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Abstract—We present explicit algorithms for computing struc- We analyze the bilinear complexities of all algorithms in

tured matrix-vector products that are optimal in the sense §VIIT] Readers should bear in mind that bilinear complexity

of Strassen, i.e., using a provably minimum number of mul- y,eg ot count scalar multiplications. For example, thiedsir
tiplications. These structures include Toeplitz/Hankel¢irculant, L C2 % C2 C b d)) — (2 D (3e—d) h
symmetric, Toeplitz-plus-Hankel, sparse, and multilevelstruc- m"f‘pﬁ' XL  B((a,0), (¢,d)) = (_fl"' )( ¢—d) has
tures. The last category includeBTTB, BHHB, BCCB but also Dbilinear complexity one. For those familiar with tensor kan

any arbitrarily complicated nested structures built out of other  [8], the bilinear complexity of3 is just the tensor rank of the
structures. structure tensonz € C? ® C? @ C? corresponding t@3 [2],
[14].

I. INTRODUCTION
II. CIRCULANT MATRIX

Given a bilinear map3 : C™ x C" — C?, the bilinear  ap j, » 1, circulant matrixA = (a;;) is a matrix with
complexity[9], [10] of 3 is the least number of multiplications
needed to evaluatg(z,y) for x € C™ andy € C™ @ij = Qitpj+p, L4504 D7 +p<n,
This notion of bilinear complexity is the standard measure a1 = Gni2-51, 2<j<n.
of computational complexity for matrix inversion and matri
multiplication [7], [€], [12], [13].

This article is an addendum to our work in_[14] where w
proposed a generalization of th@ohn—-Umans metho(B],
[4] and used it to study the bilinear complexity of structiire
matrix-vector product. We did not derive any actual aldgons

The circulant matrix represented by= (a1,...,a,) € C" is
one whose first row ig. It is well-known [5] that the circulant
Fatrix-vector product can be computed by Fourier transform
We restate this algorithm for completeness. kgt= 2+7i/
k=0,...,n—1 and define the Fourier matrix

in [14]. The purpose of this present work is to provide explic 1T 1
algorithms for structured matrix-vector product obtairtad I wr o wn
our generalized Cohn—Umans methodlin|[14]. All algorithms W= : : : : @)
in this paper have been shown to be the fastest possible in 1 wn¥1 wn!l
terms of bilinear complexity. The proofs may be foundlin! [14] ! not
and involve determining théensor ranksof these structured
matrix-vector products. Algorithm 1 Circulant matrix-vector product

Here is a list of structured matrices discussed in thislartic 1: Represent the circulant matrixby a = (a;,az, . ..,a,)"
gl Circulant matrices. and the column vector by = (v1,va,...,v,)T.
4 Toeplitz/Hankel matrices. 2: ComputeWa and represent it by, ..., a,)".
§IV] Symmetric matrices. 3: ComputenW ~1v and represent it byo,, ..., 0,)".
gVl Toeplitz-plus-Hankel matrices. 4: Computez = (@101, .-, an0s)"

5. Computez = Wz, which is the product oA andv.

gVIl Sparse matrices.

§VIT] Multilevel structured matrices4; ® --- ® A, where
eachA; is one of circulant, Toeplitz/Hankel, symmetric,
Toeplitz-plus-Hankel, or sparse matrices.

The algorithms for circulant [5] and Toeplitzl[1] matriceea
known but those for other structured matrices are new (as far Qij = Qitpjtp, 1 <4, 5i+p,j+p<n.
as we know). In particular, the multilevel structured nes
in §VIMinclude arbitrarily complicated nested structuresy.g.
block BccB matrices whose blocks are Toeplitz-plus-Hanke
a 3-level structure. @ij = Qj—ign.

