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Abstract—An upper bound on the capacity of a cascade of non-
linear and noisy channels is presented. The cascade mimics the
split-step Fourier method for computing waveform propagation
governed by the stochastic generalized nonlinear Schrödinger
equation. It is shown that the spectral efficiency of the cascade
is at most log(1+SNR), where SNR is the receiver signal-to-
noise ratio. The results may be applied to optical fiber channels.
However, the definition of bandwidth is subtle and leaves open
interpretations of the bound. Some of these interpretations are
discussed.

I. I NTRODUCTION

The capacity of the optical fiber channel seems difficult
to compute or even bound. Perhaps the best-known capacity
lower bound for optical fibernetworksis given in [1]. Many
follow-up papers have suggested modifications of this bound,
e.g. see [2], [3], [4], [5], [6], [7], [8], [9] and referencestherein.
The purpose of this paper is to develop a simple capacity
upper bound for a class of channels that is sometimes used
to simulate signal propagation. As far as we know, this is the
first capacity upper bound for the optical fiber channel. The
bound is based on two basic tools: maximum entropy under a
correlation constraint and the entropy power inequality (EPI).
The main insight is that the non-linearity that is commonly
used to model optical fiber propagation does not change the
differential entropy of a signal.

The capacity bound can be converted to a spectral efficiency
bound by normalizing by an appropriate bandwidth. We cau-
tion, however, that it is not clear what the “right” choice
for normalization should be. We therefore consider several
options that may or may not be satisfactory for the engineering
problem. We discuss extensions to the basic model that might
help to clarify the issue.

This paper is organized as follows. In Sec. II we review
basic results on complex random variables and their entropy. In
Sec. III we consider continuous and discrete signal propagation
models for optical fiber. In Sec. IV we develop an upper
bound on capacity for the discretized model. In Sec. V we
discuss subtleties concerning how to normalize capacity to
compute a bound on spectral efficiency. We further outline
some extensions. Sec. VI concludes the paper.

We remark that the methods presented here were recently
adapted to an optical fiber model that is based on Hamiltonian
energy-preserving dynamical systems [10].

II. PRELIMINARIES

A. Proper Complex Random Variables

Let j =
√
−1 and consider a complex random column vec-

tor X = Xc+jXs whereXc andXs are real random column
vectors. The covariance and pseudo-covariance matrices ofX
are defined as the respective

QX = E
[
(X − E [X])(X − E [X])†

]
(1)

Q̃X = E
[
(X − E [X])(X − E [X])T

]
(2)

whereXT andX† are the respective transpose and complex-
conjugate transpose ofX . The complex vectorX is said to
be proper if Q̃X = 0 (see [11]). It is known that a linear or
affine transformation of a proper complexX is also proper [11,
Lemma 3].

B. Differential Entropy

Let h(X) = h(Xc Xs) be the differential entropy ofX.
Two basic properties ofh(·) are the translating and scaling
properties: for a complex vectorv and a complex square matrix
M we have

h(X + v) = h(X) (3)

h(MX) = h(X) + 2 log | det(M)| (4)

wheredet(M) is the determinant ofM and|X | is the absolute
value ofX . For instance, ifM is unitary (M−1 = M†) then
we have| det(M)| = 1 andh(MX) = h(X). We remark that
real random vectors and real matrices do not have the factor
2 in (4), see [11, Eq. (13)].

C. Discrete Fourier Tranform

The discrete Fourier transform (DFT) of aL × 1 vectora
is A = F a whereF is theL × L discrete Fourier transform
(DFT) matrix with entries

1√
L
e−j2πℓm/L, 0 ≤ ℓ,m ≤ L− 1.

Observe thatF is unitary (F−1 = F†). The inverse Fourier
transform (IDFT) ofA is a = F†A.
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D. Maximum Entropy

A useful property ofh(·) is a maximum entropy result
proved in [11, Thm. 2]: for aL× 1 complex vectorX with
nonsingular correlation matrixR(X) := E

[
X X†

]
we have

h(X) ≤ log[(πe)L det(R(X))] (5)

with equality if and only ifX is proper complex, Gaussian,
and zero mean.

