Algorithms for structured matrix-vector product of optimal bilinear complexity

Ke Ye
Computational and Applied Mathematics Initiative
Department of Statistics
University of Chicago
Email: kye@galton.uchicago.edu

Lek-Heng Lim
Computational and Applied Mathematics Initiative
Department of Statistics
University of Chicago
Email: lekheng@galton.uchicago.edu

Abstract

We present explicit algorithms for computing structured matrix-vector products that are optimal in the sense of Strassen, i.e., using a provably minimum number of multiplications. These structures include Toeplitz/Hankel/circulant, symmetric, Toeplitz-plus-Hankel, sparse, and multilevel structures. The last category include вттв, вннв, вссв but also any arbitrarily complicated nested structures built out of other structures.

I. Introduction

Given a bilinear map $\beta: \mathbb{C}^{m} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{p}$, the bilinear complexity [9], [10] of β is the least number of multiplications needed to evaluate $\beta(x, y)$ for $x \in \mathbb{C}^{m}$ and $y \in \mathbb{C}^{n}$. This notion of bilinear complexity is the standard measure of computational complexity for matrix inversion and matrix multiplication [7], [6], [12], [13].

This article is an addendum to our work in [14] where we proposed a generalization of the Cohn-Umans method [3], [4] and used it to study the bilinear complexity of structured matrix-vector product. We did not derive any actual algorithms in [14]. The purpose of this present work is to provide explicit algorithms for structured matrix-vector product obtained by our generalized Cohn-Umans method in [14]. All algorithms in this paper have been shown to be the fastest possible in terms of bilinear complexity. The proofs may be found in [14] and involve determining the tensor ranks of these structured matrix-vector products.

Here is a list of structured matrices discussed in this article:
§II Circulant matrices.
§III Toeplitz/Hankel matrices.
§IV Symmetric matrices.
§V Toeplitz-plus-Hankel matrices.
VI Sparse matrices.
\$VII Multilevel structured matrices $A_{1} \otimes \cdots \otimes A_{p}$ where each A_{i} is one of circulant, Toeplitz/Hankel, symmetric, Toeplitz-plus-Hankel, or sparse matrices.
The algorithms for circulant [5] and Toeplitz [1] matrices are known but those for other structured matrices are new (as far as we know). In particular, the multilevel structured matrices in ${ }^{\text {VII }}$ include arbitrarily complicated nested structures, e.g., block BCCB matrices whose blocks are Toeplitz-plus-Hankel, a 3-level structure.

We analyze the bilinear complexities of all algorithms in \$VIII Readers should bear in mind that bilinear complexity does not count scalar multiplications. For example, the bilinear $\operatorname{map} \beta: \mathbb{C}^{2} \times \mathbb{C}^{2} \rightarrow \mathbb{C}, \beta((a, b),(c, d))=(2 a+b)(3 c-d)$ has bilinear complexity one. For those familiar with tensor rank [8], the bilinear complexity of β is just the tensor rank of the structure tensor $\mu_{\beta} \in \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$ corresponding to β [2], [14].

II. Circulant matrix

An $n \times n$ circulant matrix $A=\left(a_{i j}\right)$ is a matrix with

$$
\begin{aligned}
a_{i j}=a_{i+p, j+p}, & 1 \leq i, j, i+p, j+p \leq n \\
a_{1 j}=a_{n+2-j, 1}, & 2 \leq j \leq n
\end{aligned}
$$

The circulant matrix represented by $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$ is one whose first row is a. It is well-known [5] that the circulant matrix-vector product can be computed by Fourier transform. We restate this algorithm for completeness. Let $\omega_{k}=e^{2 k \pi i / n}$, $k=0, \ldots, n-1$ and define the Fourier matrix

$$
W=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{1}\\
1 & \omega_{1} & \cdots & \omega_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \omega_{1}^{n-1} & \cdots & \omega_{n-1}^{n-1}
\end{array}\right]
$$

```
Algorithm 1 Circulant matrix-vector product
    Represent the circulant matrix \(A\) by \(a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{\top}\)
    and the column vector by \(v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{\top}\).
    Compute \(W a\) and represent it by \(\left(\tilde{a}_{1}, \ldots, \tilde{a}_{n}\right)^{\top}\).
    Compute \(n W^{-1} v\) and represent it by \(\left(\tilde{v}_{1}, \ldots, \tilde{v}_{n}\right)^{\top}\).
    Compute \(\tilde{z}=\left(\tilde{a}_{1} \tilde{v}_{1}, \ldots, \tilde{a}_{n} \tilde{v}_{n}\right)^{\top}\).
    Compute \(z=W \tilde{z}\), which is the product of \(A\) and \(v\).
```


