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Abstract—We consider spatially coupled systems governed by
a set of scalar density evolution equations. Such equations track
the behavior of message-passing algorithms used, for example,
in coding, sparse sensing, or constraint-satisfaction problems.
Assuming that the “profile” describing the average state of the
algorithm exhibits a solitonic wave-like behavior after initial tran-
sient iterations, we derive a formula for the propagation velocity
of the wave. We illustrate the formula with two applications,
namely Generalized LDPC codes and compressive sensing.

I. INTRODUCTION

Spatial coupling is a graph construction that was first
introduced for coding on Low-Density Parity-Check (LDPC)
codes by Felstrom and Zigangirov [1]. Spatially coupled
systems have been shown to exhibit excellent performance
under low complexity message-passing algorithms. Due to
this attractive property, they have been extensively studied in
different frameworks, such as coding [2], [3] (a review with
applications in the broader context of communications is found
in [3]), compressive sensing [4], [5], [6], statistical physics and
constraint-satisfaction [7], [8], [9], [10].

To assess the performance of a message-passing algorithm
one analyzes the evolution of the messages exchanged during
the algorithm as the number of iterations increases. This can
be expressed as a set of scalar recursive equations (see Equ.
(1) for uncoupled systems and Equ. (3) for coupled systems).
In coding these are the density evolution equations, and in
compressive sensing these are the state evolution equations.

A spatially coupled system is obtained from the underlying
“single” (uncoupled) one by taking 2L+ 1 copies of it and
connecting every W consecutive single systems by means
of a “coupling window”. For scalar systems, the average
behavior of the system at position i ∈ {−L, . . . ,L} of the
coupling axis and at iteration t ∈ N of the message-passing
algorithm is described by a single scalar x(t)i . Therefore, the
evolution of the coupled system can be analyzed by tracking
the vector x(t) = {x(t)−L, . . . ,x

(t)
L }, which we call the “profile”,

as t increases.
Under certain initial conditions and after an initial number

of iterations, the profile demonstrates a solitonic behavior. That
is, after a transient phase, it appears to develop a fixed shape
that is independent of the initial condition and travels at a
constant velocity as t increases. In fact, it has been proved
in [11] that a solitonic wave solution exists in the context of
coding when transmission takes place over the Binary Erasure
Channel (BEC). However, the question of the independence of

Fig. 1. The profile x of error probabilities is plotted as a function of the
spatial position i on the coupling axis for a coupled GLDPC code (see section
IV-A) with n = 15, e = 3, and channel noise ε = 0.37. Here L = 50 and W = 4
(uniform window). We plot the profile at different iterations of the message-
passing algorithm. The soliton traveling from left to right is plotted every 20
iterations until iteration 180.

Fig. 2. The single potential of the GLDPC code is shown with n = 15, e = 3,
and with channel parameter ε = 0.37. Notice that the values of the positions
at which the minima occur match exactly with the boundary values of the
profiles.

the shape from the initial conditions is left open. The soliton
is illustrated in Fig. 1 for a Generalized LDPC (GLDPC) code
(see Sec. IV-A for details).

In [11] and [12], bounds on the velocity of the wave for
coding on the BEC are proposed. In [13] a formula for the
velocity of the wave in the context of the coupled Curie-Weiss
toy model is derived and tested numerically. In [14], a formula
in the context of coding on general binary input memoryless
symmetric channels is derived.

In this work we derive a formula for the velocity of the
wave in the continuum limit L� w� 1 for general scalar
systems. By means of numerical simulations, we find that our
formula is a very good estimate for the empirical velocity.
We limit ourselves to the cases where the scalar recursive DE
equation of the underlying uncoupled system has exactly two
stable and one unstable fixed points. Equivalently the potential
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function (of the uncoupled system) has two minima and one
local maximum. Fig. 1 illustrates this setting for the GLDPC
example.

