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Abstract—The large-system decoupling property of a MAP property of the linear estimators is rigorously justifieddking
estimator Is .StUdIEd when it estlmates the.l.l.d. vectorr from  the central limit theorem and the properties of large random
the observation y = Ax + z with A Dbeing chosen from a yayrices. For nonlinear forms @f(-), however, the analysis

wide range of matrix ensembles, and the noise vectoz being f difficulti . th Ut entri d t i |
i.i.d. and Gaussian. Using the replica method, we show thathe aces dircufties, since the output entries do not linearly

marginal joint distribution of any two corresponding input and decouple. Tanaka noted the similarity between the asyiaptot
output symbols converges to a deterministic distribution viich  analysis of spin glasses|[2] and vector estimators and showe

describes the input-output distribution of a single user sgtem that the performance of a vector estimator in the largeesyst
followed by a MAP estimator. Under the bRSB assumption, the limit can be represented as the macroscopic parameter of a

single user system is a scalar channel with additive noise wehe . | @Bl C 1l | f I "
the noise term is given by the sum of an independent Gaussian spin glass[[B]. Consequently, a class of generally nontinea

random variable and b correlated interference terms. As the €stimators was analyzed using the nonrigorous replicagdeth
bRSB assumption reduces to RS, the interference terms vanish developed in statistical mechanics. Inspired by [3], s&ver

which results in the formerly studied RS decoupling princide.  works employed the replica method to study the performance
of nonlinear estimators in the asymptotic regime considgri
different classes of estimators, system matrices, andperf
A linear vector system with Additive White Gaussian Noisgance measures, e.d.| [4]. Having the decoupling property
(AWGN) is described by of the linear estimators in mind, it was conjectured thas thi
property holds for nonlinear estimators as well. [ [5], Guo
and Verdu justified this conjecture for the postulated Mimim
where the independent and identically distributed ().sdurce Mean Square Error (MMSE) estimator
vectorz, «1, taken from supporX”, is measured by the ran- _
dom system matriA ., and corrupted by an i.i.d. Gaussian g(y) = E{zly, A} (3)
noise vectorzy.;. The observation vectoy is given to the whereA is considered to be i.i.d., and the expectation is taken
vector estimatorg(-) which maps thek-dimensional vector over z due to some postulated posterior distributigp),, 4.
y to ann-dimensional vectott, 1 € X". The entries of¢  For this setup, the authors showed the Replica Symmetry (RS)
are in general correlated due to the coupling imposedAby decoupling principle which says that under the RS assumptio
and g(-). Considering the entries; and z;, 1 < j < n, the marginal joint distribution ofz;,Z;) converges to the
the marginal joint distribution of#;, z;) in the large-system input-output joint distribution of a scalar channel withdititve
limit, i.e. k,n 1 oo, is of interest. To clarify the point, considerGaussian noise followed by a single user MMSE estimator.
the linear estimation, i.eg(y) = GTy for someGyx,, and The RS decoupling principle was further extended to the case
denoteA = [a; ---a,] and G = [g;---g,] with a; andg; with a postulated Maximum-A-Posteriori (MAP) estimator in

I. INTRODUCTION

y=Ax+z (1)

beingk x 1 vectors fori € {1,...,n}. Thus, [6] where Rangan et al. studied
25 = (g]a;) z; + Z (g]ai) z; +g] 2. 2 g(y) = argmin ﬁHy — Av|* + u(v) 4)
i=1,i#j

Wiy H ” N - RN + _ :

One considers the right hand side (r.h.s.)[df (2) as themnefgr s?mg ut|!|ty function”u(-) : R™ — R™ and non negatwe

oo . , S ; real “estimation parameteri. Except for the cases with an
estimation of a single user system with additive impairmen : ; .

. ) . . ' : . LId. system matrix, the decoupling property of nonlinear

in which the impairment term is not necessarily Gaussian arid

L } o . estimators for a larger class of matrix ensembles has not
the system is indexed by For some families oA and G, it : ; .
. . . yet been addressed precisely. [n [7], the authors investiga
is shown that the index dependency of these systems vanisfes . .
. . . . Nis issue partially by studying the support recovery ofrspa
and the impairment term converges to a Gaussian noise tetm . ’
aussian sources. They considered the case of a source vecto

with modified power level when the system dimensions tendh. N .
e . which is first randomly measured by a squared matrix, and
to infinity, e.g. [1]. Thus, one can assume the linear vect&r - .
- en, the measurements are sparsely sampled by an i.iadtybin
vector. Employing a MAP estimator for recovering, the RS

estimator in the large-system limit to decouple into a bahk 0
single user linear estimators operating oweparallel scalar : 7 L ) .
g P Y P decoupling principle was justified for the case in which the

systems with additive Gaussian noise terms. This decagiplin . ) .
measuring matrix belongs to a large set of matrix ensembles.