III. Toeplitz/Hankel matrix

An $n \times n$ Toeplitz matrix $A=\left(a_{i j}\right)$ is a matrix with

$$
a_{i j}=a_{i+p, j+p}, \quad 1 \leq i, j, i+p, j+p \leq n
$$

We represent an $n \times n$ Toeplitz matrix $A=\left(a_{i j}\right)$ by $\left(a_{1}, a_{2}, \ldots, a_{2 n-1}\right) \in \mathbb{C}^{2 n-1}$

$$
a_{i j}=a_{j-i+n}
$$

Every $n \times n$ Toeplitz matrix A may be regarded as a block of some $2 n \times 2 n$ circulant matrix C whose first row is $\left(a_{n}, \ldots, a_{2 n-1}, b, a_{1}, \ldots, a_{n-1}\right)$ and $b \in \mathbb{C}$ is arbitrary. Using this embedding, we obtain Algorithm 2 for Toeplitz matrixvector product [1], [14] .

```
Algorithm 2 Toeplitz matrix-vector product
    Express the Toeplitz matrix \(A\) as \(\left(a_{1}, \ldots, a_{2 n-1}\right)\) and the
    vector as \(v=\left(v_{1}, \ldots, v_{n}\right)^{\top}\)
    Compute \(b=-\sum_{i=1}^{2 n-1} a_{i}\).
    Construct \(c=\left(a_{n}, \ldots, a_{2 n-1}, b, a_{1}, \ldots, a_{n-1}\right) \in \mathbb{C}^{2 n}\).
    Construct \(\tilde{v}=\left(v_{1}, \ldots, v_{n}, 0, \ldots, 0\right)^{\top} \in \mathbb{C}^{2 n}\).
    Compute the product \(\tilde{z}=\left(z_{1}, \ldots, z_{2 n}\right)^{\top}\) of the circulant
    matrix determined by \(c\) with \(\tilde{v}\) by Algorithm 1
    : \(z=\left(z_{1}, \ldots, z_{n}\right)^{\mathrm{T}}\) is the product of \(A\) and \(v\).
```

An $n \times n$ matrix H is called a Hankel matrix if $J H$ is a Toeplitz matrix where

$$
J=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \tag{2}\\
0 & 0 & \cdots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right] .
$$

We represent an $n \times n$ Hankel matrix $H=\left(h_{i j}\right)$ as $\left(h_{1}, h_{2}, \ldots, h_{2 n-1}\right) \in \mathbb{C}^{2 n-1}$ where

$$
h_{i j}=h_{2 n+1-i-j}, \quad 1 \leq i, j \leq n .
$$

Algorithm 3 computes the product of a Hankel matrix and a column vector v.

```
Algorithm 3 Hankel matrix-vector product
    Express \(T=\left(h_{1}, h_{2}, \ldots, h_{2 n-1}\right)\).
    Apply Algorithm 2 to the Toeplitz matrix represented by
    \(T\) and \(v\) to obtain \(\left(z_{1}, \ldots, z_{n}\right)\).
    \(\left(z_{n}, z_{n-1}, \ldots, z_{1}\right)\) is the product of \(H\) and \(v\).
```


IV. Symmetric matrix

Algorithm 4 computes the product of a symmetric matrix $S=\left(s_{i j}\right)$ where $s_{i j}=s_{j i}$ and a column vector v. We represent a symmetric matrix $s=\left(s_{i j}\right)$ as $\left(s_{1}, \ldots, s_{N}\right) \in \mathbb{C}^{N}$ where $N=\binom{n+1}{2}$ and the index of s_{k} is

$$
k=(i-1) n-\binom{i-1}{2}+j, \quad 1 \leq i \leq j \leq n
$$

V. Toeplitz-Plus-Hankel matrix

An $n \times n$ Toeplitz-plus-Hankel matrix is a matrix which can be expressed as the sum of an $n \times n$ Hankel matrix and an $n \times n$ Toeplitz matrix. If X is an $n \times n$ Toeplitz-plus-Hankel matrix and

$$
X=H+T
$$

```
Algorithm 4 Symmetric matrix-vector product
    \(S\) is an \(n \times n\) symmetric matrix. Set \(S_{1}=S\). Set \(m=\)
    \(\lceil n / 2\rceil\). Set \(v_{1}=v\) and \(z=0\).
    for \(k=1, \ldots, m\) do
        Construct Hankel matrix \(H_{k}\) determined by first row
    and last column of \(S_{k}\).
        Compute \(w_{k}=H_{k} v_{k}\) by Algorithm 3
        Update \(z=z+w_{k}\).
        Construct \(S_{k+1}\) by deleting first and last columns and
    first and last rows of \(S_{k}-H_{k}\).
        Construct \(v_{k+1}\) by deleting first and last entry of \(v_{k}\).
    end for
    \(z=\left(z_{1}, \ldots, z_{n}\right)^{\top}\) is the product of \(S\) and \(v\).
```

