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The AWGN BC with MAC Feedback: A Reduction
to Noiseless Feedback via Interaction

Assaf Ben-Yishai and Ofer Shayevitz

Abstract—We consider the problem of communication over
a two-user Additive White Gaussian Noise Broadcast Channel
(AWGN-BC) with an AWGN Multiple Access (MAC) active
feedback. We describe a constructive reduction from this setup to
the well-studied setup of linear-feedback coding over the AWGN-
BC with noiseless feedback (and different parameters). This
reduction facilitates the design of linear-feedback coding schemes
in the (passive) noiseless feedback regime, which can then be
easily and constructively transformed into coding schemesin
the MAC feedback regime that attain the exact same rates.
Our construction introduces an element of interaction into the
coding protocol, and is based on modulo-lattice operations. As
an example, we apply our method to the Ozarow-Leung scheme,
and demonstrate how MAC feedback can be used to enlarge the
capacity region of the AWGN-BC.

I. I NTRODUCTION

It is well known that feedback can enlarge the capacity
region of a non-degraded AWGN-BC, yet the capacity re-
gion with feedback generally remains unknown [1]. In [2],
Ozarow and Leung (OL) introduced a coding scheme that
attains rate pairs outside the non-feedback capacity region,
and also showed that their scheme is not optimal. In [3],
Ardestanizadeh, Minero and Franceschetti used the LQG
approach from stochastic control theory to derive feedback
coding schemes that exceed the OL sum rate. More recently,
Amor, Steinberg and Wigger [4] characterized the capacity
region with uncorrelated noises and Linear Feedback Coding
(LFC), and showed that the LQG maximizes the sum-rate
for the symmetric uncorrelated AWGN-BC among all LFC
schemes.

The case of the AWGN-BC with noisy feedback was studied
by several authors using various feedback noise models [5]–
[7]. This paper also considers the case of noise in the feedback,
but is conceptually different from previous works in two
important aspects. First, we assume that the feedback of
the AWGN-BC channel is AWGN-MAC, a more practical
assumption for wireless networks models. More importantly,
we describe a constructive reduction from this setup to the
well-studied setup of LFC schemes over the AWGN-BC with
noiseless feedback (and different parameters). This reduction
facilitates the design of LFC schemes in the (passive) noiseless
feedback regime, which can then be easily and constructively
transformed into coding schemes in the AWGN-MAC feed-
back regime that attain the exact same rates. Our construction
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introduces an element of interaction into the coding protocol,
and is based on modulo-lattice operations. This approach is
an extension of our previous work on noisy feedback for the
point-to-point AWGN channel [8][9]. As a proof of concept,
we apply our method to the OL scheme and demonstrate how
AWGN-MAC feedback can be used to increase the capacity
region of the AWGN-BC.

II. PRELIMINARIES

We write log for base2 logarithm, andln for the natural
logarithm. Vectors are written in boldface (e.g.x), and super-
scripts are used to emphasize the vector length if necessary,
e.g., xn def

= [x1, . . . , xn]. We write an
.
≥ bn to mean

lim infn→∞
1
n ln

(
an

bn

)
≥ 0, and similarly define

.
≤ and

.
=.

A. Lattice Definitions and Properties

• A lattice of dimensionN is denoted byΛ = G · ZN

whereG is the generating matrix.
• V (Λ) = | det(G)| is the lattice cell volume.
• The nearest neighbor quantization ofx w.r.t. the lattice

Λ is denoted byQΛ [x].
• The fundamental (Voronoi) cell ofΛ is denoted byV0 =

{x : QΛ [x] = 0}.
• The Modulo-Λ operation isMΛ [x]

def
= x−QΛ [x].

• MΛ [·] satisfies thedistributive law: MΛ [MΛ [x] + y] =
MΛ [x+ y].

• The volume to noise ratio (VNR) of a lattice in the pres-
ence of AWGN with varianceσ2 is µ

def
= V 2/N (Λ)/σ2.

• The normalized second moment of a latticeΛ is G(Λ)
def
=

σ2(Λ)/V 2/N (Λ), whereσ2(Λ) = 1
NE(‖U‖2) andU is

uniformly distributed onV0.