This work was supported by the German Research FoundatientsEhe Although the C|§.SS of matrices is broadened _il’l [7]1 the tesul
Forschungsgemeinschaft (DFG), under Grant No. MU 3735/2-1 cannot be considered as a complete generalization| of [5] and
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[6], since it is restricted to cases with a sparse Gaussidb) x,x: is an i.i.d. random vector with each element being

source andkn~! < 1. Another issue not investigated in the distributed due tg, over X in which X C R.

literature is the marginal joint distribution under the Rep (c) A, is randomly generated oveék**™ C R**" such

Symmetry Breaking (RSB) assumption. In fact, the previous thatJ = ATA has the eigendecomposition

studies investigated the decoupling principle considgthne J— UDUT @

RS ansatz; however, despite the RS validity in some paaticul -

cases, there are still several cases requiring further RSB where U is an orthogonal Haar distributed matrix and

investigations, e.g[[8]/[9]. D is a diagonal matrix with the empirical eigenvalue
In this paper, we address both the issues and broaden the distribution (density of states) converging ast oo to

scope of the decoupling principle stated|in [6] to both adarg a deterministic distributior¥;.

set of matrix ensembles, and the RSB ansatze. More preciselil) z., is a real i.i.d. zero-mean Gaussian random vector

we justify the decoupling property of the postulated MAP  with variance), i.e., z ~ (0, \oI).

estimator when (e) =, A, andz are independent.
1) A is chosen from a large family of random matrices, |n order to estimate the source vector, the postulated MAP es
2) kn~" takes any non-negative real number, and mator as defined if{4) is employed. The estimators postulate
3) the RS and RSB ansatze are considered. a non-negative estimation parameteand a non-negative util-

For this setup, we show that under all replica ansétze, ihe joity function «(-) which decouples, i.ey(x) = >"" | u(z;).
distribution of (z;, &,) in the large-system limit converges to Defining the estimated vectat := g(y), the conditional
the input-output distribution of a scalar system in whick thdistribution ofZ; givenz; for somej € [1 : n] is denoted by
source symbol is corrupted by effective noise and estimiayed p;(;l). Thus, the marginal joint distribution af; and:; at the

a single user MAP estimator. We determine the effectiveeoigass point(d, v) is written as

term and estimation parameter under the RSB assumption with ,

b steps of breakingbRSB), and show that the noise term Dij e (0,0) = Pz(v)pé(\z) (9v). (8)
under this assumption is given by the sum of an independeffisigering the large-system limit, we define the asymptoti
Gaussian rar_ldom variable ahdorrelated terms. By_reduc'ngconditional distribution of;; givenz; at (9,v) as
the assumption to RS, the correlated terms vanish, and the

noise term becomes Gaussian. Thus, one can consider the pé‘z(ﬂv) = lim p;(‘:) (Ov). 9)
decoupling principle of([6] to be a special case of the more mtoo
general decoupling principle illustrated here. We also suppose the self averaging assumption which says

Notation: We represent vectors, scalars and matrices witlif) Given A of the form [T) withFj, the limit in (9) exists
bold lower case, non-bold lower case, and bold upper case and is almost surely constant in realizationsAof
letters, respectively. The set of real numbers is denote@t,by
andAT and A" indicate the transposed and HermitianAof Ill. GENERAL DECOUPLINGPRINCIPLE
I, is them x m identity matrix, 1,,, is the matrix with all ~ The main contribution of this study is to extend the scope of
entries equal to one, and denotes the Kronecker product. Fothe decoupling principle. To illustrate the result, coesithe
a random variable, p, represents either the Probability Massollowing single user system: the inputis passed through the
Function (PMF) or Probability Density Function (PDF), an¢dhannely = = + z wherez ~ p,,, for the given inputz. The
F, represents the Cumulative Distribution Function (CDFpbservationy is then given to a single user MAP estimator
We denote the expectation overby E., and an expectation with the same utility function as for the vector estimator
over all random variables involved in a given expression hjefined in Sectiofi]l, i.eu(:), and an estimation parameter
E. For sake of compactness, the set of inteddrs..,n} is denoted by)\s. Indicating the conditional distribution of the
denoted by{1 : n], the zero-mean and unit-variance Gaussiasstimator's output: for the given inputz by p;,,, our general
PDF by~x(-), and decoupling principle says that under a set of assumptions

a) the asymptotic conditional distributias’,, is indepen-
/Dt - /w(t)dt. 5 ©@ YMPIOTE ¢ utiar, P
dent of the indexj, and we havepé‘z = Di|a-