for some Hankel matrix H and some Toeplitz matrix T, then for any $a \in \mathbb{C}$ we have a decomposition of X into the sum of a Hankel matrix $H+a E$ and a Toeplitz matrix $T-a E$ where E is the $n \times n$ matrix with all entries equal to one.

```
Algorithm 5 Toeplitz-plus-Hankel matrix-vector product
    Express \(X\) as \(H+T\) with Hankel matrix \(H\) and Toeplitz
    matrix \(T\).
    Express \(T\) as \(\left(t_{1}, \ldots, t_{2 n-1}\right)\) and \(H\) as \(\left(h_{1}, \ldots, h_{2 n-1}\right)\).
    Compute \(b=-\sum_{j=1}^{2 n-1} t_{j}\).
    Compute \(a \in \mathbb{C}\) as
        \(a=\frac{\sum_{j=0}^{n-1} \omega^{j} t_{n+j}+\omega^{n} b+\sum_{j=1}^{n-1} \omega^{n+j} t_{j}}{2 n}\)
    where \(\omega=e^{k \pi i / n}\).
    Update \(H=H+a E\) and \(T=T-a E\).
    Compute \(z_{H}=H v\) by Algorithm 3 and \(z_{T}=T v\) by
    Algorithm 2 respectively.
    Compute \(z=z_{H}+z_{T}\), which is the product of \(X\) and \(v\).
```


VI. Sparse matrix

An $n \times n$ sparse matrix $A=\left(a_{i j}\right)$ with sparsity pattern $\Omega \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$ is one where

$$
a_{i j}=0 \quad \text { for all }(i, j) \in \Omega
$$

For example, an upper triangular matrix is a sparse matrix with sparsity pattern $\Omega=\{(i, j): 1 \leq i \leq j \leq n\}$. For sparse matrices associated with Ω, the matrix-vector product has optimal bilinear complexity $\# \Omega$ realized by the usual matrix-vector product algorithm [14].

VII. Multilevel structured matrix

Let $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}$ and $B=\left(b_{i j}\right) \in \mathbb{C}^{m \times m}$. The Kronecker product [11] of A and B is defined as

$$
A \circledast B=\left(a_{i j} B\right) \in \mathbb{C}^{m n \times m n}
$$

i.e., $A \circledast B$ is an $m \times m$ block matrix whose (i, j) th block is the $n \times n$ matrix $a_{i j} B$. We may iterate the definition to obtain a p levels matrix $A=A_{1} \circledast \cdots \circledast A_{p}$. In particular,
if A_{1}, \ldots, A_{p} are structured matrices (circulant, Toeplitz, Hankel, symmetric and Toeplitz-plus-Hankel), then A is called a p levels structured matrix.

Let $X_{1} \subseteq \mathbb{C}^{n_{1} \times n_{1}}, \ldots, X_{p} \subseteq \mathbb{C}^{n_{p} \times n_{p}}$ be subspaces of structured matrices. Then $X_{1} \circledast \cdots \circledast X_{p} \subseteq \mathbb{C}^{n_{1} \cdots n_{p} \times n_{1} \cdots n_{p}}$ is the set of all p levels structured matrices $A_{1} \circledast \cdots \circledast A_{p}$ where $A_{1} \in X_{1}, \ldots, A_{p} \in X_{p}$.

Algorithms $6-11$ are based on the following idea. Let β_{i} : $X_{i} \times \mathbb{C}^{n_{i}} \rightarrow \mathbb{C}^{n_{i}}$ be the bilinear map defined by the matrixvector product for matrices in X_{i}. Assume that the bilinear complexity of β_{i} is r_{i}. Then the structural tensor [14] $\mu_{\beta_{i}} \in$ $X_{i}^{*} \otimes\left(\mathbb{C}^{n_{i}}\right)^{*} \otimes \mathbb{C}^{n_{i}}$ of β_{i} has a tensor decomposition

$$
\mu_{\beta_{i}}=\sum_{j=1}^{r_{i}} u_{j} \otimes v_{j} \otimes w_{j}
$$

The bilinear map $\beta:\left(X_{1} \circledast \cdots \circledast X_{p}\right) \times \mathbb{C}^{n_{1} \cdots n_{p}} \rightarrow \mathbb{C}^{n_{1} \cdots n_{p}}$, defined by the p levels structured matrix-vector product, has structural tensor $\mu_{\beta}=\mu_{\beta_{1}} \otimes \cdots \otimes \mu_{\beta_{p}}$. In [14] we showed that if X_{i} is Toeplitz, Hankel, symmetric, or Toeplitz-plus-Hankel, the bilinear complexity is equal to the dimension of X_{i} and we obtain a machinery to decompose $\mu_{\beta_{i}}$ explicitly. Essentially, Algorithms 611 are obtained from the tensor decompositions of structural tensors.

