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Abstract—We develop a polar coding scheme for empirical
coordination in a two-node network with a noisy link in which
the input and output signals have to be coordinated with the
source and the reconstruction. In the case of non-causal encoding
and decoding, we show that polar codes achieve the best known
inner bound for the empirical coordination region, provided that
a vanishing rate of common randomness is available. This scheme
provides a constructive alternative to random binning and coding
proofs.

I. INTRODUCTION

Coordinating behavior in decentralized networks is a fun-
damental challenge for many applications, such as cognitive
radio, autonomous vehicles, cloud computing and smart grids.
These networks are composed of autonomous devices that
sense their environment and choose their actions in order
to achieve a general objective. Within the framework of
information theory, the problem of coordination has been in-
vestigated in [1] and two different metrics have been proposed
to measure the level of coordination. Empirical coordination
requires the joint histogram of the actions to approach a
target distribution, while strong coordination requires the total
variation distance of the distribution of actions to converge
to an i.i.d. target distribution. Explicit schemes using polar
codes for point-to-point coordination have been proposed in
the case of empirical coordination uniform actions [2], strong
coordination for uniform actions [3] and then generalized to
the case of non uniform actions [4]. In all these works the
communication links are assumed to be error-free.

In this paper we consider a two-node network with an infor-
mation source and a noisy channel. We focus on the setting
in which both the encoder and the decoder are non-causal.
Coordination in state-dependent networks with different obser-
vation hypotheses (causal and strictly causal encoder/decoder)
has been studied in [5–7]. Following the framework in [7–
9], we require empirical coordination of the channel input
and output signals with the source and the reconstruction.
This requirement allows us to consider scenarios in which the
actions performed by an agent play a double role, influencing
the global behavior, as well as carrying information for the
other agents [10–12]. In [8] the authors provide an inner bound
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for the set of achievable joint empirical distributions, called the
coordination region. This is done by considering the situation
as a joint source-channel problem in which the channel inputs
are coordinated with the source symbols and decoder outputs.
This scenario, in which signals and actions are coordinated,
can be applied to watermarking, coded power control [13]
and general decentralized networks in which devices observe
signals and choose actions.

Inspired by the binning technique using polar codes in [14],
we propose an explicit polar coding scheme that achieves the
inner bound for the coordination capacity region in [8] by
using a negligible amount of common randomness. We use a
chaining construction as in [15, 16] to ensure proper alignment
of the polarized sets.

The remainder of the paper is organized as follows.
Section II introduces the notation, describes the model un-
der investigation and states the main achievability result.
Section III details the proposed coordination scheme using
polar codes. Finally, Section IV proves the main result.

II. PROBLEM STATEMENT

A. Notation

We define the integer interval [a, b] as the set of the
integers between a and b. For n = 2m, m ∈ N, we note

Gn :=
[
1 0
1 1

]⊗m
the source polarization transform defined

in [17]. Given X1:n := (X1, . . . , Xn) a random vector, we
note X1:j the first j components of X1:n and X[A], where
A ⊂ [1, n], the components Xj such that j ∈ A. We note
V(·, ·) and D(·‖·) the variational distance and the Kullback-
Leibler divergence between two distributions, respectively. We
note TX1:n the empirical distribution of a random vector X1:n

taking values in Xn. Given a distribution PX , X1:n is in the
ε-typical set Tε(X) if V(TX1:n , PX) ≤ ε.

C
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Figure 1. Coordination of signals and actions for a two-node network with
a noisy channel.
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Figure 2. Joint source-channel model. Although we require common randomness C, we show that the rate is negligible.

B. System model and main result

We start with the model depicted in Figure 1 and consider
two agents, Node 1 and Node 2, who have access to a
shared randomness source C ∈ Cn. Node 1 draws an i.i.d.
sequence of actions S1:n ∈ Sn according to a discrete
probability distribution PS . Node 1 then selects a signal
X1:n = fn(S

1:n, C), where fn : Sn × Cn → Xn is the
non-causal encoder. The signal X1:n is transmitted over a
discrete memoryless channel parametrized by the conditional
distribution PY |X . Upon receiving Y 1:n ∈ Yn, Node 2 selects
an action Ŝ1:n = gn(Y

1:n, C), where gn : Yn × Cn → Ŝn is
the non-causal decoder. For block length n, the pair (fn, gn)
constitutes a code. Node 1 and Node 2 wish to coordinate
in order to obtain a joint distribution of actions and signals
that is close to a target distribution PSXY Ŝ . We focus on the
empirical coordination metric defined in [1].