Lemma 1. For an i.i.d Gaussian vectorx of sizeNΛ whose
elements have zero mean and varianceσ2, there exists lattices
Λ with sizeNΛ and second momentσ2(Λ) = L ·σ2 for which

pmod
def
= Pr(x /∈ V0)

.
≤ e−NΛEp(L) (1)

whereEp(·) is the Poltirev error exponent given by [10], [11]:

Ep(x) =





1
2 (x− 1− ln(x)) if 1 < x ≤ 2
1
2

(
ln(x) + ln( e4 )

)
if 2 < x ≤ 4

1
8x if x > 4

For the sake of analysis in this work, it is enough to state
thatEp(x) > 0 for x > 1. The proof of Lemma 1 is based on
the existence of lattices that are good for both channel coding
and source coding as shown in [11, Theorem 5]. A similar
statement was previously given in [12].
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Fig. 1. A block diagram of BC with MAC feedback.

III. SETUP

Our setup is depicted in Fig. 1 and is defined as follows.
Terminal A is connected to both Terminal B1 and B2 through
an AWGN-BC. The channel input from Terminal A at timen
is Xn and the output to Terminal Bi is Yi,n for i ∈ {1, 2}.
The input-to-output relation is given by:

Yi,n = Xn + Zi,n for i ∈ {1, 2}

The noise pairs(Z1,n, Z2,n) are Gaussian and independent
between time instances, with zero mean and a covariance
matrix

Σ
def
=

[
σ2
1 rσ1σ2

rσ1σ2 σ2
2

]

The feedback link is an AWGN-MAC, whose input from
Terminal Bi at timen is X̃i,n and the corresponding output
at Terminal A isỸn. The input-to-output relation is given by

Ỹn = X̃1,n + X̃2,n + Z̃n

The noise process{Z̃n} is i.i.d zero mean Gaussian with
variance isEZ̃2

n = σ̃2, and is independent of the feedforward
noise process.

Terminal A is in possession of a pair of independent
messagesW1 ∼ Uniform([M1]) and W2 ∼ Uniform([M2]),
to be described to Terminals B1 and B2 respectively over
N rounds of communication. To that end, the terminals can
employ an interactive scheme defined by a three functions
(ϕ, ϕ̃1, ϕ̃2) as follows: At timen, Terminal A sends a function
of its message pair(W1,W2) and possibly of past feedback
channel outputs over the feedforward channel, i.e.,

Xn = ϕn(W1,W2, Ỹ
n−1). (2)

Similarly, Terminals B1 and B2 send functions of their past
observations to Terminal A over the feedback channel, i.e.,

X̃i,n = ϕ̃i,n(Y
n
i ) for i ∈ {1, 2}

We also note that, in general, we allow these functions to fur-
ther depend on common randomness shared by the terminals.

As for power constraints, we assume that Terminal A is
subject to

∑N
n=1 EX

2
n ≤ N · P and Terminals Bi are subject

to identical power constraints
∑N

n=1 EX̃
2
i,n ≤ N · P̃ for i ∈

{1, 2}.
An interactive scheme(ϕ, ϕ̃1, ϕ̃2) is associated with a rate

pair Ri
def
= logMi

N (for i ∈ {1, 2}) and an error probability
pe(N,R1, R2), which is the probability that at least one of
the Terminals Bi errs in decoding its designated messageWi

at timeN , under the optimal decision rule.
Note that in the classical noiseless (and passive) feed-

back AWGN-BC setup [2], Terminal A sees at timen both
Y1,n−1 and Y2,n−1 and can use both for coding. Namely:
Xn = ϕn(W1,W2, Y

n−1
1 , Y n−1

2 ). We refer to this setting as
noiseless feedback.

IV. CODING SCHEMES

A. LFC Schemes

We consider LFC schemes as defined in [4]. In such
schemes the transmission functions (2) reduce to:

Xn = Cn −

2∑

i=1

Li,n (3)

where Cn = Cn(W1,W2) is the codebook element, i.e. a
function of the messages, but not the feedback. Thefeedback
elements, Li,n = Li,n(Y

n−1
i ), are linear combinations of the

channel outputs:Li,n = ai,nY
n−1
i , andai,n are row vectors

of lengthn− 1.
By a simple induction argument, it can be easily shown that

(3) admits the following equivalent formulation:

Xn = Cn −

2∑

i=1

Li,n, (4)

whereCn = Cn(W1,W2) and Li,n = ai,nZ
n−1
i . Namely,

the linear combinations of the outputs can be replaced with
(different) linear combinations of the noises, by properly
modifying the codebook elements.