II. PRELIMINARIES

A. Density Evolution and Potential Functions

We adopt the framework and notations of [15]. Let E =
[0,εmax], where εmax ∈ (0,∞), denote the space of parameters,
and let X = [0,xmax(ε)] and Y = [0,ymax(ε)], such that xmax(ε),
ymax(ε) ∈ (0,∞) and ymax(ε) = g(xmax(ε);ε). Consider bounded
and smooth functions f : Y ×E →X and g : X ×E → Y ,
increasing in both arguments. We consider the following
(uncoupled) recursion,

x(t+1) = f (g(x(t);ε);ε), (1)

where t ∈N denotes the iteration number. The recursion is ini-
tialized with x(0) = xmax. Since f (g(X ))⊂X , the initialization
of the recursion (1) implies that x(1) ≤ x(0) = xmax. Moreover,
since the functions f and g are monotonic and bounded, the
recursion will converge to a limiting value x(∞) when the
number of iterations is large, and this limit is a fixed point
since f and g are continuous.

The typical picture in the context of applications such as
coding or compressive sensing is as follows. It may help to
think as ε as the level of noise for coding, as the inverse
fraction of measurements in compressed sensing, or as the
density of constraints in constraint-satisfaction problems.

We define xgood as the fixed point of (1) obtained by the
initialization x(0) = 0. We furthermore define the algorithmic
threshold εs as

εs , sup{ε|x(∞) = xgood}.

Since f and g are monotonic, we can see that for ε < εs, the
recursion (1) will converge to xgood for any initialization of x(0)

in [0,xmax(ε)]. For ε > εs new fixed points appear. We will limit
ourselves to systems with one extra stable fixed point that we
call xbad such that xbad > xgood. For ε > εs the iterations initialized
at xmax converge to xbad. (It is easy to see that there also must
exist an extra unstable fixed point xunst between these two, i.e.,
xgood < xunst < xbad.)

One can equivalently describe the (uncoupled) system by a
potential function Us defined as

Us(x;ε) = xg(x;ε)−G(x;ε)−F(g(x;ε);ε), (2)

where F(x;ε) =
∫ x

0 ds f (s;ε) and G(x;ε) =
∫ x

0 dsg(s;ε). The
fixed points of (1) can be obtained by setting the derivative
with respect to x of the potential Us(x;ε) to zero. The stable
fixed points correspond to minima of Us and the unstable one
to a local maximum of Us. An example of the potential for
the GLDPC code (see Sec. IV-A) is shown in Fig. 2. There,
ε > εs and there are two minima corresponding to xgood = 0
and xbad > 0 with one local maximum corresponding to xunst.
If we run density evolution, the iterations will get stuck at
xbad > 0. In general, to check whether the analysis in this work
applies to a certain application, one can plot its corresponding

potential function and check that it indeed has 2 stable fixed
points (minima) and 1 unstable fixed point (maximum).

To obtain the spatially coupled system associated to the
uncoupled one described above, we start by defining the
“coupling window” function that satisfies w(z) > 0, when
0≤ z< 1, w(z)= 0 otherwise, and

∫
R dzw(z)= 1. Then, we de-

fine the normalized function wW (z) = w(z)/
(

1
W ∑

W−1
j=0 w( j

W )
)

.

Remark that 1
W ∑

W−1
j=0 wW ( j

W )= 1 and that as W→∞, wW (z)→
w(z)/

∫
R dzw(z) = w(z).

The coupled system is then obtained by taking 2L+1 copies
of the single system on the positions i = {−L, . . . ,L} and con-
necting them using the “coupling matrix” A j,k =

1
W wW ( k− j

W ).
The discrete “profile” x(t) = {x(t)−L, . . . ,x

(t)
L } is then fixed at

the boundaries as follows: x(t)i = xgood, for i = {−L, . . . ,−L+

W − 1} and all t ∈ N, x(t)i = xbad, for i = {L−W + 1, . . . ,L}
and all t ∈ N. We run density evolution on the remainder of
the chain. More specifically, for i ∈ {−L+W, . . . ,L−W}, the
coupled scalar recursion is

x(t+1)
i =

L

∑
j=−L

A j,i f
( L

∑
k=−L

A j,k g(x(t)k ;ε);ε

)
, (3)

The boundary condition here is well adapted to study the
propagation of the wave after the transient phase is over.
Indeed, simulations and heuristic arguments indicate that an
initial profile that increases from a seeding value smaller
or equal to xgood (at the left boundary) to xmax (on the right
boundary) is attracted towards the class of profiles defined
above.

The spatially coupled system can be described by a potential
functional Uc defined as

Uc(x;ε) =
L−W

∑
i=−L+W

(
xig(xi;ε)−G(xi;ε)

)
−

L−W

∑
i=−L+W

F
( L

∑
j=−L

Ai, jg(x j;ε);ε

)
, (4)

where x = {x−L, . . . ,xL}. The fixed point form of Equ. (3) can
be obtained by setting the derivative with respect to x of the
potential Uc(x;ε) to zero.