A. Illustrative example

As an example, let us consider the case where $p=2$ and A, B are 2×2 circulant matrices. This gives a block-circulant-circulant-block or BCCB matrix. We set

$$
A=\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right], \quad B=\left[\begin{array}{ll}
c & d \\
d & c
\end{array}\right]
$$

and

$$
v=(x, y, z, w)^{\top}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \circledast\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
z \\
w
\end{array}\right] \circledast\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

We want to compute the product of $A \circledast B$ and v. By definition we have

$$
A \circledast B=\left[\begin{array}{ll}
a B & b B \\
b B & a B
\end{array}\right]=\left[\begin{array}{llll}
a c & a d & b c & b d \\
a d & a c & b d & b c \\
b c & b d & a c & a d \\
b d & b c & a d & a c
\end{array}\right]
$$

and

$$
(A \circledast B) v=\left[\begin{array}{l}
a\left(\xi_{1}+\xi_{2}\right)+b\left(\eta_{1}+\eta_{2}\right) \\
a\left(\xi_{1}-\xi_{2}\right)+b\left(\eta_{1}-\eta_{2}\right) \\
b\left(\xi_{1}+\xi_{2}\right)+a\left(\eta_{1}+\eta_{2}\right) \\
b\left(\xi_{1}-\xi_{2}\right)+a\left(\eta_{1}-\eta_{2}\right)
\end{array}\right]
$$

where

$$
\begin{aligned}
\xi_{1} & =\frac{1}{2}((c x+d y)+(d x+c y)) \\
\xi_{2} & =\frac{1}{2}((c x+d y)-(d x+c y)) \\
\eta_{1} & =\frac{1}{2}((c z+d w)+(d z+c w)) \\
\eta_{2} & =\frac{1}{2}((c z+d w)-(d z+c w))
\end{aligned}
$$

Observe that

$$
\left[\begin{array}{l}
a\left(\xi_{1}+\xi_{2}\right)+b\left(\eta_{1}+\eta_{2}\right) \\
b\left(\xi_{1}+\xi_{2}\right)+a\left(\eta_{1}+\eta_{2}\right)
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
\alpha+\beta \\
\alpha-\beta
\end{array}\right]
$$

where

$$
\begin{aligned}
\alpha & =(a+b)\left[\left(\xi_{1}+\xi_{2}\right)+\left(\eta_{1}+\eta_{2}\right)\right] \\
& =(a+b)\left[\left(\xi_{1}+\eta_{1}\right)+\left(\xi_{2}+\eta_{2}\right)\right], \\
\beta & =(a-b)\left[\left(\xi_{1}+\xi_{2}\right)-\left(\eta_{1}+\eta_{2}\right)\right] \\
& =(a-b)\left[\left(\xi_{1}-\eta_{1}\right)+\left(\xi_{2}-\eta_{2}\right)\right] .
\end{aligned}
$$

Similarly, we have

$$
\left[\begin{array}{l}
a\left(\xi_{1}-\xi_{2}\right)+b\left(\eta_{1}-\eta_{2}\right) \\
b\left(\xi_{1}-\xi_{2}\right)+a\left(\eta_{1}-\eta_{2}\right)
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
\gamma+\tau \\
\gamma-\tau
\end{array}\right],
$$

where

$$
\begin{aligned}
\gamma & =(a+b)\left[\left(\xi_{1}-\xi_{2}\right)+\left(\eta_{1}-\eta_{2}\right)\right] \\
& =(a+b)\left[\left(\xi_{1}+\eta_{1}\right)-\left(\xi_{2}+\eta_{2}\right)\right], \\
\tau & =(a-b)\left[\left(\xi_{1}-\xi_{2}\right)-\left(\eta_{1}-\eta_{2}\right)\right] \\
& =(a-b)\left[\left(\xi_{1}-\eta_{1}\right)-\left(\xi_{2}-\eta_{2}\right)\right] .
\end{aligned}
$$