Definition 1: A distribution PSXY Ŝ is achievable if for all
ε > 0 there exists a code (fn, gn) such that

lim
n→∞

P
{
V
(
TS1:nX1:nY 1:nŜ1:n , PSXY Ŝ

)
> ε
}
= 0,

where TS1:nX1:nY 1:nŜ1:n(s, x, y, ŝ) is the empirical distribution
of the tuple (S1:n, X1:n, Y 1:n, Ŝ1:n) induced by the code.
The empirical coordination region R is the set of achievable
distributions PSXY Ŝ .

In the case of non-causal encoder and decoder, the problem
of characterizing the empirical coordination region is still
open, but the following inner bound was proved in [8].

Theorem 1: Let PS and PY |X be the given source and chan-
nel parameters. When the encoder and decoder are allowed to
be non-causal, the region R′ ⊂ R defined below is included
in the empirical coordination region.

R′ :=


PSXY Ŝ : ∃U taking values in U s.t.
PSXY ŜU = PSPU |SPX|USPY |XPŜ|UY ,

I(U ;S) ≤ I(U ;Y ),

|U| ≤ |S||X ||Y||Ŝ|+ 1

 . (1)

We propose a scheme based on polar coding that achieves
the inner bound R′ for the empirical coordination region. The
key step for coordination is to generate the same auxiliary
sequence U1:n at the decoder and the encoder. Once this
is accomplished, the task is essentially done because the
sequences X1:n and Y 1:n with the correct distribution can
be generated via the conditional distributions PX|US and the
channel PY |X ; hence, the appropriate Ŝ1:n can be drawn at the
decoder. For brevity, we only focus on the set of achievable
distributions inR′ for which the auxiliary variable U is binary.
The scheme can be generalized to the case of a non-binary

random variable U using non-binary polar codes. We now state
the main result of the paper.

Theorem 2: For all PSXY Ŝ for which there exists U taking
values in U = {0, 1} such that

PSXY ŜU = PSPU |SPX|USPY |XPŜ|UY ,

there exists an explicit polar coding scheme that achieves em-
pirical coordination with rate of common randomness log2|Cn|

n
that goes to zero as n goes to infinity.

III. POLAR CODING FOR COORDINATION OF SIGNALS AND
ACTIONS

A. Polar coding scheme

We suppose that PSXY Ŝ belongs to R′ and show how to
achieve empirical coordination with polar codes.

Consider the random vectors S1:n, U1:n, X1:n, Y 1:n and
Ŝ1:n generated i.i.d. according to PSXUY Ŝ that satisfies (1).
Let V 1:n = U1:nGn the polarization of U1:n, where Gn is
the source polarization transform defined in Section II-A. For
some 0 < β < 1/2, let δn = 2−n

β

and define the very high
entropy and high entropy sets:

VV : =
{
j ∈ [1;n] : H(V j |V 1:j−1) > 1− δn

}
,

VV |S : =
{
j ∈ [1;n] : H(V j |V 1:j−1S1:n) > 1− δn

}
,

VV |Y : =
{
j ∈ [1;n] : H(V j |V 1:j−1Y 1:n) > 1− δn

}
,

HV |Y : =
{
j ∈ [1;n] : H(V j |V 1:j−1Y 1:n) > δn

}
.

(2)

Now define the following sets:

A1 := VV |S ∩HV |Y , A2 := VV |S ∩HcV |Y ,
A3 := VcV |S ∩HV |Y , A4 := VcV |S ∩H

c
V |Y .

Remark 1: We have:
• VV |Y ⊂ HV |Y and limn→∞

|HV |Y \VV |Y |
n = 0 [17],

• limn→∞
|VV |S |
n = H(U |S) [18],

• limn→∞
|HV |Y |
n = H(U |Y ) [17].