Observe that in (4), the codebook elementCn is statis-
tically independent of the feedback element

∑
i Li,n and

both have bounded power. This highlights the power split-
ting between the codebook and the feedback. In contrast,
in (3) the codebook elementCn is highly correlated with
the feedback element

∑
i Li,n, and their individual powers

can grow unbounded (e.g. in OL where the powers grow
exponentially). This can be interpreted by viewing

∑
i Li,n

as a linear predictor for the codebook elementCn which
facilitates the power savings at the transmitter. The typical
exponential power growth corresponds to the “zoom-in” effect
which is often observed in feedback communication.

It is instructive to note that the feedback elements in (3) are
computable at TerminalsB1 andB2, but typically cannot be
fed back to TerminalA under any finite power constraint. In
contrast, the feedback elements in (4) are not computable at
TerminalsB1 andB2, yet have bounded powers.
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Fig. 2. Two dimensional coding for MLLFC

B. Modulo-Lattice LFC (MLLFC) Schemes

We are now ready to present the construction of themodulo
lattice linear feedback coding(MLLFC) schemes for the
AWGN-BC with AWGN-MAC feedback. The method is an
extension of the one described in [9] for point-to-point AWGN
with noisy feedback. We use2NΛ LFC schemes each of length
N interleaved in time, which can be thought of as a two-
dimensionalNΛ× 2N coding. The notion of two dimensional
coding is depicted in Fig. 2. We do lattice coding for the
feedback over the vertical axis (where adjacent symbols have
time difference of1), and use that feedback for LFC coding
over the horizontal axis (where adjacent symbols have time
difference of2NΛ ). The technical reason for the factor2 in
2NΛ is to accommodate the inherent delay ofNΛ of the lattice
coding operation, and facilitate the use of feedback.

Let us now describe the coding scheme in more detail.

• We use an LFC with functions and parametersCn and
ai,n according to formulation (3), andCn and ai,n

according to formulation (4).
• We run multiple instances of the same LFC scheme

described above. We index each instance by the index
pair (nΛ, p), wherenΛ ∈ [NΛ] andp ∈ {0, 1} (the parity
index). The feedforward of scheme(nΛ, p) is sent over
time instancenΛ + 2NΛ(n+ p) wheren ∈ [N ].

• The blocks of lengthNΛ are indexed by an index pair
(n, p). The block corresponding to these indices pertains
to time indices1 +NΛ(n+ p− 1) to NΛ(n+ p).

• At the end of block(n − 1, p), Terminals B1 and B2
each have the outputs corresponding to schemes(1, p)
through(NΛ, p) at stepn−1. For simplicity of exposition
we denote these vectors byY n−1

i and omit thenΛ and
p indices. Terminals B1 and B2 both compute the linear
combinationsai,nY

n−1
i for all NΛ schemes in this block.

TheseNΛ elements are stacked in a vector denoted by

Lı,n (the indexp is omitted for simplicity).
• Over the following block, indexed(n−1, p+1), Terminals

Bi both send

X̃i,n−1 = MΛ [γnLi,n + V i,n]

whereΛ is a lattice of dimensionNΛ. MΛ [·] is the lattice
modulo operations.V i,n are dither variables, that are i.i.d
and uniformly distributed over the lattice fundamental
Voronoi cellV0.

• Terminal A receives the following vector:

Ỹ n−1 =

2∑

i=1

X̃i,n−1 + Z̃n−1

It calculates the codebook elementsCn andCn for all
NΛ schemes in the block and stacks them in a vectorCn

andCn respectively.
• At the following block, Terminal A calculates:

Kn = MΛ

[
γnCn −

(
Ỹ n−1 −

2∑

i=1

V i,n

)
− γnCn

]

(5)

Due to the distributive law of the modulo operation

Kn = MΛ

[
γn

2∑

i=1

Li,n − Z̃n−1

]

whereLi,n is a vector containing the feedback elements
of all NΛ schemes. Finally, we send

Xn = γ−1
n Kn +Cn. (6)

We refer to the event in whichγn
∑

iLi,n− Z̃n−1 /∈ V0,
as amodulo aliasing error. If this event does not occur
then

Xn = Cn −

2∑

i=1

Li,n − γ−1
n Z̃n−1.