Lastly, we observe that

$$
\begin{aligned}
& \xi_{1}+\eta_{1}=\frac{1}{2}(c+d)[(x+y)+(z+w)] \\
& \xi_{1}-\eta_{1}=\frac{1}{2}(c+d)[(x+y)-(z+w)] \\
& \xi_{2}+\eta_{2}=\frac{1}{2}(c-d)[(x-y)+(z-w)] \\
& \xi_{2}-\eta_{2}=\frac{1}{2}(c-d)[(x-y)-(z-w)]
\end{aligned}
$$

By above computations, we see that one may compute $(A \circledast$ $B) v$ using four multiplications, i.e., it is sufficient to compute

$$
\begin{aligned}
& w_{11}=(a+b)(c+d)[(x+y)+(z+w)], \\
& w_{12}=(a+b)(c-d)[(x-y)+(z-w)], \\
& w_{21}=(a-b)(c+d)[(x+y)-(z+w)], \\
& w_{22}=(a-b)(c-d)[(x-y)-(z-w)] .
\end{aligned}
$$

Note that since the entries of $A \circledast B$ are given as inputs, evaluating terms like $(a+b)(c+d)=a c+a d+b c+b d$ does not cost any multiplication (as we already have $a c, a d, b c, b d$ as inputs).

B. General case

We now generalize the above calculations to obtain an algorithm for p levels structured matrix-vector product. In order to treat all cases at one go, our presentation in this section is slightly more abstract. Given a p levels structured matrix $B \in X_{1} \circledast \cdots \circledast X_{p}$ and a vector v of appropriate size, our algorithm, when applied to B and v, takes the form:

$$
(B, v) \xrightarrow{(\varphi, \psi)}\left(b^{\prime}, v^{\prime}\right) \xrightarrow{m} m\left(b^{\prime}, v^{\prime}\right) \xrightarrow{\vartheta} B v,
$$

where φ is a linear map sending B to a vector b^{\prime}, ψ is a linear map sending v to a vector v^{\prime}, m is pointwise multiplication,
and ϑ is another linear map sending $m\left(b^{\prime}, v^{\prime}\right)$ to $B v . \varphi, \psi$, and ϑ depend only on the structure of B (i.e., on X_{1}, \ldots, X_{p}) but not on the values of B and v. For any given structure, we can represent the linear maps φ, ψ, and ϑ concretely as matrices.

We will present the algorithms for p levels structured matrix-vector product inductively, by calling the corresponding $p-1$ levels algorithms. Also, they will be built upon Algorithms 2, 3, 4, and 5 for the relevant structured matrix-vector product.

Suppose we have algorithms for $p-1$ levels structured matrix-vector product, i.e., we may evaluate the linear maps φ, ψ, and ϑ for any $p-1$ levels structured matrix. Given a p levels structured matrix $A_{1} \circledast \cdots \circledast A_{p}$ and a column vector v of size $N=\prod_{i=1}^{p} n_{i}$, we write $A_{1} \circledast \cdots \circledast A_{p}$ as $A \circledast B$ where $A=A_{1}$ and $B=A_{2} \circledast \cdots \circledast A_{p}$. Set N_{1} to be N / n_{1}.

Let A be a circulant matrix. Let $\omega_{k}=e^{2 k \pi i / n}, k=$ $0,1, \ldots, n-1$ be the nth roots of unity and let $W=\left(\omega_{k}^{j}\right)_{j, k=0}^{n-1}$ be the Fourier matrix in (1). We have Algorithm 6 .

```
Algorithm \(6 p\) levels circulant matrix-vector product
    Express \(A\) by a column vector \(a=\left(a_{1}, \ldots, a_{n_{1}}\right)^{\top}\) and
    express \(v\) by a column vector
\[
\begin{aligned}
& v=\left(v_{1,1}, \ldots, v_{1, N_{1}}, v_{2,1}, \ldots, v_{2, N_{1}}, \ldots,\right. \\
& \left.v_{n_{1}, 1}, \ldots, v_{n_{1}, N_{1}}\right)^{\mathrm{\top}} .
\end{aligned}
\]
Express \(\varphi\) as \(\left(\varphi_{1}, \ldots, \varphi_{r}\right)^{\top}\) where \(\varphi_{j}\) is a linear functional on \(X_{2} \circledast \cdots \circledast X_{p}\) and \(r=\prod_{i=2}^{p} \operatorname{dim}\left(X_{i}\right)\).
Express \(\psi\) as \(\left(\psi_{1}, \ldots, \psi_{r}\right)\) where \(\psi_{j}\) is a linear functional on \(\mathbb{C}^{N_{1}}\).
Compute \(\tilde{a}=W a\) and denote it by \(\left(\tilde{a}_{1}, \ldots, \tilde{a}_{n_{1}}\right)^{\top}\).
Denote \(v_{i}=\left(v_{i, 1}, \ldots, v_{i, N_{1}}\right)^{\top}, i=1, \ldots, n_{1}\).
for \(s=1, \ldots, n_{1}\) do
for \(t=1, \ldots, r\) do
Compute
\[
w_{s t}=\tilde{a}_{s} \varphi_{t}(B) \sum_{k=1}^{n_{1}} \omega_{k-1}^{s-1} \psi_{t}\left(v_{k}\right)
\]
end for
end for
Represent \(\left(w_{s t}\right)\) as a column vector
\[
\begin{aligned}
& w=\left(w_{11}, \ldots, w_{1, r}, w_{21}, \ldots, w_{2, r}, \ldots,\right. \\
& \\
& \left.\quad w_{n_{1}, 1}, \ldots, w_{n_{1}, r}\right)^{\top} .
\end{aligned}
\]
12: Compute \((W \circledast \vartheta) w\), which is the product \((A \circledast B) v\).
```