A highly attractive property of spatially coupled systems
is that they exhibit the so-called threshold saturation phe-
nomenon. That is, for all ε < εc where εc > εs, the coupled
recursions (3) drive the profile x(t) = [x(t)−w+1, . . . ,x

(t)
L ] to the

desirable fixed point x(∞) = [xgood, . . . ,xgood]. Here εc is a thresh-
old defined by U(xgood;εc) = U(xbad;εc) and often called the
potential threshold (note that in this equation xgood and xbad

themselves depend on εc).
In the sequel we consider the range ε ∈ [εs,εc]. It is for

these values of the parameter ε that a soliton is observed.
Let us repeat our basic assumption here: the recursion (1)
has exactly two stable fixed points xgood and xbad. With more
than two stable fixed points the propagating wave has a more
complicated structure and our formulas would have to be
adapted accordingly (see [12] for a nice discussion of this
issue in coding).



B. Continuum Limit

We consider the system in the continuum limit, which is
obtained by first taking L→ ∞ and then W → ∞ [11], [16],
[17]. We set x( i

W , t)≡ x
(t)
i and replace i

W → z, j
W → u, k

W → s,
where z, u, s∈R are continuous spatial variables. The coupled
recursion, in the continuum limit, can then be written as

x(z, t +1) =
∫ 1

0 duw(u) f
(∫ 1

0 dsw(s)g(x(z−u+ s, t);ε);ε

)
. (5)

The boundary conditions on the continuous profile x(·, ·)
become x(z, t)→ xgood when z→−∞ and x(z, t)→ xbad when
z→+∞. Again, this boundary condition captures the profiles
obtained after the transient phase has passed, and is well
adapted to the study of the wave propagation.

Let x0(z) be a static (time independent) profile that satisfies
the boundary conditions x0(z) → xgood when z → −∞ and
x0(z)→ xbad when z→ +∞. This profile can be thought as
an initial condition for the recursions. For us however it
serves as a reference profile in order to define the potential
functional in the continuum limit. We look at the continuous
version of U(x;ε) which we call W [x(·, ·);ε] and subtract
from it W [x0(·);ε] so that the integrals converge. The potential
functional ∆W [x(·, ·);ε] in the continuum limit is thus defined
as

∆W [x(·, ·);ε],
∫
R

dz
{

x(z, t)g(x(z, t);ε)− x0(z)g(x0(z);ε)

−G(x(z, t);ε)−F
(∫ 1

0
duw(u)g(x(z−u, t);ε);ε

)
+G(x0(z);ε)+F

(∫ 1

0
duw(u)g(x0(z−u);ε);ε

)}
.

As long as x0(z) converges to its limiting values fast enough
the integrals over the spatial axis are well defined. We can
further split the continuous potential functional into two parts:
the single potential Ws[x(·, ·);ε] (that we obtain setting w(z)→
0) and the interaction potential Wi[x(·, ·);ε] (that is caused only
by coupling), defined as follows

Ws[x(·, ·);ε],
∫
R

dz
{

x(z, t)g(x(z, t);ε)− x0(z)g(x0(z);ε)

−G(x(z, t);ε)−F(g(x(z, t);ε);ε)

+G(x0(z);ε)−F(g(x0(z);ε);ε)
}
,

Wi[x(·, ·);ε],
∫
R

dz
{

F(g(x(z, t);ε);ε)+F(g(x0(z);ε);ε)

−F
(∫ 1

0
duw(u)g(x(z−u, t);ε);ε

)
+F

(∫ 1

0
duw(u)g(x0(z−u);ε);ε

)}
.

III. VELOCITY FOR GENERAL SCALAR SYSTEMS

A. Statement of main result

We assume that after a number of iterations, which we call
the transient phase, the density profile x(·, ·) develops a fixed
shape which we call X(·) that moves with constant velocity v.
That is, we make the ansatz x(z, t) = X(z− vt).

Then, we find the following formula for the velocity v

v =
Us(xbad;ε)−Us(xgood;ε)∫
R dzg′(X(z);ε)(X ′(z))2 , (6)

where g′ = ∂xg is the derivative of g with respect to its first
argument, and X ′ is the derivative of the profile.