Il1. TOEPLITZ/HANKEL MATRIX
An n x n Toeplitz matrixA = (a;;) is a matrix with

We represent am x n Toeplitz matrix A = (a;;) by
ialaa% ., 2p—1) € CPL
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Every n x n Toeplitz matrix A may be regarded as a blockAlgorithm 4 Symmetric matrix-vector product
of some 2n x 2n circulant matrix C whose first row is 1: S is ann x n symmetric matrix. Sef5; = S. Setm =

(G- ..y a2n-1,D,a1,...,a, 1) andb € C is arbitrary. Using [n/2]. Setv; = v andz = 0.
this embedding, we obtain Algorithfd 2 for Toeplitz matrix- 2: for k=1,...,m do
vector product[[1],[[14] . 3 Construct Hankel matri¥{;, determined by first row

and last column of5;,.

Algorithm 2 Toeplitz matrix-vector product 4. Computewy, = Hyvy, by Algorithm[3.
1: Express the Toeplitz matriX as(ay, ...,as, 1) and the > Updatez = z + w. o
vector asv = (v1, ..., vn)T. 6:  ConstructS,, by deleting first and last columns and
2: Computeb = — S 271 g, first and last rows of5}, — H;.
=+ Constructe — (i zil' on_1,b,a1, .. an_1) € C2". 7: Constructv, 1 by deleting first and last entry af;.
4: Constructy = (v1,...,v,,0,...,0)T € C>, 8: end for .
5: Compute the product = (21, ..., 22,)" of the circulant 9 # = (21,---,2,)" is the product of5 andv.
matrix determined by: with ¢ by Algorithm[1.
6: 2= (z1,...,2,)" is the product ofd andw.

for some Hankel matrix{ and some Toeplitz matri¥’, then
for anya € C we have a decomposition df into the sum of
a Hankel matrixd + o F and a Toeplitz matriX<” — o £ where
E is then x n matrix with all entries equal to one.

An n x n matrix H is called a Hankel matrix it/ H is a
Toeplitz matrix where

0 0 01
0 0 10 Algorithm 5 Toeplitz-plus-Hankel matrix-vector product
J=1t 1 .. (2) 1 ExpressX as H + T with Hankel matrix [/ and Toeplitz
01 .- 00 matrix T'.
10 - 0 0 2: ExpressT’ as(t1,...,ton—1) @nd H as (hq, ..., hap—1).
3: Computeb = — Zf;‘;l t;.
We represent am x n Hankel matrix H = (h;;) as 4. Computea € C as

(hl,hg,...7h2 _1) e C?>»! where 1 . _1 .
" STy Witngg +wb+ Y I w it

hij = hany1—i—j, 1<4,5<n. a@= m
Algorithm [3 computes the product of a Hankel matrix and a wherew = ekmi/n,
column vector. 5: UpdateH = H +aF andT =T — aF.
6: Computezy = Hv by Algorithm[3 andzy = Twv by
Algorithm 3 Hankel matrix-vector product Algorithm[2, respectively.
1: ExpressT’ = (hi, ha, ..., han_1). 7. Computez = zgy + 21, which is the product ofX andw.
2: Apply Algorithm[2 to the Toeplitz matrix represented by
T andwv to obtain(z,..., z,).
3: (2n,2n—1,---,21) is the product off andwv. VI. SPARSE MATRIX
An n x n sparse matrixA = (a;;) with sparsity pattern
QC{l,...,n} x{1,...,n} is one where

IV. SYMMETRIC MATRIX a; =0 foral (i,§) € Q.

Algorithm [4 computes the product of a symmetric matrix ) o )
represent a symmetric matrix= (s;;) as(si, ..., sy) € CN  With sparsity patterr2 = {(i,j) : 1 < i < j < nj. For
where N = ("}1) and the index ofsy, is sparse matrices associated with the matrix-vector product

2 k . o . .
has optimal bilinear complexity#<) realized by the usual

i—1 matrix-vector product algorithm [14].