Note thatγnCn is subtracted in (5) (inside the modulo)
and then added back in (6). This is done to assure that the
modulo operand in (5) is Gaussian in the coupled system
(see below and also [8]), which is crucial for the error
analysis in the sequel. It is also interesting to note that
in the OL schemeCn = 0 for all n > 2.

• Inspecting a single scheme in the block (and omitting the
scheme indexing) we obtain

Xn = Cn −

2∑

i=1

Li,n − γ−1
n Z̃n−1 (7)

which is equivalent to the LFC transmission (4) with an
additional noise elementγ−1

n Z̃n−1

It is appropriate to note that the feedback transmission
described above is actually theanalog Modulo Lattice Mod-
ulation of Kochman and Zamir [12], with the exception that
the source-related computations are distributed between two
terminals and added over MAC. The essence of the scheme is



in (7), implying that if no modulo aliasing error occurs in the
feedback, Terminal A can apply LFC transmission, without
explicitly knowing the channel output elements required for
its calculation. The difference between the clean feedback
transmission in (3) and the noisy feedback transmission in
(7) is the existence of a feedback noise element−γ−1

n Z̃n−1.
This feedback noise element can be effectively added to the
forward channel noise; we refer to this phenomenon asnoise
insertion. In addition, the feedback noise element consumes
part of the transmission power; we refer to this phenomenon
aspower loss.

V. M AIN RESULT

By choosing an appropriate latticeΛ, properly setting
scaling parametersγn and the LFC functions defined by
Cn, Li,n, Cn andLi,n one can calculate a set of achievable
rates for the MLLFC scheme. Nevertheless, a joint optimiza-
tion of all the aforementioned parameters is very involved.In
the following theorem, which is the main contribution of this
work, we introduce a simple setting of the parameters that
reduces MLLFC to LFC with clean feedback, achieving the
same rates.

Theorem 1. Let Setup 1 denote an AWGN-BC with AWGN-
MAC feedback with paramtersP,Σ, P̃ , σ̃2 (and P̃ > σ̃2).
Let Setup 2 denote an AWGN-BC with noiseless feedback,
feedforward power constraintPeq, and covariance matrixΣeq,
given by

Peq = P

(
1−

σ̃2

P̃

)
(8)

Σeq = Σ+ σ̃2P

P̃

[
1 1
1 1

]
. (9)

Then for any LFC with constant transmission power (EX2
n =

Peq) for Setup 2, there exists an MLLFC for Setup 1 achieving
the same rates.

Proof: The proof is based on the MLLFC construction
described the previous section, with a judicious (but not nec-
essarily optimal) setting of the parameters. Firstly, we choose
a latticeΛ having a normalized second momentσ2(Λ) = P̃ ,
that is good in the sense of Lemma 1 (i.e. achievingpmod in
the lemma). We also set:

γn =

√
P̃
P . (10)

Let us now explicitly describe the choice of the functions
Cn, Li,n, Cn, Li,n corresponding to the LFC for the AWGN-
BC with noiseless feedback characterized byPeq andΣeq. In
order to claim that all the rates achievable in this noiseless
feedback setup are also achievable in the original setup, we
need to validate the following properties of the MLLFC:

1) The overall error probability goes to zero asN → ∞ and
NΛ → ∞.

2) The power constraints are not violated.
3) The equivalent channel model after the MLLFC transfor-

mation is faithful to Setup 2.

We start by evaluating the error probability. As shown in
[8, Lemma 1], the overall error probability can be bounded
by the sum of modulo aliasing errors and errors of the
LFC schemes, where all the probabilities are evaluated in a
Gaussian coupled system, i.e. a system that applies no modulo
operations and whose statistics are Gaussian. Denoting the
overall error probability bype and the error probability of
a linear feedback coding scheme of lengthN by plfbe (N) and
referring to (1) yields:

pe
.
≤ 2Ne−NΛEp(L) + 2NΛp

lfb
e (N)

WhereL is defined in Lemma 1. In order to guarantee that
pe → 0 we need to verify thatL > 1, which assures that
Ep(L) > 0. We also need to assume that (say)plfbe (N) =
o(N−1) for all achievable rate pairs on Setup 2 (which is not
a restrictive assumption). Then we can setN = NΛ and take
the limit N → ∞.