E. Entropy Power

The entropy power of a real, random vectorX of length
L is defined asV (X) = e2h(X)/L/(2πe). But a complex
vectorX of lengthL can be considered to be a real vector of
length2L, so when dealing with complex vectors we instead
use the definitionV (X) = eh(X)/L/(πe). So consider two
independent, complex, random vectorsX andY of lengthL.
The EPI states that [12, Sec. 17.8]

V (X + Y ) ≥ V (X) + V (Y ). (6)

III. S IGNAL PROPAGATION

A. Continuous Space-Time Equations

Suppose the signala(z, t) represents the optical field at
location z and timet. The locationz = 0 usually represents
the launch position, i.e., the launch signal isa(0, t). We take
the receive signal to be at positionz∗, i.e., the receive signal
is a(z∗, t). For ideal distributed Raman amplification (see [1,
Sec. IX.B]) the evolution ofa(z, t) is given by the generalized
nonlinear Schrödinger equation (see [1, eq. (70)])

∂a

∂z
+ j

β2

2

∂2a

∂t2
− jγ|a|2a = n (7)

where j =
√
−1 and n is a Gaussian noise process that

is spatially white and bandlimited toBn Hertz. In other
words, the noise spatial and temporal autocorrelation function
is (see [1, eq. (53)])

E [n(z, t)n(z′, t′)∗] =
NASE

z∗
δ(z − z′)Bnsinc (Bn(t− t′))

(8)

where δ(x) is the Dirac-delta generalized function and
sinc(x) = sin(πx)/(πx).

B. Discrete Space-Time Equations

The evolution ofa(z, t) in (7) is often computed by us-
ing the split-step Fourier method. This method discretizes
both space and time, i.e.,z takes on values in the set
Z = {z0, z1, . . . , zK} and t takes on values in the set
T = {t0, t1, . . . , tL−1}. Usually the space and time values are
chosen to be uniformly-spaced, i.e.,zk = ∆zk and tℓ = ∆tℓ
for some constants∆z and∆t and integersk = 0, 1, . . . ,K,
ℓ = 0, 1, . . . , L − 1. We will use this simplification below,
although a more general approach with non-uniform spacing
is possible. We writea(zk) for the L × 1 vector of sample
valuesa(zk, tℓ), ℓ = 0, 1, . . . , L− 1, at positionzk.

The evolution ofa(z) from position z = 0 to position
z = z∗ is performed by recursively computingK “small”

steps from positionzk to zk+1 for k = 0, 1, . . . ,K − 1. More
precisely, the signal evolution from positionzk to position
zk+1 is computed by “splitting” the linear and nonlinear steps.

1) Nonlinear step. Compute the effect of nonlinearity via

aN (zk+1) = DN a(zk) (9)

whereDN is a diagonal matrix with entries

ejγ |a(zk,tℓ)|
2 ∆z , ℓ = 0, 1, . . . , L− 1 (10)

and wherea(zk, tℓ) is the(ℓ + 1) entry of a(zk).
2) Linear step. Use the DFT to computeAN (zk+1) =

F aN (zk+1). Next compute the effect of dispersion via

AL(zk+1) = DL AN (zk+1) (11)

whereDL is a diagonal matrix with entries

e−j(β2/2) ℓ
2/(L∆t)

2 ∆z , ℓ = 0, 1, . . . , L/2− 1 (12)

e−j(β2/2) (L−ℓ)2/(L∆t)
2 ∆z , ℓ = L/2, . . . , L− 1 (13)

where we assumed thatL is even. Finally, use the IDFT
to computeaL(zk+1) = F† AL(zk+1). Summarizing,
the linear step has inputaN (zk+1) and output

aL(zk+1) = F† DL F aN(zk+1). (14)

3) Noise step. Add noise whose variance is proportional to
the space step∆z, the time step∆t, and the noise band-
width Bn. We assume that the simulation bandwidth
B = 1/∆t satisfiesB ≪ Bn. We compute the effect
of noise via

a(zk+1) = aL(zk+1) + n(zk+1) (15)

where the entries of theL×1 column vectorn(zk+1) are
drawn independently from a proper complex Gaussian
distribution with variance(NASEBn/z

∗)∆z∆t.

