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The AWGN BC with MAC Feedback: A Reduction
to Noiseless Feedback via Interaction

Assaf Ben-Yishai and Ofer Shayevitz

Abstract—We consider the problem of communication over introduces an element of interaction into the coding proltoc
a two-user Additive White Gaussian Noise Broadcast Channel and is based on modulo-lattice operations. This approach is
(AWGN-BC) with an AWGN Multiple Access (MAC) active g, extension of our previous work on noisy feedback for the
feedback. We describe a constructive reduction from this gap to . - :
the well-studied setup of linear-feedback coding over the WGN- point-to-point AWGN channeL[8][9]. As a proof of concept,
BC with noiseless feedback (and different parameters). Tisi We apply our method to the OL scheme and demonstrate how

reduction facilitates the design of linear-feedback codig schemes AWGN-MAC feedback can be used to increase the capacity
in the (passive) noiseless feedback regime, which can there b region of the AWGN-BC.

easily and constructively transformed into coding schemesn

the MAC feedback regime that attain the exact same rates. Il. PRELIMINARIES

Our construction introduces an element of interaction into the We write log for base2 logarithm, andin for the natural

coding protocol, and is based on modulo-lattice operationsAs . . .
an example, we apply our method to the Ozarow-Leung scheme, logarithm. Vectors are written in boldface (ea), and super-

and demonstrate how MAC feedback can be used to enlarge the SCIpts ared fused to emphasize the vector length if necessary
capacity region of the ANGN-BC. eg., " = [z1,...,2,). We write a, > b, to mean

|. INTRODUCTION liminf, yo L In (%) >0, and similarly define< and=.

It is well known that feedback can enlarge the capaci#. Lattice Definitions and Properties
region of a non-degraded AWGN-BC, yet the capacity re- , A |attice of dimensionN is denoted byA = G - ZV
gion with feedback generally remains unknovin [1]. In [2],  \whereq is the generating matrix.
Ozarow and Leung (OL) introduced a coding scheme that, V(A) = |det(G)] is the lattice cell volume.
attains rate pairs outside the non-feedback capacity megio , The nearest neighbor quantization ®fw.r.t. the lattice
and also showed that their scheme is not optimal.[In [3], A is denoted byQ, [x].
Ardestanizadeh, Minero and Franceschetti used the LQG, The fundamental (Voronoi) cell of is denoted by, =
approach from stochastic control theory to derive feedback {z: Qu [z] = 0.
coding schemes that exceed the OL sum rate. More recently, The ModuloA operation isM [x] def . _ Qa [2].

Amor, Steinberg and Wiggef [[4] characterized the capacity' ) o b it . _
region with uncorrelated noises and Linear Feedback Coding ﬁi H} iazTﬁeS thelistributive law: M [M [2] +y] =

%::?h)e ind shoyved that the LQG maximizes the SUm-rate | e yolume to noise ratio (VNR) of a lattice in the pres-
ymmetric uncorrelated AWGN-BC among all LFC : . 92 i, defr oy 2
schemes. ence of AWGN with variance? is u = VY (A) /o .

The case of the AWGN-BC with noisy feedback was studied * TQe norrr;;’:tj![lzed second Toment ?f a |atm2?95 G(A) =
by several authors using various feedback noise mofels [5]- ¢~ (A)/V=(A), whereo®(A) = E(|U|]*) andU is
[7]. This paper also considers the case of noise in the fagba  Uniformly distributed onV,.

but is conceptually different from previous works in two emma 1. For an i.i.d Gaussian vecto# of size Ny whose

important aspects. First, we assume that the feedback gffments have zero mean and variangethere exists lattices
the AWGN-BC channel is AWGN-MAC, a more practicalp with size N, and second moment(A) = L - o2 for which

assumption for wireless networks models. More importantly def o NBAL
we describe a constructive reduction from this setup to the Pmod = Pr(z ¢ Vo) < e M1 (1)