We now proceed to verify thatL > 1. Observe that by
construction definition of the LFC in (4), the signalsCn and
L1,n + L2,n are independent, hence

Peq = EC
2

n + E
(
L1,n + L2,n

)2
.

Let us writeEC
2

n = (1 − ηn)Peq and E(L1,n + L2,n)
2 =

ηnPeq whereηn ∈ [0, 1]. A modulo aliasing error will occur

in (5) if vn /∈ V0 wherevn
def
= γn

∑
iLi,n − Z̃n−1. In the

coupled system, all the elementsvn are Gaussian and i.i.d
with variance

γ2
nηnPeq + σ̃2 = ηnP̃ + (1− ηn)σ̃

2,

where the equality is due to (8) and (10). Since we assumed
P̃ > σ̃2, thenγ2

nηnPeq + σ̃2 ≤ P̃ yielding L ≥ 1.1

From (7) we see that if no modulo error occurs, then

EX2
n = EC

2

n + E
(
L1,n + L2,n

)2
+ γ−2

n E(Z̃n−1)
2

= P

(
1−

σ̃2

P̃

)
+

P

P̃
σ̃2 = P.

Hence settingPeq as specified obeys the original power con-
straint. The feedback noise term−γ−1

n Z̃n−1 can be effectively
added to the feedforward channel noise, modifying the channel
covariance matrix fromΣ to Σeq as specified in the theorem.

Corollary 1. The rate region achieved by the OL scheme for
Setup 2 is also achievable for Setup 1, using the associated
modulo-lattice OL scheme.

Proof: Since the OL scheme is a LFC with constant trans-
mission power [2], the claim follows by virtue of Theorem 1.

Note 1. If P̃
σ̃2 → ∞, thenPeq → P and Σeq → Σ and the

rate region collapses to the one achieved by LFC with constant
transmission power in a noiseless feedback setup withP and
Σ.

1In order to guarantee thatL > 1 we in fact need to setγ =

√
P̃ /P − ε

with a arbitrarily small positiveε.
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VI. EXAMPLE - A M ODULO LATTICE OL SCHEME

In this section we consider a symmetric AWGN-BC with
independent noises and AWGN-MAC feedback, and juxtapose
the rate region we achieve with the MLLFC obtained from the
OL scheme, with some known results. For this setup, an inner
bound is given by the capacity of AWGN-BC without feedback
[1]:

⋃

α∈[0,1]

{
R1 ≤ 1

2 log

(
1 +

αP

σ2
1

)
,

R2 ≤ 1
2 log

(
1 +

(1− αP )

σ2
2 + αP

)}
.

An outer bound on the LFC achievable region for the
AWGN-BC LFC (with uncorrelated noises) and noiseless
feedback, is given by [4]

CLFC
BC (P,Σ) =

⋃

P ′

1+P ′

2=P

CFB
MAC

(
P ′

1

σ2
1

,
P ′

2

σ2
2

)

where the right-hand-side corresponds to the capacity region
of dual MAC problem with unit noise variance:

CFB
MAC (P1, P2)

def
=

⋃

ρ∈[0,1]

{
R1 ≤1

2 log
(
1 + P1(1− ρ2)

)
,

R2 ≤1
2 log

(
1 + P2(1− ρ2)

)
,

R1 +R2 ≤1
2 log

(
1 + P1 + P2 + 2

√
P1P2ρ

)}
.

A comparison between these bounds and our modulo-lattice
OL scheme is given in Fig. 3. For reference, we also plotted
the rate region of an OL scheme with noiseless feedback. The
formulas for the rates of the OL scheme are more involved and
appear in [2]. In the example of Fig. 3, all the noise variances

are set to unity, i.e.σ2
1 = σ2

2 = σ̃2 = 1, and the noises are
uncorrelated. The feedforward power is set toP = 10 and
the feedback power is set to be10dB stronger, i.e.P̃ = 100.
The plotted OL region for noisy feedback is calculated by
taking the convex hull of the union of the OL region after the
transformation and the no feedback region. It is clear from the
figure that the capacity region for the AWGN-BC with noisy
AWGN-MAC feedback is strictly larger than the no feedback
region.
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