If we apply Algorithm 6 to the case where A, B are 2×2 circulant matrices, we obtain $w_{11}, w_{12}, w_{21}, w_{22}$ as in Section VII-A. To compute the product of $A \circledast B$ and v, we express A as $(a, b)^{\top}, B$ as $(c, d)^{\top}$, and v as $(x, y, z, w)^{\top}$. Hence $v_{1}=(x, y)^{\top}$ and $v_{2}=(z, w)^{\top}$. By Algorithm 1 the linear map $\varphi=\left(\varphi_{1}, \varphi_{2}\right)^{\mathrm{T}}$ is given by $\varphi_{1}\left((\alpha, \beta)^{\mathrm{T}}\right)=\alpha+\beta$ and $\varphi_{2}\left((\alpha, \beta)^{\top}\right)=\alpha-\beta$, and ψ is the map given by $\psi_{1}\left((\alpha, \beta)^{\mathrm{T}}\right)=\alpha+\beta$ and $\psi_{2}\left((\alpha, \beta)^{\mathrm{T}}\right)=\alpha-\beta$, where $(\alpha, \beta)^{\top}$
is any column vector of size two. Lastly, the linear map ϑ is given by left multiplication by $\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$.

Let A be a Toeplitz matrix. As before, there exists a circulant matrix C of the form

$$
C=\left[\begin{array}{cc}
A & A^{\prime} \\
A^{\prime} & A
\end{array}\right]
$$

and

$$
(C \circledast B)\left[\begin{array}{l}
v \\
0
\end{array}\right]=\left[\begin{array}{l}
(A \circledast B) v \\
\left(A^{\prime} \circledast B\right) v
\end{array}\right]
$$

Hence to compute $(A \circledast B) v$, it suffices to compute $(C \circledast$ $B)\left[\begin{array}{l}v \\ 0\end{array}\right]$ and this can be done using Algorithm 6. We obtain Algorithm 7

```
Algorithm \(7 p\) levels Toeplitz matrix-vector product
    Express \(A\) as a vector \(a=\left(a_{1}, \ldots, a_{2 n-1}\right)\) and \(v\) as
    \(\left(v_{1}, \ldots, v_{N}\right)^{\top}\).
    Compute \(b=-\sum_{i=1}^{2 n_{1}-1} a_{i}\).
    Construct \(c=\left(a_{n}, \ldots, a_{2 n_{1}-1}, b, a_{1}, \ldots, a_{n_{1}-1}\right) \in \mathbb{C}^{2 n_{1}}\)
    representing a \(2 n_{1} \times 2 n_{1}\) circulant matrix \(C\).
    Construct \(\tilde{v}=\left(v_{1}, \ldots, v_{N}, 0, \ldots, 0\right) \in \mathbb{C}^{2 N}\).
    Compute \(\tilde{z}=(C \circledast B) \tilde{v}\) by Algorithm 6 and express \(\tilde{z}\) as
    \(\left(z_{1}, \ldots, z_{2 N}\right)^{\top}\).
    : \(\left(z_{1}, \ldots, z_{N}\right)^{\top}\) is the product of \((A \circledast B)\) and \(v\).
```

Now for square Hankel matrices A and B we observe that

$$
J A \otimes B=(J \otimes I)(A \otimes B)
$$

where J is the matrix in (2). Algorithm 8 follows.

```
Algorithm \(8 p\) levels Hankel matrix-vector product
    Compute the \(Z=(J A \otimes B) v\) by Algorithm 7
    Compute \(z=(J \otimes I) Z\) and \(z\) is \((A \otimes B) v\).
```