Since H(U |S) − H(U |Y ) = I(U ;Y ) − I(U ;S), for suffi-
ciently large n the assumption I(U ;Y ) ≥ I(U ;S) implies
directly that |A2| ≥ |A3|.

B. Encoding

Note that the set A3 is non-empty in general. The bits V j

with j ∈ A3 can be generated at the encoder according to the
previous bits, but cannot be recovered reliably at the decoder.
To overcome this issue, we code over multiple blocks and use
a chaining construction as in [14]. The encoder observes k
blocks of the source (S1:n

1 , . . . , S1:n
k ) and generates for each

block i ∈ {1, . . . , k} a random variable Ṽ 1:n
i following the

procedure described in Algorithm 1.



Figure 3. Chaining construction for block Markov encoding

Algorithm 1: Encoding algorithm at Node 1
Input : (S1:n

1 , . . . , S1:n
k ), M local randomness (uniform

random bits) and common randomness C = (C1, C2)
shared with Node 2: C1 of size |A1| and C2 of size
|A3|.

Output:
(
Ṽ 1:n
1 , . . . , Ṽ 1:n

k

)
if i = 1 then

Ṽ1[A1]←− C1 Ṽ1[A2]←−M
for j ∈ A3 ∪A4 do

Given S1:n
1 , succ. draw the bits Ṽ j

1 according to

PV j |V 1:j−1S1:n

(
Ṽ j
1 | Ṽ

1:j−1
1 S1:n

1

)
(3)

end
end
for i = 2, . . . , k do

Ṽi[A1]←− C1 Ṽi[A
′
3]←− Ṽi−1[A3]⊕ C2

Ṽi[A2 \A′3]←−M
for j ∈ A3 ∪A4 do

Given S1:n
i , succ. draw the bits Ṽ j

i according to

PV j |V 1:j−1S1:n

(
Ṽ j
i | Ṽ

1:j−1
i S1:n

i

)
(4)

end
end

In particular, the chaining construction proceeds as follows:
• since the bits in VV |S are nearly uniform and independent

of S1:n by Definition (2), the bits in A1 ⊂ VV |S
are chosen with uniform probability using a uniform
randomness source C1 shared with Node 2, and their
value is reused over all blocks;

• in the first block the bits in A2 ⊂ VV |S are chosen with
uniform probability using a local randomness source M ;

• for the following blocks, let A′3 be a subset of A2 such
that |A′3| = |A3|. The bits of A3 in block i are sent to
A′3 in the block i + 1 using a one time pad with key
C2. Thanks to the Crypto Lemma [19, Lemma 3.1], if
we choose C2 of size |A3| to be a uniform random key,
the bits in A′3 in the block i + 1 are uniform. The bits
in A2 \A′3 are chosen with uniform probability using the
local randomness source M ;

• the bits in A3 and in A4 are generated according to
the previous bits using successive cancellation encoding
[17]. Note that it is possible to sample efficiently from
PV i|V 1:i−1S1:n given S1:n [17].

The encoder then computes Ũ1:n
i = Ṽ 1:n

i Gn for i =
1, . . . , k and generates X1:n

i symbol by symbol from Ũ1:n
i

and S1:n
i using the conditional distribution

PXji |Ũ
j
i S

j
i
(x|ũji , s

j
i ) = PX|US(x|uji , s

j
i )

and sends X1:n
i over the channel.

We use an extra (k + 1)-th block to send a version of
Vk[A3] encoded with a good channel code. In particular, this
can be done using the polar code construction for asymmetric
channels stated in [20]. Let Z1:n = X1:nGn be the polarized
version of X1:n. We place the information Vk[A3] in the
positions of Z1:n indexed by VX ∩HcX|Y . We note that
VX ∩HcX|Y has cardinality approximately equal to nI(X;Y )
[20]. We have |A3| ≤ |A2| ≤ |VV ∩HcV |Y |, which is
approximately nI(U ;Y ). By hypothesis, we have the Markov
chain U−X−Y and therefore |A3| ≤ nI(X;Y ). We can send
the bits in A3 with vanishing error probability. The scheme in
[20] requires common randomness, which will have vanishing
rate when k is large enough since it’s used only in the last
block, and uniform messages, which can be achieved using
a one-time-pad as before. Finally, X̃1:n

k+1 is the output of the
channel code described above.