Whenever needed, we consider the entries &6 be discrete (b) p-j» and X* are determined in terms of, A, and the
random variables; the results of this paper, however, afellin statistics ofz and A.
generality and directly extend to continuous distribusion  The set of assumptions which yields the validity of the above
statements are enforced within the large-system analydise
Il. PROBLEM FORMULATION following, we briefly illustrate our approach and determihe
Let the system in[(1) satisfy the following constraints.  parameters of the single user system.
(a) The number of observatiofds a deterministic sequence
of n such that IV. DERIVATION OF GENERAL DECOUPLING PRINCIPLE
Eo1 Before illustrating our derivation approach, let us define t
lim = = - < oo. (6)  R-transform. For a random variabte the Stieltjes transform



over the upper half complex plane is defineda$s) = E[t— continuity” holds which means that the function analytigal
s]~t. Denoting the inverse with respect to (w.r.t.) compositiooontinues from the set of integers to the real axis (or at lzas
with G;*(-), the R-transform isR;(w) = G;'(w) —w™' vicinity of zero), and 2) the limits are exchangeable. Foitay
such thatlim, o R:(w) = Et¢. The definition also extendsthe above prescription, we consider the first assumption and
to matrix arguments. Assuming a matiM,, «,, to have the find E [Z(3,h)]" which for an integer reduces to
eigendecompositioM = U diag[\1,...,A,] UL, Ry(M) is m
then defined a&, (M) = U diag[R;(\1),...,Re(Aa)] U™ E[[ S e Plasla@va ezl tualsmni (v (15)

The derivation of the general decoupling principle is based a=1 v.

on the moment method. To clarify the approach, consider theorder to evaluaté (15), one can initially take the expimta
non-negative integers and ¢, and define the joint momentoverz andA. Due to the lack of space, we leave the details for
M7} = Edkat, for j € [1: n]. After evaluating the limit of the extended version of the manuscript; however, we briefly
M-i(") asn 1 oo, we show that for alk and/ the asymptotic explain the strategy. After taking the expectations, arfohuhey
joint moment is equivalent to the corresponding joint motmethe m x m “replica correlation matrix'Q such that{Q]., =

of the single user system. Consequently, using the unigsene ' (z — v,)" (x — v;), (IB) is given in terms of) as

of the mapping from the set of integer moments’ sequences m n n

to the set of measures, under a set of conditions investigate B2 M7 =B /e FTVerVaq (16)
in the classical moment problern |10], we conclude that both ' m . N
couples(#;, r;) and(#,z) have a same distribution. We starl}N'th 1Q = [Tab=1 d[Q]“b'zT - %Im - B%Im’ and the
with evaluating the limit oM/?). The evaluation is based onintegral being taken ovék™ . For a givene, ¢" (@ measures
the nonrigorous method of replicas developed in the thedfif Probability weight of the set of replicagy, } 52, in which
of spin glasses [2], and accepted as a mathematical tooltjf cOrrelation matrix i€Q; moreoverg(.) is defined as

information theory. To do so, define the “weighted average _ A
joint moment” over the index s&V C [1: n] as G(M) = o Tr{MRy (=2wM)}dw + e (17)

n)/a 1 A hereTr{-} denotes the trac®;(-) is the R-transform w.r.t.
MY (&) = E— kol 10) W J
ke (&) |W| Z Twbw (10) Fj, ande,, tends to zero as 1 co. Here, one can employ the
) o ~ Laplace method of integration and replace the r.h.s[of (16)
SettingW = [5 : j + nn] for somer € (0, 1], the asymptotic i, the Jarge-system limit with the integrand at its saddl@po

weW

joint moment ofjth entry can be written as multiplied by some bounded coefficieKt,; thus, asn 1 co
My, = Jim ML} = Jim Tin M (@) (11) E [2(8,h)]" = Kpe "[9TA-T(Q)] (18)

Thus, the evaluation of the asymptotic moment reduces abthe saddle poin®. Substituting[I8) in[{14), we have
taking the limits in the r.h.s. of (11) which needs the wegght > Mg,:gm] (v x)E(Q, x, v B)

average joint moment if_(10) to be explicitly calculated dor Mi , = lim lim lim E _ (19)
arbitrary integem. Alternatively, we can define the function T 0 Broomio > €(Q,x,v; B)
Z(B,h) = Z6_5[2]7||y—Av||2+u(v)]+hnMyx([")(v;w). (12) wherex,,x1 = [z,...,z]T with z ~ p,, vinx1 € X™ and
v £(Q,x,v;B) = e~B—V)TTRs(=28TQ)(x—v)-pu(v)  (2()

ith X™. Noting thatz = ith g(-) defined i , i . o :
with ve oting thaté = g(y) with g(-) defined in () Here, one needs to find the saddle point which is not a feasible