B. Derivation of main result

Evaluating the functional derivative of ∆W [x(·, ·);ε] in an
arbitrary direction η(·, ·), and then using (5) we obtain

δ∆W [x(·, ·);ε]

δx(·, ·)
[η(z, t)]

= lim
γ→0

1
γ

{
∆W [x(·, ·)+ γη(·, ·);ε]−∆W [x(·, ·);ε]

}
=
∫
R

dzη(z, t)g′(x(z, t);ε)
{

x(z, t)

−
∫ 1

0
duw(u) f (

∫ 1

0
dsw(s)g(x(z−u+ s, t);ε);ε)

}
=−

∫
R

dzη(z, t)g′(x(z, t);ε)
(
x(z, t +1)− x(z, t)

)
Using the ansatz x(z, t) = X(z− vt) and the approximation
x(z, t + 1) − x(z, t) ≈ −vX ′(z), the functional derivative of
∆W [x(·, ·);ε] in the special direction η(z, t) = X ′(z) becomes

δ∆W [x(·, ·);ε]

δx(·, ·)
[X ′(z)] = v

∫
R

dz(X ′(z))2g′(X(z);ε).

To obtain our formula (6) we separate the left-hand side of
the equation above into two contributions

δWs[X(·);ε]

δX(·)
[X ′(z)]+

δWi[X(·);ε]

δX(·)
[X ′(z)]

and calculate each term separately. For the first (uncoupled)
part we find

δWs[X(·);ε]

δX(·)
[X ′(z)]

=
∫
R

dzX ′(z)
(
X(z)g′(X(z);ε)−g′(X(z);ε) f (g(X(z);ε);ε)

)
=
∫
R

dz
d
dz

{
X(z)g(X(z);ε)−G(X(z);ε)−F(g(X(z);ε);ε)

}
=
[
Us(X(z);ε)

]+∞

−∞

=Us(xbad;ε)−Us(xgood;ε).

For the second (interaction) part we find

δWi[X(·);ε]

δX(·)
[X ′(z)]

=
∫
R

dz
d
dz

{
F(g(X(z);ε);ε)

−F
(∫ 1

0
duw(u)g(X(z−u);ε);ε

)}
=
[
F(g(X(z);ε);ε)−F

(∫ 1

0
duw(u)g(X(z−u);ε);ε

)]+∞

−∞

= 0



IV. APPLICATIONS

The general formula for the velocity of the soliton for scalar
systems (6) can be applied on several examples. In particular
we recover the results of [14] for standard LDPC codes over
the BEC, as well as on general Binary Memoryless Symmetric
(BMS) channels within the scalar Gaussian approximation. In
this section we provide two more scalar applications, namely
GLDPC codes and compressive sensing.

The predictions of our formula are compared with the
observed, empirical velocity ve that is obtained by running the
scalar recursions. To obtain ve, we plot the discrete profile x at
different iterations of the scalar recursions and find the average
of ∆z/(W∆I), where ∆z is the spatial difference between the
kinks of the profiles, ∆I is the difference in the number of
iterations, and W is the size of the coupling window.

A. Generalized LDPC Codes

We consider a GLDPC code described as follows: The
variable (bit) nodes have degree 2 and the check nodes have
degree n. The rules of the check nodes are given by a primitive
BCH code of blocklength n (unlike LDPC codes where they
are parity checks). An attractive property of BCH codes is that
they can be designed to correct a chosen number of errors.
For instance, one can design a BCH code so that it corrects
all patterns of at most e erasures on the BEC, and all error
patterns of weight at most e on the Binary Symmetric Channel
(BSC).

We consider transmission on the BEC or BSC and denote by
ε the channel parameter. The density evolution recursions have
been derived for both channels, based on a bounded distance
decoder for the BCH code [18]. We have εmax = xmax = ymax = 1,
and for n and e fixed [15],

f (x;ε) = εx,

g(x,e,n;ε) =
n−1

∑
i=e

(
n−1

i

)
xi(1− x)n−i−1.

The formula for the velocity of the soliton appearing in the
case of the GLDPC codes is found from (6), where the single
potential of the system UGLDPC(·) is given by

UGLDPC(x,e,n;ε) =
e
n

g(x,e,n;ε)−x(1− x)
n

g′(x,e,n;ε)

− ε

2
g2(x,e,n;ε).

