K , if wt(z; q∗) = w2;

JqK , otherwise.

ThenSuff(z)∩Pref(z′) is empty only ifwt(z; q∗) = w1 − 1 andwt(z′; q∗) = w2 or vice versa. Either way,z and

z′ differ in at least two coordinates, which contradicts the starting assumption.

Hence,Suff(z)∩Pref(z′) is always nonempty. To complete the proof, lets ∈ Suff(z)∩Pref(z′). Then, the path

corresponding toz s z′ is the desired path. (Note that eachℓ-gram appearing inz s z′ has weight equal to either

wt(z s) or wt(s z′); in particular, each suchℓ-gram lies inS.)

Therefore, to construct a path between any two given nodesz andz′, it suffices to demonstrate a sequence of

nodes such that consecutive nodes differ in only one position.

Lemma A.3. For anyz, z′ ∈ V , there is a sequence of nodesz = z0, z1, . . . , zt = z′ such thatzj andzj+1 differ
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in exactly one position forj ∈ JtK.

Proof: Let z′ = σ1σ2 · · · σℓ−1. We construct the sequence of nodes inductively. Suppose that for somej,

zj = σ1σ2 · · · σiτi+1 · · · τℓ−1, with τi+1 6= σi+1. Our objective is to construct a sequence of nodes with consecutive

nodes differing in one position, terminating at some nodezj′ with zj′ = σ1σ2 · · · σiσi+1τ
′
i+2 · · · τ

′
ℓ−1 for some

τ ′i+1, τ
′
i+2, . . . , τ

′
ℓ−1. Hence, by repeating this procedure, we obtain the desired sequence of nodes that terminates

at z′.

Sincezj ∈ V , we havewt(zj ; q∗) ∈ [w1−1, w2]. As such, we consider three possibilities to extend the sequence:

(i) Whenw1 − 1 < wt(zj ; q
∗) < w2, we may simply changeτi+1 to σi+1 and make no other changes, since the

word zj+1 produced this way still satisfieswt(zj+1) ∈ [w1 − 1, w2] and is therefore a node.

(ii) Whenwt(zj ; q
∗) = w1−1, τi+1 ∈ [q−q∗, q−1] andσi+1 /∈ [q−q∗, q−1], there exists someτk in zj that does

not belong to[q− q∗, q− 1]. Otherwise,wt(σ1 · · · σi; q∗) = w1− ℓ+ i and sowt(σ1 · · · σi+1; q
∗) = w1− ℓ+ i.

Then,wt(z′; q∗) ≤ w1 − 2, contradicting the fact thatz′ ∈ V . Therefore, we have the sequence of nodes

zj = σ1 · · · σiτi+1τi+2 · · · τk · · · τℓ−1,

zj+1 = σ1 · · · σiτi+1τi+2 · · · (q − 1) · · · τℓ−1,

zj+2 = σ1 · · · σiσi+1τi+2 · · · (q − 1) · · · τℓ−1.

(iii) When wt(zj ; q
∗) = w2, τi+1 /∈ [q − q∗, q − 1] andσi+1 ∈ [q − q∗, q − 1], then there exists someτk in zj that

belongs to[q− q∗, q− 1]. Otherwise,wt(σ1 · · · σi; q∗) = w2 and sowt(z′; q∗) ≥ wt(σ1 · · · σi+1; q
∗) = w2+1,

contradicting the fact thatz′ ∈ V . Therefore, we have the sequence of nodes

zj = σ1 · · · σiτi+1τi+2 · · · τk · · · τℓ−1,

zj+1 = σ1 · · · σiτi+1τi+2 · · · 0 · · · τℓ−1,

zj+2 = σ1 · · · σiσi+1τi+2 · · · 0 · · · τℓ−1.

Consequently,D(q, ℓ; q∗, [w1, w2]) is strongly connected. Together with Lemma A.1, this resultestablishes that

D(q, ℓ; q∗, [w1, w2]) is Eulerian.

APPENDIX B

PROOF OFCOROLLARY 5.6

We provide next a detailed proof of Corollary 5.6. Specifically, we demonstrate Proposition B.1 from which the

corollary follows directly. For the case thatS = JqKℓ, Jacquetet al. established a similar result by analyzing a sum

of multinomial coefficients. This type of analysis appears to be to complex for a general choice ofS.

Proposition B.1. Suppose thatD(S) is strongly connected and that it contains loops. Lett = n − ℓ + 1, D =

|S| − |V (S)| and let the lattice point enumerator ofP(S) be LP(S)(t) = cD(t)t
D + O(tD−1). Then, cD(t) is

constant.

To prove this proposition, we use the following straightforward lemma.

Lemma B.2. Suppose thatD(S) is strongly connected and that it contains loops. For allt, we haveLP(S)(t+1) ≥

LP(S)(t).

Proof: It suffices to show that there is an injection fromF(n;S) to F(n + 1;S). Suppose thatu ∈ F(n;S),

so thatA(S)u = tb. Fix a loop inD(S) and consider the vectorχ(z), wherez is the arc corresponding to the
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loop. Then,A(S)χ(z) = b andA(S)(u + χ(z)) = (t + 1)b. So, the mapu 7→ u + χ(z) is an injection from

F(n;S) to F(n + 1;S).

Proof of Proposition B.1: Lemma B.2 demonstrates thatLP(S) is a monotonically increasing function.

Intuitively, this implies that the coefficient of its dominating term cD(t) cannot be periodic with period greater

than1. We prove this claim formally in what follows.