The algorithms for p levels symmetric matrix (Algorithm 9), p levels Toeplitz-plus-Hankel matrix (Algorithm 10), p levels sparse matrix (Algorithm 11) are obtained via similar considerations.

```
Algorithm \(9 p\) levels symmetric matrix-vector product
    \(A\) is an \(n_{1} \times n_{1}\) symmetric matrix. Compute \(m=\left\lceil n_{1} / 2\right\rceil\).
    Set \(v_{1}=v\) and \(z=0 \in \mathbb{C}^{N}\).
    for \(k=1, \ldots, m\) do
        Construct \(H_{k}\) determined by first row and last column
    of \(A_{k}\).
        Compute \(w_{k}=\left(H_{k} \circledast B\right) v_{k}\) by Algorithm 8 .
        Update \(z=z+w_{k}\).
        Construct \(A_{k+1}\) by deleting first and last columns and
    first and last rows of \(A_{k}-H_{k}\).
        Construct \(v_{k+1}\) by deleting first \(N_{1}\) and last \(N_{1}\) entries
    of \(v_{k}\).
    end for
    \(z=\left(z_{1}, \ldots, z_{N}\right)^{\top}\) is the product of \(S\) and \(v\).
```

```
Algorithm \(10 p\) levels Toeplitz-plus-Hankel matrix-vector
product
    : Express \(A\) as \(H+T\) with Hankel matrix \(H\) and Toeplitz
    matrix \(T\).
    Express \(T\) as \(\left(t_{1}, \ldots, t_{2 n_{1}-1}\right)\) and \(H\) as \(\left(h_{1}, \ldots, h_{2 n_{1}-1}\right)\).
    Compute \(b=-\sum_{j=1}^{2 n_{1}-1} t_{j}\).
    Find \(a \in \mathbb{C}\) such that
\[
a=\frac{\sum_{j=0}^{n_{1}-1} \omega_{1}^{j} t_{n_{1}+j}+\omega_{1}^{n_{1}} b+\sum_{j=1}^{n_{1}-1} \omega_{1}^{n_{1}+j} t_{j}}{2 n_{1}}
\]
where \(\omega_{1}=e^{k \pi i / n_{1}}\)
Update \(H=H+a E\) and \(T=T-a E\).
Compute \(z_{H}=(H \circledast B) v\) by Algorithm 8 and \(z_{T}=\) \((T \circledast B) v\) by Algorithm 7, respectively.
Compute \(z=z_{H}+z_{T}\) which is the product of \(A\) and \(v\).
```

```
Algorithm \(11 p\) levels sparse matrix-vector product
    Express \(A\) by its entries \(A=\left(a_{i j}\right)\).
    Express \(v\) by a column vector
\[
\begin{aligned}
& v=\left(v_{1,1}, \ldots, v_{1, N_{1}}, v_{2,1}, \ldots, v_{2, N_{1}}, \ldots,\right. \\
& \\
& \left.\quad v_{n_{1}, 1}, \ldots, v_{n_{1}, N_{1}}\right)^{\top} .
\end{aligned}
\]
: Express \(\varphi\) as \(\left(\varphi_{1}, \ldots, \varphi_{r}\right)^{\top}\) where \(\varphi_{j}\) is a linear functional on \(X_{2} \circledast \cdots \circledast X_{p}\) and \(r=\prod_{i=2}^{p} \operatorname{dim}\left(X_{i}\right)\).
Express \(\psi\) as \(\left(\psi_{1}, \ldots, \psi_{r}\right)\) where \(\psi_{j}\) is a linear functional on \(\mathbb{C}^{N_{1}}\).
Denote \(v_{i}=\left(v_{i 1}, \ldots, v_{i, N_{1}}\right)^{\top}, i=1, \ldots, n_{1}\).
for \(s=1, \ldots, n_{1}\) do
for \(t=1, \ldots, r\) do
Compute
\[
w_{s, t}=\varphi_{t}(B) \sum_{(k, s) \notin \Omega} a_{k s} \psi_{t}\left(v_{k}\right)
\]
end for
end for
Compute
\[
\left(z_{i j}\right)=(I \circledast \vartheta)\left(w_{s t}\right)
\]
\(\left(z_{1,1}, \ldots, z_{1, n_{1}}, z_{2,1}, \ldots, z_{2, n_{1}}, \ldots, z_{N_{1}, 1}, \ldots, z_{N_{1}, n_{1}}\right)^{\top}\)
is \((A \circledast B) v\).
```