k:(i—l)n—( 9 )—i—j, 1<i<j3<n.
VII. M ULTILEVEL STRUCTURED MATRIX
Let A = (a;;) € C"*™ and B = (b;;) € C™*™. The
V. TOEPLITZ-PLUS-HANKEL MATRIX Kronecker product[11] of4 and B is defined as
An n x n Toeplitz-plus-Hankel matrix is a matrlx_ which can A® B = (ay;B) € C™xmn,
be expressed as the sum of anx n Hankel matrix and an
n x n Toeplitz matrix. If X is ann x n Toeplitz-plus-Hankel i.e., A ® B is anm x m block matrix whose(i, j)th block
matrix and is the n x n matrix a;; B. We may iterate the definition to
X=H+T obtain ap levels matrixA = A4; ® --- ® A,. In particular,



if Ai,...,A, are structured matrices (circulant, ToeplitzDbserve that

Hankel, symmetric and quplitz—plus-HankeI), théns called a(éy + &) +bm +m)] _ 1[a+5
a p levels structured matrix. b(E + &) +alm +m2)| ~ 2 la—8|"
Let X; C Cmxm .. X, C C™*" be subspaces of
structured matrices. Theli; ® ---® X, C C™ "> jg where
irl]ezit(of allpllevzlicstructured matriced; ® - - - ® A, where = (@+b)[(& + &) + (i + 1))
1 1y-- 05 Ap p-
Algorithms[6£I1 are based on the following idea. 13gt: = (a+b)[(& +m) + (&2 + n2)];
X; x C™ — C™ be the bilinear map defined by the matrix- B =(a—0)[(& +&)— (m + mn)]
vector product for matrices ik;. Assume that the bilinear =(a—b)[(& —m) + (&2 — n2)].

complexity of 3; is r;. Then the structural tensar [14]s, €

® (C")* @ C™ of B; has a tensor decomposition Similarly, we have

i a(§1 — &) +b(m — 772)] 1 ['y + T]
ppo = ) u; ® v ®wj. bE — &) Falm —m)| 2 |y -7
7=t where
The bilinear map3 : (X;1 ®---® X)) x C"t"r — C™1 ",
defined by thep Iﬁve(ls 1st®ructu?ed Zﬂr'zwatrix—vector product, has 7= @+ )& — &)+ (n —m)]
structural tensofis = pp, @ - -®pug,. In [14] we showed that = (a+0)[(&1 +m) — (& +m)],
if X, is Toeplitz, Hankel, symmetric, or Toeplitz-plus-Hankel, 7= (a—Db)[(€&1 — &) — (m — n2)]
the bilinear complexity is equal to the dimensionXf and we — (a=b)[(E = m) — (€2 —12)].

obtain a machinery to decompogg, explicitly. Essentially,
Algorithms[BET1 are obtained from the tensor decompositiohastly, we observe that

of structural tensors. 1
&i+m = Sle+d[(z+y)+ (2 +w),

A. lllustrative example 2
As an example, let us consider the case where 2 and §1—m = 5(0 +d)[(z +y) — (= +w)],
A, B are2 x 2 circulant matrices. This gives a block-circulant- 1
circulant-block orscce matrix. We set E+m = 5c—dllz-y)+(z -w),
1
R L - T L &2 —m=gle—dx—y)— (z—w)l.
b a d c 2
and
T . 1 2 0] By above computations, we see that one may compute
v=(,y,2, W) [ ] ® M + [ } ® [1 : B)v using four multiplications, i.e., it is sufficient to comjut
We want to compute the product df® B andv. By definition wir = (a+b)(c+d)[(z+y)+ (2 +w)],
we have ) wiz = (@ +b)(c = d)[(z —y) + (z —w)],
ac ad be bd wa = (a—=b)(c+d)[(x +y) — (2 +w)],
aB bB ad ac bd bc
= f— — _— d
AeB {bB aB] bec bd ac adl|’ wa2 = (a—b)(c Nz —y) = (z-w).
bd be ad ac Note that since the entries of ® B are given as inputs,