We_ll-studied setup of LFC ;chemes over the AWGN-BC WitWhereEp(-) is the Poltirev error exponent given by [10], [11]:
noiseless feedback (and different parameters). This tieduc

facilitates the design of LFC schemes in the (passive) tesise se—1-In(z) ifl<z<2
feedback regime, which can then be easily and construgtivel Ep(r) = ¢ 3 (In(z) +In(%)) f2<z<4
transformed into coding schemes in the AWGN-MAC feed- 1. ifz>4

8
For the sake of analysis in this work, it is enough to state
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back regime that attain the exact same rates. Our constnucti


http://arxiv.org/abs/1503.05297v3

Zn
* . . .
| As for power constraints, we assume that Terminal A is
S {_b‘ _______ . subject toZiV:1 EX2 < N-P and TeLminaIs Bare subject
Zi . to identical power constraintEfL1 EX?, < N-Pforie

- 7 : ),Zl n {1’ 2}
Y, ly : An interactive schemép, 1, p2) is associated with a rate
Ln — . og M; . o
@ B, W, pair B, & g (for i € {1,2}) and an error probability

pe(N, R1, R2), which is the probability that at least one of

the Terminals B errs in decoding its designated mess&ie

at time N, under the optimal decision rule.

~ e Note that in the classical noiseless (and passive) feed-

X v Bo Wo back AWGN-BC setup[]2], Terminal A sees at timeboth

T Zn Yi ,—1 and Y ,,_; and can use both for coding. Namely:
(i . X, = oo (W1, Wa, Y"1 Y1), We refer to this setting as

Zan noiseless feedback
Fig. 1. A block diagram of BC with MAC feedback.
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IV. CODING SCHEMES
I1l. SETUP A. LFC Schemes

Our setup is depicted in Figl 1 and is defined as follows. We consider LFC schemes as defined in [4]. In such
Terminal A is connected to both Terminal Bnd B, through Schemes the transmission functionks (2) reduce to:

an AWGN-BC. The channel input from Terminal A at time 9
is X,, and the output to Terminal ,Bis Y; ,, for i € {1,2}. X, =C, — ZLM ©)
The input-to-output relation is given by: =

Yin =Xn+ Z;, forie {1,2} where C,, = C,, (W, W) is the codebook elemeni.e. a

Th . w7 7 G . d ind d function of the messages, but not the feedback. fEeelback
€ noise pair( 2y, Z,) are Gaussian and independern lementsL;,, = L;,(Y"™ '), are linear combinations of the

between time instances, with zero mean and a covariar&(,heanneI OUtpULSL, . — ;. ¥~ L, anda, , are row vectors
matrix im = QinY ;" 7, in

of lengthn — 1.
y, def [ of TUle} By a simple induction argument, it can be easily shown that
royoy o3 (3) admits the following equivalent formulation:
The feedback link is an AWGN-MAC, whose input from
Terminal B at timen is X;, and the corresponding output X, =C, — Zfi,m (4)
at Terminal A isY,,. The input-to-output relation is given by i=1
Yy = Xin+ Xo + Zn whereC,, = C,(Wy,Ws) and L;,, = @;,Z""*. Namely,