In summary, one step in space requires computing

a(zk+1) = F† DL FDN a(zk) + n(zk+1). (16)

Although this equation looks linear, the nonlinearity arises
becauseDN depends on the|a(zk, tℓ)|2 for all ℓ.

We remark that several split-step methods can be used, e.g.,
one can use two (fine) linear steps and one nonlinear step. The
motivation for doing this is to improve numerical accuracy
and/or speed up simulations. The choice of method does not
affect the results below.

IV. CAPACITY BOUND

We develop an upper bound on the mutual information
I(a(0); a(z∗)) between the channel input and output signals.
The bound uses two basic ideas.

1) Compute the energy of the output signal and apply the
maximum entropy bound (5).

2) Show that the nonlinear step does not change entropy
and apply the EPI (6).



A. Output Energy

Consider the space step from positionzk to positionzk+1.
The correlation matrixR(aN (zk+1)) of aN(zk+1) has as
(ℓ,m) entry the value

E [aN(zk+1, tℓ)aN (zk+1, tm)∗] =

E
[
a(zk, tℓ)a(zk, tm)∗ej2πγ(|a(zk,tℓ)|

2−|a(zk,tm)|2)∆z

]
(17)

Observe that them = ℓ entries do not change, i.e., the diagonal
of R(aN (zk+1)) is the same as the diagonal ofR(a(zk)). We
thus haveTr (R(aN (zk+1))) = Tr (R(a(zk))), whereTr (M)
is the trace of the square matrixM. Next, we compute

R(aL(zk+1)) = F†DLFR(aN (zk+1))F
†D

†
LF. (18)

We thus haveTr (R(aL(zk+1))) = Tr (R(aN (zk+1))) by
repeatedly usingTr (AB) = Tr (BA). Finally, we have

R(a(zk+1)) = R(aL(zk+1)) +
NASEBn

z∗
∆z∆t I (19)

whereI is theL× L identity matrix.
Combining the above results, we have

Tr (R(a(zK))) = Tr (R(a(z0))) + LNASEBn∆t

= E0 +NASEBnT (20)

whereE0 = Tr (R(a(z0))) is the input signal energy and
T = L∆t is the total time. We further have

log detR(a(zK))
(a)

≤ log

(
L∏

i=1

Ri,i(a(zK))

)

=

L∑

i=1

logRi,i(a(zK))

(b)

≤ L log (Tr (R(a(zK))) /L)

= L log ((E0 +NASEBnT )/L) (21)

where (a) follows by defining Ri,i(a(zK)) =
E
[
|a(zK , ti−1)|2

]
as the (i, i) entry of R(a(zK)) and

applying Hadamard’s inequality [12, Sec. 17.9], and(b)
follows by Jensen’s inequality. Using (5), we thus have the
entropy upper bound

h(a(z∗)) ≤ L log (πe (E0 +NASEBnT ) /L) . (22)

B. Entropy Preservation

The linear step preserves entropy becauseDL is a unitary
matrix. For the nonlinearity, observe that every entry of
aN (zk+1) has the form|a|ej arg(a)+jf(|a|) wherearg(a) is the
phase ofa andf is a smooth function. We compute

h
(
|a|ej arg(a)+jf(|a|)

)

(a)
= h (|a|, arg(a) + f(|a|) mod 2π) + E [log |a|]
(b)
= h (|a|) + h

(
arg(a) + f(|a|) mod 2π

∣∣|a|
)
+ E [log |a|]

(c)
= h (|a|) + h

(
arg(a) mod 2π

∣∣|a|
)
+ E [log |a|]

= h
(
|a|ej arg(a)

)

= h (a) (23)

where(a) follows by [13, eq: (318)],(b) follows by the chain
rule for entropy, and(c) follows by (3). The above steps
remain valid with conditioning. We thus have

h(aN (zk+1)|a(0))

=

L−1∑

ℓ=0

h(aN (zk+1, tℓ)|a(0), aN (zk+1, t0), . . . , aN (zk+1, tℓ−1))

(a)
=

L−1∑

ℓ=0

h(a(zk, tℓ)|a(0), a(zk, t0), . . . , a(zk, tℓ−1))

= h(a(zk)|a(0)) (24)

where(a) follows because there is an invertible transformation
from aN (zk+1, tℓ) to a(zk, tℓ) for all ℓ, and hence we can
exchange these values when conditioning.