Suppose thatcD is not constant and that it has periodτ . Hence, there existsta 6≡ tb mod τ such thatcD(ta) = aD,

cD(tb) = bD andaD < bD. Furthermore, defineai = ci(ta) and bi = ci(tb) for 0 ≤ i ≤ D − 1, and consider the

polynomial
∑D

i=0 bit
i−ai(t+τ)

i. By construction, this polynomial has degreeD and a positive leading coefficient.

Hence, we can chooset1 ≡ ta mod τ andt2 ≡ tb mod τ so thatt1 ≤ t2 ≤ t1+ τ and
∑D

i=0 bit
i
2−ai(t1+ τ)

i > 0.

Consequently,

LP(S)(t1 + τ) =

D∑

i=0

ci(t1 + τ)(t1 + τ)i =

D∑

i=0

ai(t1 + τ)i <

D∑

i=0

bit
i
2 = LP(S)(t2),

contradicting the monotonicity ofLP(S).

APPENDIX C

PROPERTIES OF THEPOLYTOPEPGRC(H, S)

We derive properties of the polytopePGRC(H, S) described in Section 6-A. In particular, under the assumption

thatD(S) is strongly connected andC(H,0) ∩Null>0B(D(S)) is nonempty, we demonstrate the following:

(C1) The dimension of the polytopePGRC(H, S) is |S| − |V (S)|;

(C2) The interior of the polytope is given by{u ∈ R
|S|+d : A(H, S)u = b,u > 0};

(C3) The vertex set of the polytope is given by
{(

χ(C)

|C|
,
Hχ(C)

p|C|

)
: C is a cycle inD(S)

}
.

SinceC(H,0)∩Null>0B(D(S)) is nonempty, letu0 belong to this intersection. ThenHu0 ≡ 0 mod p, that is,

Hu0 = pβ for someβ > 0. Let µ = 1u0. If we setu = 1
µ
(u0,β), thenA(H, S)u = b, with u > 0.

Observe that the block structure ofA(H, S) implies that it has rank|V (S)|+ d. Hence, the nullity ofA(H, S)

is |S| − |V (S)|. As before, letu1,u2, . . ., u|S|−|V (S)| be linearly independent vectors that span the null space of

A(H, S). Sinceu has strictly positive entries, we can findǫ small enough so thatu+ ǫui belongs toPGRC(H, S)

for all i ∈ [|S|− |V (S)|]. Therefore,{u,u+ ǫu1,u+ ǫu2, . . . ,u+ ǫu|S|−|V (S)|} is a set of|S|− |V (S)|+1 affinely

independent points inPGRC(H, S). This proves claim (C1).

For the interior ofPGRC(H, S), first consideru′ > 0 such thatA(H, S)u′ = b. For anyu′′ ∈ PGRC(H, S),

we haveA(H, S)u′′ = b and hence,A(H, S)(u′ − u′′) = 0. Sinceu′ has strictly positive entries, we chooseǫ

small enough so thatu′ + ǫ(u′ − u′′) ≥ 0. Therefore,u′ + ǫ(u′ − u′′) belongs toPGRC(H, S) andu′ belongs to

the interior ofPGRC(H, S).

Conversely, letu′ ∈ PGRC(H, S) with u′j = 0 for some coordinatej. Let u be as defined earlier, where

u ∈ PGRC(H, S) with u > 0. Hence, for allǫ > 0, the jth coordinate ofu′ + ǫ(u′ − u) is given by−ǫuj, which

is always negative. In other words,u′ does not belong to interior ofPGRC(H, S). This characterizes the interior

as described in claim (C2).

For the vertex set, observe that
{(

χ(C)
|C| ,

Hχ(C)
p|C|

)
: C is a cycle inD(S)

}
⊆ PGRC(H, S).

Let v ∈ PGRC(H, S) and suppose thatv = (v1,v2) is a vertex. Sincev ∈ PGRC(H, S), we havev2 = 1
p
Hv1

andB(D(S))v1 = 0. Proceeding as in the proof of Lemma 5.5, we conclude thatv1 = χ(C)/|C|, for some cycle

in D(S) and hence,v =
(
χ(C)
|C| ,

Hχ(C)
p|C|

)
.
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Conversely, we show that for any cycleC in D(S),
(
χ(C)
|C| ,

Hχ(C)
p|C|

)
cannot be expressed as a convex combination

of other points inPGRC(H, S). Suppose otherwise. Then we consider the first|S| coordinates and we proceed as

in the proof of Lemma 5.5 to yield a contradiction. This completes the proof of claim (C3).

APPENDIX D

RELABELLING OF NODES IN PROOF OFTHEOREM 6.4

In this section, we demonstrate the existence of a cyclic relabelling of nodes that is necessary for the proof of

Theorem 6.4. In particular, we prove the following lemma.

Lemma D.1. Let v be a positive integer, andr1, r2, . . . , rv bev real values such that
∑v

i=1 ri = 0. For convenience,

we let rv+i = ri for 1 ≤ i ≤ v − 1. Then there exists1 ≤ J ≤ v such that
∑j

i=0 rJ+i ≥ 0 for all 0 ≤ j ≤ v − 1.

Proof: For 1 ≤ j ≤ 2v − 1, let Rj =
∑j

i=0 ri and observe thatRv = 0. Let J be such thatRJ = min{Rj :

1 ≤ j ≤ 2v− 1}. SinceRv = 0, we haveRi+v = Ri for all 1 ≤ i ≤ v− 1 and hence, we may assume1 ≤ J ≤ v.

Next, we claim thatJ is the desired index. Indeed, for all0 ≤ j ≤ v − 1, observe that

j∑

i=0

rJ+i = Rv +

j∑

i=0

rJ+i = RJ+j −RJ ≥ 0,

where the final inequality follows from the minimality ofRJ .
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