) ~ ) . the linear combinations of the outputs can be replaced with
The noise proces$Z,} is i.i.d zero mean Gaussian Withgifferent) linear combinations of the noises, by properly
variance isEZ?2 = 52, and is independent of the feedforwar odifying the codebook elements.
noise process. _ _ _ Observe that in[{4), the codebook elemény is statis-
Terminal A is in possession of a pair of independeRj.,y independent of the feedback element, Z; ,, and
messagesV, ~ Uniform([M:]) and W2 ~ Uniform([Ms]),  poth have bounded power. This highlights the power split-
to be described to Terminals;Band B, respectively over ing petween the codebook and the feedback. In contrast,
N rounds of communication. To that end, the terminals cap @) the codebook element,, is highly correlated with
employ an interactive scheme defined by a three functiO{pT% feedback element’, L, ., and their individual powers
(¢, @1, p2) as follows: At timen, Terminal A sends a function .5, grow unbounded (Ze_g’_ in OL where the powers grow
of its message paiflVi, W) and possibly of past feedbackeynonentially). This can be interpreted by viewidg, L.,
channel outputs over the feedforward channel, i.e., as a linear predictor for the codebook elemeht which
X = on(Wh, Wa, Y1), (2) facilitates the power savings at the transmitter. The #jipic
exponential power growth corresponds to the “zoom-in"dffe
Similarly, Terminals B and B, send functions of their pastwhich is often observed in feedback communication.
observations to Terminal A over the feedback channel, i.e., |t is instructive to note that the feedback element$in (8) ar
¥~ n , computable at Terminal®; and B,, but typically cannot be
Xin = @in(¥;") for i € {1, 2} fed back to Terminald under any finite power constraint. In
We also note that, in general, we allow these functions te furontrast, the feedback elements [ih (4) are not computable at
ther depend on common randomness shared by the terminasminalsB; and B, yet have bounded powers.
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Fig. 2. Two dimensional coding for MLLFC

B. Modulo-Lattice LFC (MLLFC) Schemes

We are now ready to present the construction ofrttealulo
lattice linear feedback codindMLLFC) schemes for the
AWGN-BC with AWGN-MAC feedback. The method is an
extension of the one described fin [9] for point-to-point AWG
with noisy feedback. We useV, LFC schemes each of length

N interleaved in time, which can be thought of as a two-

dimensionalN, x 2N coding. The notion of two dimensional

coding is depicted in Fig.]2. We do lattice coding for the
feedback over the vertical axis (where adjacent symbolge hav
time difference ofl), and use that feedback for LFC coding
over the horizontal axis (where adjacent symbols have time

difference of2N, ). The technical reason for the fact®rin
2N, is to accommodate the inherent delay’gf of the lattice
coding operation, and facilitate the use of feedback.
Let us now describe the coding scheme in more detalil.
o We use an LFC with functions and parametéts and
a;, according to formulation[{3), and’,, and @i
according to formulatior({4).

« We run multiple instances of the same LFC scheme
described above. We index each instance by the index

pair (na,p), whereny € [Na] andp € {0,1} (the parity
index). The feedforward of scheme,, p) is sent over
time instancens + 2Ny (n + p) wheren € [N].

« The blocks of length\V, are indexed by an index pair

(n,p). The block corresponding to these indices pertains

to time indicesl + N (n +p — 1) to Na(n + p).

o At the end of block(n — 1,p), Terminals B and B,
each have the outputs corresponding to schefhes)
through(Va, p) at stepn—1. For simplicity of exposition

L, ,, (the indexp is omitted for simplicity).
Over the following block, indexeth—1, p+1), Terminals
B, both send

Xi.,nfl = IMIA ['YnLln + Vln]

whereA is a lattice of dimensioV,. My [-] is the lattice
modulo operationsV; ,, are dither variables, that are i.i.d
and uniformly distributed over the lattice fundamental
Voronoi cell V.

Terminal A receives the following vector:

2
Yo=Y Xin1+Zna
=1
It calculates the codebook elemergs and C,, for all
Ny s_chemes in the block and stacks them in a ve€tgr
and C,, respectively.
At the following block, Terminal A calculates:

2
=1
(5)

Due to the distributive law of the modulo operation

2
Kn = MA |:Yn Zfi,n - Zn—l]
=1

Wherefi,n is a vector containing the feedback elements
of all Ny schemes. Finally, we send

We refer to the event in which,, >, Li,— Zn,l ¢ Vo,
as amodulo aliasing error If this event does not occur
then
2 ~
Xn = Cn - ZLz,n - ’szlzn—l-
i=1

Note thaty,,C,, is subtracted in[{5) (inside the modulo)
and then added back il (6). This is done to assure that the
modulo operand in{5) is Gaussian in the coupled system
(see below and alsa[8]), which is crucial for the error
analysis in the sequel. It is also interesting to note that
in the OL schemé&”,, = 0 for all n > 2.