VIII. Bilinear complexity

As we have shown in [14], all 11 algorithms presented in this article are of optimal bilinear complexity, i.e., requires a minimum number of multiplications. We give the multiplication counts below.
(i) Algorithm 1 for $n \times n$ circulant matrix-vector product costs n multiplications (from the computation of \tilde{z}; note that the other multiplications in the algorithm are scalar multiplications and do not count towards bilinear complexity).
(ii) Algorithms 2 and 3 for $n \times n$ Toeplitz/Hankel matrixvector products each costs $2 n-1$ multiplications (from
the computation of \tilde{z}; by our special choice of b we saved one multiplication).
(iii) Algorithm 4 for $n \times n$ symmetric matrix-vector product costs $\binom{n+1}{2}$ multiplications (each w_{k} costs $2[n-2(k-$ 1)] - 1 multiplications and so the total number of multiplications is $\binom{n+1}{2}$).
(iv) An $N \times N p$ levels structured matrix-vector product costs $\prod_{i=1}^{p} \operatorname{dim} X_{i}$ multiplications. Let $r=\prod_{i=2}^{p} \operatorname{dim}\left(X_{i}\right)$.
(v) Algorithm 6 costs $n_{1} r$ multiplications (each $w_{s t}$ costs one multiplication; note that computation of the coefficient $\tilde{a}_{s} \varphi_{t}(B)$ does not cost any multiplication as $\tilde{a}_{s} \varphi_{t}(B)$ is a linear combination of the entries of $A \circledast B$).
(vi) Algorithms 7 and Algorithm 8 each costs $\left(2 n_{1}-1\right) r$ multiplications.
(vii) Algorithm 9 costs $\binom{n+1}{2} r$ multiplications.
(viii) Algorithm 10 costs $(4 n-3) r$ multiplications.
(ix) Algorithm 11 costs $\# \Omega \times r$ multiplications.

Acknowledgment

The authors thank Nikos Pitsianis and Xiaobai Sun for helpful discussions. LHL and KY are supported by AFOSR FA9550-13-1-0133, DARPA D15AP00109, NSF IIS 1546413, DMS 1209136, and DMS 1057064. In addition, KY's work is also partially supported by NSF CCF 1017760.

REFERENCES

[1] D. Bini and M. Capovani, "Tensor rank and border rank of band Toeplitz matrices", SIAM J. Comput., 16 (1987), no. 2, pp. 252-258.
[2] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory, Grundlehren der Mathematischen Wissenschaften, 315, SpringerVerlag, Berlin, 1997.
[3] H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans, "Group-theoretic algorithms for matrix multiplication," Proc. IEEE Symp. Found. Comput. Sci. (FOCS), 46 (2005), pp. 379-388.
[4] H. Cohn and C. Umans, "A group-theoretic approach to fast matrix multiplication," , Proc. IEEE Symp. Found. Comput. Sci. (FOCS), 44 (2003), pp. 438-449.
[5] G. Golub and C. Van Loan, Matrix Computations, 4th Ed., John Hopkins University Press, Baltimore, MD, 2013.
[6] F. Le Gall, "Powers of tensors and fast matrix multiplication," Proc. Internat. Symp. Symbolic Algebr. Comput. (ISSAC), 39 (2014), pp. 296303.
[7] V. Strassen, "Gaussian elimination is not optimal," Numer. Math., 13 (1969), pp. 354-356.
[8] V. Strassen, "Rank and optimal computation of generic tensors," Linear Algebra Appl., 52/53 (1983), pp. 645-685.
[9] V. Strassen, "Relative bilinear complexity and matrix multiplication," J. Reine Angew. Math., 375/376 (1987), pp. 406-443.
[10] V. Strassen, "Vermeidung von Divisionen," J. Reine Angew. Math., 264 (1973), pp. 184-202.
[11] C. F. Van Loan, "The ubiquitous Kronecker product," J. Comput. Appl. Math., 123 (2000), no. 1-2, pp. 85-100.
[12] V. V. Williams, "Multiplying matrices in $O\left(n^{2.373}\right)$ time," preprint, (2014), http://theory.stanford.edu/~virgi/matrixmult-f.pdf
[13] S. Winograd, "Some bilinear forms whose multiplicative complexity depends on the field of constants," Math. Systems Theory, 10 (1976/77), no. 2, pp. 169-180.
[14] K. Ye and L.-H. Lim, "Fast structured matrix computations: tensor rank and Cohn-Umans method", preprint, (2015), http://arxiv.org/abs/1601.00292