C. Decoding

Algorithm 2: Decoding algorithm at Node 2
Input : (Y 1:n

1 , . . . , Y 1:n
k+1), C = (C1, C2) common randomness

shared with Node 1
Output: (V̂ 1:n

1 , . . . , V̂ 1:n
k )

for i = k, . . . , 1 do
V̂i[A1]←− C1

if i = k then
V̂i[A3]←− Y 1:n

k+1 as in [20]
end
else

V̂i[A3]←− V̂i+1[A
′
3]

end
for j ∈ A2 ∪A4 do

Successively draw the bits according to

V̂ j
i =

{
0 if Ln(Y

1:n
i , V 1:j−1

i ) ≥ 1

1 else

Ln(Y
1:n
i , V 1:j−1

i ) =
P
V
j
i |V

1:j−1
i Y 1:n

i

(
0 | V̂ 1:j−1

i Y 1:n
i

)
P
V
j
i |V

1:j−1
i Y 1:n

i

(
1 | V̂ 1:j−1

i Y 1:n
i

)
end

end

The decoder observes (Y 1:n
1 , . . . , Y 1:n

k+1) and the (k + 1)-th
block allows it to decode in reverse order. In block i ∈ [1, k],
the decoder has access to V̂i[A1 ∪A3] = V̂i[HV |Y ]:
• the bits in A1 correspond to shared randomness C1;
• in block k, the bits in A3 are recovered from Y 1:n

k+1 using
the decoding process in [20];

• in block i ∈ [1, k − 1] the bits in A3 are obtained by
successfully recovering A2 in block i+ 1.



For each block i = k, . . . , 1 the decoder recovers an estimate
V̂ 1:n
i of Ṽ 1:n

i using Algorithm 2. From Yi
1:n and V̂i[A1 ∪A3]

the successive cancellation decoder can retrieve V̂i[A2 ∪ A4].
Note that as shown in [17, Theorem 3], we have:

lim
n→∞

P
{
Ṽ 1:n = V̂ 1:n

}
= 1. (5)

The decoder computes Û1:n
i = V̂ 1:n

i Gn. Then it generates
Ŝ1:n
i symbol by symbol using:

PŜji |Û
j
i Y

j
i
(s|u, y) = PŜ|UY (s|u, y).

Remark 2: The encoding and decoding complexity of this
scheme is O (nk log n).

D. Rate of common randomness

The rate of common randomness C is negligible since:

lim
n→∞
k→∞

|A1 ∪A3|
kn

= lim
n→∞
k→∞

|HV |Y |
kn

= lim
k→∞

H(U |Y )

k
= 0.

IV. PROOF OF THEOREM 2

A. Preliminary results

We first state a few lemmas that we will need to prove
Theorem 2. The proofs can be found in the Appendix.

Lemma 1: For any i ∈ [1, k], for all ε0 > 0,

lim
n→∞

P
{
V
(
TS1:n

i Ũ1:n
i
, PSU

)
> ε0

}
= 0.

Lemma 2: Let PA a distribution, A1:n a random
vector, B1:n a random vector generated from A1:n

with i.i.d. conditional distribution PB|A and suppose
lim
n→∞

P {V (TA1:n , PA) > ε} = 0. Then, for all ε′ > ε we
have:

lim
n→∞

P {V (TA1:nB1:n , PAB) > ε′} = 0.

Lemma 3: Let X1:n, X̃1:n two possibly dependent random
sequences taking values in Xn and define

T(X1:n,X̃1:n)(x) :=
1

2n

n∑
i=1

(
1{Xi = x}+ 1{X̃i = x}

)
.

Then for any distribution P on X ,

V
(
T(X1:n,X̃1:n), P

)
≤ 1

2
V (TX1:n , P ) +

1

2
V
(
TX̃1:n , P

)
.