« Inspecting a single scheme in the block (and omitting the

scheme indexing) we obtain
2
Xn = Cn - ZLi,n - 77:1271—1 (7)
i=1
which is equivalent to the LFC transmissidd (4) with an
additional noise element, 17, _,

It is appropriate to note that the feedback transmission

we denote these vectors By~ and omit then, and described above is actually tmalog Modulo Lattice Mod-

p indices. Terminals Band B, both compute the linear ulation of Kochman and Zamir [12], with the exception that
combina‘tions;zl»mY?‘1 for all Ny schemes in this block. the source-related computations are distributed betweaen t
TheseN, elements are stacked in a vector denoted hgrminals and added over MAC. The essence of the scheme is



in (@), implying that if no modulo aliasing error occurs ireth We start by evaluating the error probability. As shown in
feedback, Terminal A can apply LFC transmission, witholi8, Lemma 1], the overall error probability can be bounded
explicitly knowing the channel output elements required fdy the sum of modulo aliasing errors and errors of the
its calculation. The difference between the clean feedbackC schemes, where all the probabilities are evaluated in a
transmission in[(3) and the noisy feedback transmission @aussian coupled systeire. a system that applies no modulo
(@) is the existence of a feedback noise elemenf ', ;. operations and whose statistics are Gaussian. Denoting the
This feedback noise element can be effectively added to tteeerall error probability byp. and the error probability of
forward channel noise; we refer to this phenomenonaise a linear feedback coding scheme of lengéhby p!* (V) and
insertion In addition, the feedback noise element consumesferring to [(1) yields:
gzgo?lcet?(leotsrsnsmlssmn power; we refer to this phenomenon pe < 2NeNAESD) 4 9N, pib(N)
Where L is defined in Lemmall. In order to guarantee that
pe — 0 we need to verify that, > 1, which assures that
By choosing an appropriate lattica, properly setting £,(L) > 0. We also need to assume that (sa§ff(N) =
scaling parameters,, and the LFC functions defined by,(N—1!) for all achievable rate pairs on Setup 2 (which is not
Cn,Lin, Cy and L; , one can calculate a set of achievablg restrictive assumption). Then we can 3ét= N, and take
rates for the MLLFC scheme. Nevertheless, a joint optimizghe limit N — oo.
tion of all the aforementioned parameters is very involMed. \We now proceed to verify thal. > 1. Observe that by
the following theorem, which is the main contribution ofgthi construction definition of the LFC iri)4), the signals, and
work, we introduce a simple setting of the parameters thE‘g)n +ZM are independent, hence

reduces MLLFC to LFC with clean feedback, achieving the ., _ 9
same rates. Poq =EC, +E(L1n + La2s)".

V. MAIN RESULT

Theorem 1. Let Setup 1 denote an AWGN-BC with AWGN:et us write Eﬁi = (1 = p)Peq and E(L1,p, + Lo ,)? =
MAC feedback with paramter®, ¥, P,5% (and P > 52). 1n,P.q Wheren, € [0,1]. A modulo aliasing error will occur
Let Setup 2 denote an AWGN-BC with noiseless feedbagk(@) if v, ¢ V, wherev, & 4, 3. Lin — Z,_1. In the
feedforward power constrairft.q, and covariance matri¥Xeq, coupled system, all the elements, are Gaussian and i.i.d
given by with variance
~2 - o~ .
Poq=P <1 - UT) 8) Yt Peq + 0% =0 P + (1= 1),
PP 11 where the equality is due t0](8) arld [10). Since we assumed
Yeq =X +02= [1 1] ) (9) P >35?, thenyin, P + 02 < P yielding L > 10
P From [1) we see that if no modulo error occurs, then
Then for any LFC with constant transmission powBX(? =
P.q) for Setup 2, there exists an MLLFC for Setup 1 achieving —
the same rates. =P (1 — UT> + 552 =P
Proof: The proof is based on the MLLFC construction P P

described the previous section, with a judicious (but nat neH€Nce settingP, as specified obeys the original power con-

essarily optimal) setting of the parameters. Firstly, weade Straint. The feedback noise tery,, ' Zy,—1 can be effectively
a lattice A having a normalized second momerft(A) = P, added to the feedforward channel noise, modifying the célann

that is good in the sense of Lemiiia 1 (i.e. achievinga in covariance matrix fronk to ¥., as specified in the theorem.
the lemma). We also set: .