evaluating terms likg¢a + b)(c+ d) = ac + ad + bc+ bd does

and not cost any multiplication (as we already hawue ad, be, bd
a(& + 52) +b(m + n2) as inputs).
_ |l — &) + bm — ma)
(A® Bv = b€ + 52) +a(m + 772) B. General case
b(& — &) + a(n —n2) We now generalize the above calculations to obtain an
where algorithm for p levels structured matrix-vector product. In
1 order to treat all cases at one go, our presentation in this
& = 5((0:0 +dy) + (dz + cy)), section is slightly more abstract. Givenpalevels structured
1 matrix B € X; ® --- ® X, and a vectow of appropriate size,
9 = =((cx + dy) — (dz + cy)), our algorithm, when applied t& andwv, takes the form:
&2 = 5((cx +dy) — (dz + cy)) Igorithm, wh lied t& andv, takes the f
1 , m
m = 5((c2 + dw) + (dz + cw)), (B,0) 25 (0, 0') 25 m(,v') 2 Bu,

whereyp is a linear map sending to a vector’, 1) is a linear

1
=— dw) — (d . : : S S
" 2((CZ +dw) = (dz + cw)) map sending to a vectorv’, m is pointwise multiplication,



and 9 is another linear map sending(d’,v’) to Bv. ¢, v, is any column vector of size two. Lastly, the linear mays
andv depend only on the structure & (i.e., onXy,...,X,) given by left multiplication by[{ % ].

but not on the values oB andv. For any given structure, Let A be a Toeplitz matrix. As before, there exists a
we can represent the linear maps ), and¢ concretely as circulant matrixC of the form

matrices. A A

We will present the algorithms fop levels structured C= [A’ A]’
matrix-vector produdnductively by calling the corresponding
p — 1 levels algorithms. Also, they will be built upon Algo-and A
rithms[2,[3[4, andl5 for the relevant structured matrix-wect (C®B) [U} = [( ,® B)U} .

0 (A" ® B)v
product.

Suppose we have algorithms fer— 1 levels structured Hence to computd A ® B)v, it suffices to computédC ®
matrix-vector product, i.e., we may evaluate the linear snag) [§] and this can be done using Algoritioh 6. We obtain
@, ¢, andd for anyp — 1 levels structured matrix. Givenza Algorithm[Z.
levels structured matrixl; ® --- ® A, and a column vector
v of size N = [[I_; n;, we writt A; ® ---® A, asA@® B Algorithm 7 p levels Toeplitz matrix-vector product
whereA = A; andB = A, ® --- ® A,. SetN; to be N/ni. ~1. ExpressA as a vectora = (ay,...,as,_1) and v as

Let A be a circulant matrix. Lety, = e?7i/n | = (1., on)T.
0,1,...,n—1be thenth roots of unity and letV" = ()", L,  ». Computeb = — S 21