Lemma 4: V (TX1:n , PX) ≤ V(TX1:nY 1:n , PXY ).
The proof of Lemma 4 is straightforward and thus omitted.

B. Achievability proof

We want to show that the polar coding scheme proposed in
Section III achieves empirical coordination. Given ε > 0, we
want to prove that:

lim
n→∞
k→∞

P
{
V
(
TS1:n

1:k+1X
1:n
1:k+1Y

1:n
1:k+1Ŝ

1:n
1:k+1

, PSXY Ŝ

)
> ε
}
= 0.

In order to simplify the notation, we set the joint types as

T := TS1:n
1:k+1Ũ

1:n
1:k+1X

1:n
1:k+1Y

1:n
1:k+1Ŝ

1:n
1:k+1

,

Ti := TS1:n
i Ũ1:n

i X1:n
i Y 1:n

i Ŝ1:n
i

i ∈ [1, k + 1].

Lemma 1 states that for i ∈ [1, k] and for all ε0 > 0,

lim
n→∞

P
{
V
(
TS1:n

i Ũ1:n
i
, PSU

)
> ε0

}
= 0.

Then, because of Lemma 2, we have that for all ε′ > ε0

lim
n→∞

P
{
V
(
TS1:n

i Ũ1:n
i X1:n

i Y 1:n
i
, PSUXY

)
> ε′

}
= 0.

We can apply Lemma 2 again and add Ŝ, but since Ŝ is
generated by Û and not by Ũ , we need the conditional
probability: ∀ε > ε′ for i ∈ [1, k] we have

lim
n→∞

P
{
V
(
Ti, PSUXY Ŝ

)
> ε
∣∣∣Û1:n
i = Ũ1:n

i

}
= 0

We can write:

P
{
V
(
Ti, PSUXY Ŝ

)
> ε
}

= P
{
V
(
Ti, PSUXY Ŝ

)
> ε
∣∣∣Û1:n
i = Ũ1:n

i

}
P
{
Û1:n
i = Ũ1:n

i

}
+ P

{
V
(
Ti, PSUXY Ŝ

)
> ε
∣∣∣Û1:n
i 6= Ũ1:n

i

}
P
{
Û1:n
i 6= Ũ1:n

i

}
.

Note that the last term tends to 0 since Ũ1:n is equal to Û1:n

with high probability because of (5). Hence for i ∈ [1, k] we
have

lim
n→∞

P
{
V
(
Ti, PSUXY Ŝ

)
> ε
}
= 0.

The convergence in probability of T to PSUXY Ŝ follows from
the convergence in probability of Ti to PSUXY Ŝ for i ∈ [1, k]
(coordination in the first k blocks). In fact, observe that by
Lemma 3,

V
(
T, PSUXY Ŝ

)
≤ 1

k + 1

k+1∑
i=1

V
(
Ti, PSUXY Ŝ

)
.

This implies that:

ET
[
V
(
T, PSUXY Ŝ

)]
≤ 1

k + 1

k+1∑
i=1

ET
[
V
(
Ti, PSUXY Ŝ

)]
.

(6)

The right hand side in (6) goes to zero since:

• for i ∈ [1, k] we already have the convergence in
probability of V

(
Ti, PSUXY Ŝ

)
to zero, therefore the

convergence in mean since V
(
Ti, PSUXY Ŝ

)
is bounded

for all i;
• for i = k+1, since Tk+1 and PSUXY Ŝ are probability dis-

tributions, V
(
Tk+1, PSUXY Ŝ

)
≤ 2. For k large enough

2/(k + 1) goes to zero, then E[2]/(k + 1) = 2/(k + 1)
goes to zero and empirical coordination still holds.

Then, the left hand side in (6) goes to zero and because
convergence in mean implies convergence in probability, we
have the convergence in probability of V

(
T, PSUXY Ŝ

)
to

zero. To complete the proof we recall that because of Lemma



4, V
(
T, PSUXY Ŝ

)
< ε implies that

V
(
TS1:n

1:k+1X
1:n
1:k+1Y

1:n
1:k+1Ŝ

1:n
1:k+1

, PSXY Ŝ

)
< ε.