EX2 =EC, +E(Tin+Lon) + 75 2E(Zn-1)?

5 Corollary 1. The rate region achieved by the OL scheme for

=\ P (10) Setup 2 is also achievable for Setup 1, using the associated

Let us now explicitly describe the choice of the functionodulo-lattice OL scheme.

Cn, Lin, Cn, L; »n, corresponding to the LFC for the AWGN- Proof: Since the OL scheme is a LFC with constant trans-

BC with noiseless feedback characterizedy and¥c,. I mission powerl[2], the claim follows by virtue of Theorémn 1.
order to claim that all the rates achievable in this noiseles u

feedback setup are also achievable in the original setup, we

P
need to validate the following properties of the MLLFC: ~ NOt€ 1. 1f 25 — oo, then Py — P and Xeq — ¥ and the
1) Th I babilit i A d rate region collapses to the one achieved by LFC with coristan
) N e_o)v:ora €ITor probabiiity goes 10 z€roas— oo and 4 nsmission power in a noiseless feedback setup Ritmd
A .

. . 2.
2) The power constraints are not violated.
3) The equivalent channel model after the MLLFC transfor- 1, order to guarantee thdt > 1 we in fact need to set — 1/ P/P — &
mation is faithful to Setup 2. with a arbitrarily small positive.



—— No FB

are set to unity, i.ec? = 02 = 52 = 1, and the noises are
—  LFC uncorrelated. The feedforward power is setfto= 10 and
-~ oL the feedback power is set to B6dB stronger, i.e.P = 100.
--- OL noisy The plotted OL region for noisy feedback is calculated by

taking the convex hull of the union of the OL region after the
transformation and the no feedback region. It is clear frben t
figure that the capacity region for the AWGN-BC with noisy
AWGN-MAC feedback is strictly larger than the no feedback
region.

Rolbits]

(2]

(3]

R [bits]

Fig. 3. Achievable rates for BC without feedback, with ntéss feedback
and optimal LFC, noiseless feedback and OL, and noisy feddhad OL
after the transformation in Theordrh 1. The BC is symmetrit @mcorrelated
with parametersP = 10,07 = 0% = 1,7 = 0, the MAC parameters are [5]
P =100,5% = 1.

(4]

(6]
VI. EXAMPLE - A MODULO LATTICE OL SCHEME
In this section we consider a symmetric AWGN-BC with

independent noises and AWGN-MAC feedback, and juxtapoé@J
the rate region we achieve with the MLLFC obtained from the
OL scheme, with some known results. For this setup, an inn¢s]
bound is given by the capacity of AWGN-BC without feedback
[4]:
El

J {n

01
ael0,1] [10]
1—aP)
<llog|1 ( .
R2_20g< +a§+aP)} 1]

An outer bound on the LFC achievable region for thﬁz]
AWGN-BC LFC (with uncorrelated noises) and noiseless

feedback, is given by [4]
P/ P,
= U i (40

P{+P}=P

27 2

where the right-hand-side corresponds to the capacitymegi
of dual MAC problem with unit noise variance:

def
CIICIBAC (PlaPQ) =

U {Rl <ilog (1+ Pi(1-p%),
p€[0,1]
1

Ri1+ Rs §21og

<

log (1+ P2(1—p?)),
(1 4P+ P42 PlPQp)}.

A comparison between these bounds and our modulo-lattice
OL scheme is given in Fid. 3. For reference, we also plotted
the rate region of an OL scheme with noiseless feedback. The
formulas for the rates of the OL scheme are more involved and
appear in[[2]. In the example of Figl 3, all the noise variance
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