i=1 i

be the Fourier matrix in({1). We have AlgoritHm 6. 3; Constructe = (a aom. 1, b, as (n,_1) € C2M
. My n1—1,%Y% 9ty Uy —
- - - representing @n, x 2n; circulant matrixC.
Algorithm 6 p levels circulant matrix-vector product 4: Constructs — (v un. 0 0) € C2N
1: ExpressA by a column vectom = (ay,...,a,,)" and 5. Computez = (C' ® B)% by Algorithm[8 and express as
expressv by a column vector (z1,...,22n)".
6: (21,...,2n)" is the product of A ® B) andu.
V= (V1,15 V1,Ny, V2,15 V2, Nys - e
T
Uni Lo Una W) Now for square Hankel matrice4 and B we observe that
2: Expressp as(y1, .. -, )" Wherey; is a linear functional _
oN X, ® - ® X, andr = [[°_, dim(X;). JA®B=(JeI)(4®B),
3: Expressy as(¢1,...,v¥,) wherey; is a linear functional whereJ is the matrix in [2). AlgorithriB follows.
on CMt,
4: Computea = Wa and denote it by(a, ..., an,)". Algorithm 8 p levels Hankel matrix-vector product
5. Denotev; = (vi,1,-..,vin,) i =1,...,n1. 1: Compute theZ = (JA ® B)v by Algorithm[Z.
6: for s =1,...,m, do 2: Computez = (J ® I)Z andz is (A @ B)w.
7 fort=1,...,r do
8: Compute . . . .
The algorithms fop levels symmetric matrix (Algorithinl9),
ni . . .
- _ levels Toeplitz-plus-Hankel matrix (Algorithin 1.0p, levels
ot = Gsipr(B sl : p . i . A .
wat = s );wk—lwt(vk) sparse matrix (Algorithri 1) are obtained via similar cdnsi
B erations.
o end for
10: end for Algorithm 9 p levels symmetric matrix-vector product
11: Representw,;) as a column vector 1: Ais anny x n; symmetric matrix. Compute: = [n;/2].
Setv; =v andz =0¢c CV.
W= (Wi, Wiy WLy e e ey Wy e - > for k=1 m do
Wiy 15y Wy ) 3 ConstructH;, determined by first row and last column
of Ag.

12: Compute(W ® 9)w, which is the producfA ® B)wv. .
pute( Jw P ¢ v Computewy, = (Hy ® B)vy, by Algorithm[8.

5: Updatez = z + wy.

If we apply Algorithm[6 to the case wherd, B are

. . . ) 6: Constructd.1 by deleting first and last columns and
2 % 2 circulant matrices, we obtaitw;1, w12, w21, wes as iN first and last rows ofd,, — H,.
SectionlVI[-A. To compute the product of ® B andv, we 7: Constructvg 1 by deleting firstV; and lastN; entries
expressA as (a,b)", B as (c,d)T, andv as (z,y,z,w)'. of v
Hencev; = (z,y)" andv; = (z,w)". By Algorithm[1 the endkf'or
linear mapy = (¢1,2)" is given bygy (o, B)T) =a+5 o (z1,...,2n)7 is the product ofS andv.

and po((o,3)T) = a — B, and ¢ is the map given by
¥1((a, B)T) = a+B andys((a, B)T) = a— 3, where(a, 5)7




Algonthm 10 P levels ToeplitZ'pIUS'Hankel matrix-vector the Computation Oﬁ, by our Specia' choice dfwe saved

product one multiplication).
1: ExpressA as H + T with Hankel matrix[d and Toeplitz  (iii) Algorithm Blfor n x n symmetric matrix-vector product
matrix 7', costs("}") multiplications (eachu;, costs2[n — 2(k —
2: ExpressI’ as(ty, - .., tan, —1) andH as(hy, ..., han,—1). 1)] — 1 multiplications and so the total number of
3 Computeb = — 37", ¢ multiplications is("}")).
4: Find a € C such that (iv) An N x N p levels structured matrix-vector product costs
-l g, ni—1 mitj, ?_, dim X; multiplications. Letr = []?_, dim(Xj;).
a= 2o @itmy b2 n @ (v) AIgolrithm costsnyr multiplications (egchws(t C())SIS
2m one multiplication; note that computation of the co-
wherew;, = ekmi/m1, efficient asp,(B) does not cost any multiplication as
5. UpdateH = H +aF andT =T — oF. asei(B) is a linear combination of the entries df® B).
6: Computezy = (H ® B)v by Algorithm[8 andzr =  (vi) Algorithms[4 and Algorithn[ B each cos{@n, — 1)r
(T ® B)v by Algorithm[d, respectively. multiplications.
7: Computez = zy + zr which is the product ofd andv.  (vii) Algorithm B costs("}')r multiplications.

(viii)y Algorithm Q| costs(4n — 3)r multiplications.

Algorithm 11 p levels sparse matrix-vector product

(ix) Algorithm [I1 costs# x r multiplications.

1:
2:

o N o’

10:
11:

12:
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