The above results imply that

V (a(zk+1)|a(0))
= V (aL(zk+1) + n(zk+1) | a(0))
(a)

≥ V (aL(zk+1)|a(0)) + V (n(zk+1)|a(0))
= V (a(zk)|a(0)) + (NASEBn/z

∗)∆z∆t (25)

where (a) follows by (6). By induction, we thus have
V (a(zK)|a(0)) ≥ NASEBn∆t and therefore

h(a(z∗)|a(0)) ≥ L log (πeNASEBnT/L) . (26)

Combining the results (22) and (26), we have

I(a(0); a(z∗)) ≤ L log

(
1 +

E0

NASEBnT

)
. (27)

V. D ISCUSSION

A. Spectral Efficiency

The bound (27) normalized by the timeT = L/B states
that the capacity is upper bounded as

C̃ ≤ B log (1 + SNR) bits/s (28)

whereSNR = E0/(NASEBnT ) is the signal-to-noise ratio.
To bound the spectral efficiency, we must normalize by

the bandwidth. How to define bandwidth precisely is open to
interpretation, but suppose for now thata(zk) has bandwidth
W (zk). For example,W (zk) could be the smallest bandwidth
for which the simulations do not substantially reduce the
mutual informationI(a(z0); a(zk)). Another approach is to
chooseW (zk) large enough to ensure that the “out-of-band
interference” is “sufficiently weak”, since interference plays a
major role when sharing spectrum.

We use the following approach. The maximal signal band-
width is W = max0≤k≤K W (zk) and we define the spectral
efficiency to be

C ≤ B

W
log (1 + SNR) bits/s/Hz. (29)

The best bound follows by choosingB = W . We feel that
this is the “right” approach because the frequency band with
bandwidthW carries (almost) all the mutual information, and



because one usually assumes that only the signals of interest
are present inside this band. The spectral efficiency is thus
bounded bylog(1 + SNR).

It remains to be seen whether our approach will be generally
accepted. In any case, the upper bound (28) oncapacity
remains valid. As far as we know, this is the first such bound
for optical fiber channels.

B. Extensions

There are several possible extensions of the results. First,
observe that for the nonlinear step the phase can be any
function of the amplitude without changing (23). One will
usually choose a smooth function so that the discrete version
of the problem matches the continuous version.

Second, observe that for the linear step one may choose
any unitary transform, i.e., any all-pass filter. For instance, the
bound derived above remains valid for third-order dispersion.

Third, one may wish to study a model where Raman
amplification takes place in the C-band (see [1, Fig. 21])
but advanced receivers collect and process signals both inside
and outside this band. Outside the C-band, the signal will
experience loss of at least 0.2 dB/km which is at least 20
dB for 100 km. However, the noise outside the C-band is
weak so that out-of-band processing could be interesting. In
this case, the noise step (15) should be modified to include
a frequency-dependent loss and noise variance. This model
is realistic for heterogeneous systems where amplificationis
frequency dependent, and where receivers process outside of
the bandwidth of their signals of interest. We hope that more
detailed models such as this one could help to clarify what a
proper definition of bandwidth might be.

Finally, the bound extends to problems with polarization,
core, and mode multiplexing, as long as the linear and non-
linear steps preserve energy and entropy, and the noise is
additive, independent, and Gaussian.

VI. CONCLUSIONS

The spectral efficiency of a cascade of nonlinear and noisy
channels was shown to be bounded bylog(1 + SNR). The
definition of spectral efficiency is subtle, however, because the
notion of bandwidth is subtle, e.g., see [14]. In fact, a recent
paper [15] states that the spectral efficiency of the optical
fiber channel can be larger thanlog(1 + SNR) when one
normalizes by the input bandwidthW (z0) (see the text after
(16) in [15]). Of course,W (z0) is generally smaller than the
maximal bandwidthW . This observation is important because,
among other considerations, the maximal bandwidth defines
the required spectral spacing when using wavelength-division
multiplexing (WDM).
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