APPENDIX

A. Proof of Lemma 1

For all ε0 > 0, we define

Tε0 (PSU ) :=
{
(S1:n, U1:n)

∣∣V (TS1:nU1:n , PSU ) ≤ ε0
}

PPSU
{
(s1:n, u1:n) ∈ Tε0 (PSU )

}
:=∑

s1:n,u1:n

PS1:nU1:n

(
s1:n, u1:n

)
1
{
(s1:n, u1:n) ∈ Tε0 (PSU )

}
.

Note that limn→∞ PPSU
{
(s1:n, u1:n) ∈ Tε0 (PSU )

}
= 1.

Let i ∈ [1, k], we have:

PPSŨ
{
V
(
TS1:n

i U1:n
i
, PSU

)
> ε0

}
=

∑
s1:n,u1:n

PS1:n
i Ũ1:n

i

(
s1:n, u1:n

)
1
{
(s1:n, u1:n) /∈ Tε0 (PSU )

}
=

∑
s1:n,u1:n

(PS1:n
i Ũ1:n

i

(
s1:n, u1:n

)
− PS1:nU1:n

(
s1:n, u1:n

)
+ PS1:nU1:n

(
s1:n, u1:n

)
)1
{
(s1:n, u1:n) /∈ Tε0 (PSU )

}
≤ V(PS1:nŨ1:n , PS1:nU1:n) + PPSU

{
(s1:n, u1:n) /∈ Tε0 (PSU )

}
which tends to 0 thanks to a typicality argument and the
following result.

Lemma 5: For any i ∈ [1, k], let δn = 2−n
β

for some 0 <
β < 1/2

V
(
PU1:nS1:n , PŨ1:n

i S1:n
i

)
≤
√
2 log 2

√
nδn.

Proof: We have

D
(
PU1:nS1:n

wwwPŨ1:n
i S1:n

i

)
(a)
=D

(
PV 1:nS1:n

wwwPṼ 1:n
i S1:n

i

)
(b)
=D

(
PV 1:n|S1:n

wwwPṼ 1:n
i |S1:n

i

∣∣∣PS1:n

)
(c)
=

n∑
j=1

D
(
PV j |V 1:j−1S1:n

wwwPṼ ji |Ṽ 1:j−1
i S1:n

i

∣∣∣PV 1:j−1S1:n

)
(d)
=

∑
j∈A1∪A2

D
(
PV j |V 1:j−1S1:n

wwwPṼ ji |Ṽ 1:j−1
i S1:n

i

∣∣∣PV 1:j−1S1:n

)
(e)
=

∑
j∈A1∪A2

(
1−H(V j | V 1:j−1S1:n)

) (f)
<δn|VV |S | ≤ nδn,

where (a) comes from the invertibility of Gn, (b) and (c) come
from the chain rule, (d) comes from (3) and (4), (e) comes
from the fact that the conditional distribution PṼ ji |Ṽ

1:j−1
i S1:n

i

is uniform for j in A1 and A2 and (f) from (2). Then, the
proof is completed using Pinsker’s inequality.

B. Proof of Lemma 2
We have:

P
{
V (TA1:nB1:n , PAB) > ε′

}
≤ P {V (TA1:n , PA) > ε}+

P {V (TA1:n , PA) ≤ ε}P
{
V (TA1:nB1:n , PAB) > ε′

∣∣V (TA1:n , PA) ≤ ε
}
.

Then as n goes to infinity, the first term tends to zero by the
conditional typicality lemma [21] and the second tends to zero
by hypothesis.

C. Proof of Lemma 3
The statement follows from the inequalities:∣∣T(Xn,X̃n)(x)− P (x)

∣∣
=

∣∣∣∣∣12
n∑

i=1

(
1{Xi = x}

n
+
1{X̃i = x}

n

)
−
P (x)

2
−
P (x)

2

∣∣∣∣∣
≤

1

2

∣∣∣∣∣
n∑

i=1

1{Xi = x}
n

− P (x)

∣∣∣∣∣+ 1

2

∣∣∣∣∣
n∑

i=1

1{X̃i = x}
n

− P (x)

∣∣∣∣∣.
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