Figure 3 shows the velocities (normalized by W ) for the
spatially coupled GLPDC code with n = 15 and e = 3, when
the coupling parameters satisfy L = 250 and W = 3 and we
use the uniform coupling window. We plot the velocities for
ε ∈ [εs,εc] = [0.348,0.394]. We observe that the formula for
the velocity provides a very good estimation of the empirical
velocity ve.
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Fig. 3. We consider a GLDPC code with n= 15 and e= 3, with spatial length
L = 250 and uniform coupling window with W = 3. We plot the velocities
(normalized by W ) vGLDPC and ve as a function of the channel parameter
ε when ε is between the BP threshold εs = εBP = 0.348 and the potential
threshold εc = εMAP ≈ 0.394.
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Fig. 4. We consider the compressive sensing problem with snr = 105 and
Gaussian-Bernoulli prior for the signal components with sparsity parameter
ρ = 0.1. We have L = 250 and uniform coupling window with W = 4. We plot
the velocities (normalized by W ) vCS and ve as a function of the measurement
fraction δ when δ is between the potential threshold δc = 0.157 and δs =
0.208.
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Fig. 5. We consider the compressive sensing problem with snr = 105 and
Gaussian-Bernoulli prior for the signal components with sparsity parameter
ρ = 0.1. We plot the single potential for several values of δ ∈ [δc,δs] =
[0.157,0.208]. We can see that when δ > δs the potential has a unique
minimum, when δ = δs, there appears an inflection point, for δc < δ < deltas
the potential has two minima and the energy gap ∆E is strictly positive, and
for δ = δc the energy gap vanishes.



B. Compressive Sensing

Let s be a length-n signal vector (where the components are
i.i.d. copies of a random variable S) which is acquired through
m linear measurements. We assume that the measurement
matrix has i.i.d Gaussian elements (0,1/

√
n). We call δ =m/n

the fixed measurement ratio when n→∞. The relation between
δ and the generic ε used in this paper is ε = δ−1. We assume
that E[S2] = 1 and that each component of s is corrupted
by independent Gaussian noise of variance σ2 = 1/snr. To
recover s one implements the so-called approximate message-
passing (AMP) algorithm. It has been shown that the analysis
of this algorithm is given by state evolution [4].

We consider the approach described in [15]. Consider
the minimum mean-squared error (mmse) function given
by mmse(snr) = ES,Y [(S − Ŝ(Y,snr))2] where Ŝ(Y,snr) =
ES|Y [S|Y ] and Y =

√
snrS+Z, Z ∼N (0,1). The state evo-

lution equations, which track the mean squared error of the
AMP estimate, then correspond to the recursion defined by

f (x,snr;δ ) = mmse(snr− x),

g(x,snr;δ ) = snr− 1
1

snr
+ x

δ

,

where δmax = 1, xmax = mmse(0), ymax = g(xmax).
The formula for the velocity vCS of the soliton in the case

of compressive sensing can be obtained from (6) where the
single potential USC(·) of the system is given by

USC(x;δ ) =− x
1

snr
+ x

δ

+δ ln
(

1+
x

δ/snr

)
−2I

(
S;
√
snrS+Z

)
+2I

(
S;

√
1

1
snr

+ x
δ

S+Z
)
.

To check that this is indeed the correct potential we differ-
entiate USC(x;ε) with respect to x and use the relation [19]
1
2mmse(snr)=

d
dsnr I(S;

√
snrS+Z), where I(A;B) denotes the

mutual information between the random variables A and B and
is measured in nats.

For the compressive sensing scheme, we assume that the
prior distribution on S is the Bernoulli-Gaussian described by

q0(y) = (1−ρ)δ (y)+ρΦ0(y),

where Φ0(y) = (1/
√

2π)e−y2/2. Figure 5 shows the velocities
(normalized by W ) for the spatially coupled compressive
sensing scheme with snr = 105 and ρ = 0.1, when the
coupling parameters satisfy L= 250 and W = 4 and we use the
uniform coupling window. We remark that for this application,
the potential threshold δc is smaller than δs because the
smaller the value of δ , the less measurements of the signal
we make, which induces more uncertainty. We plot on Fig. 5
the velocities for δ ∈ [δc,δs] = [0.157,0.208]. Similarly, we
observe that the formula for the velocity provides a good
estimation of the empirical velocity ve.
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