MY (2: &) = lim lim 19 E log Z(B, h). (13) task in general. The strategy for pursuing the analysis is to
’ Btoo hi0 n Oh restrict the saddle point, i.€, to be of a special form, and find
The logarithmic expectation in the r.h.s. bBf{13) is not siali the solution within the restricted set of matrices. This reve
task to do, and therefore, one bypasses the direct evatuafi® additional assumption such as the RS or RSB assumption
using the Riesz equality which for any random variatd¢ates arises. It is clear that these restrictions do not lead u$éo t

E logt = lim,, o m ™! log Et™. Thus, regardind{11) anf {13)correct solution in general, and therefore, one needs temwid
m the set of replica correlation matrices to find a more aceurat
1.0 logE [Z(3,h)]

M , = lim lim lim lim lim (14) solution. In the sequel, we consider different structures o
T ntoo nl0 freo k0 mlo n Ok m the correlation matrix and find the replica ansatz underehos

for W = [j : j + nn]. In (@), we face two major difficulties: assumptions. However, consideririg](19), it is observed tha
1) evaluating the real moments i.&[Z (5, h)]™, and 2) tak- ‘regardless of the structure” o, the joint momenty , is
ing the limits in the order stated. Basic analytical methodgdependent of the index even before taking the limiy | 0.
fail to address these challenges properly, and therefoee, Wherefore, employing the moment method, we conclude
invoke the nonrigorous method of replicas. The replica meth
suggests to evaluate the moment for an arbitrary integas Proposition 1 Let the vector system satisfy the constraints
an analytic function inm; then, assume that 1) the “replicain Sectior1l; moreover, assume the replica continuity ttdho
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Fig. 1: The decoupled scalar system under the RS ansatz. Fig. 2: The decoupled scalar system under the 1RSB ansatz.

and the limits in(14) to exist and exchange. Thqﬁ‘w, % X % matrix. In this case, a new structure for the correlation
defined in(@), does not depend on the indgx matrix is obtained by setting the diagonal blocks toQfeand

Propositior L states a more general form of the decouplithie off-diagonal blocks to bel = for somek. In fact, the new
principle studied in previous works. In fact, the only asgam set of correlation matrices is constructed by imposing tfe R
tions which need to be satisfied are the replica continuity astructure block-wisely usin@® andnl% as basic blocks. The
the exchange of limits; and, no structure of the correlatidRSB scheme can be recursively iterated: one can set the basic
matrix is imposed. However, the decoupled scalar systers detructureQ® and find the new structui@®; then, by takingQ®
depend on the structure imposed @n To find the decoupled as the new basic structure, a wider set of correlation metric
single user system, we start with the most primary structuisefound. Parisi consider®® to have the RS structure.

which is imposed by considering the RS assumption. 1RSB Assumption: Using the RSB scheme with one step of
RS Assumption; Here, we restrict the search to the set dferation, the structure of the correlation matrix is fouasl
parameterized matrices which are of the form Q =gl +plos @12 + %Im (26)
A X
=ql,, + =1,,. 21 .
Q=4 B (21) for somey, p, q, u € RT. Therefore, the joint moment reads
for somey, ¢ € R*. Substituting in[(IB), we have Mi,g —E /g’“xde(zl)Dzo 27)
M/, =E / 2Dz 22
e & (@2) whereg = gmap[(y); A, u] With y = 2 + \/A32z0 + /A 21,
whereg = gmapl(y); A%, u] with y = z + /X5 2 and anddF(z1) = ADz; with A = [[ ADz]"'A and
~ o A T (y—e)2 — (y—2)2] (e
Smap[(y); A°, u] = argmm {21\5( — )2 —|—u(v)} . (23) A=c¢ ’{QAS [(v—8)*~(v=2)"]+ (g)}. (28)
Moreover,\3 and X* are defined as Moreover, by denoting = x + uip, we have
-2 9 X _ _
%= [R5 T ox MR (-0} e NS ?-3] 5 {“09 da+ MlRa(=5)} . (292)
A 8)( A
-1 _A _ v —1
X =[Rs(=3)] A (24p) N = [R5 } Ra(-) = Ra=5)[w s (@90)
s _ X\t
whereq = E [[g — z]*Dz, andy satisfies A= {RJ(_X)} A (29¢)
VXX = X°E /[g — 2]2Dz. (25) Here,q=E [lg — z]?dF(z1)Dzy, and x andp satisfy
)\S
(23) describes a single user MAP estimator with the postdlat X+ pp = \//\_BE /[g — @]z0dF(21)Dzo (30a)
utility function u(-) and estimation paramet@f. Thus, \s
Proposition 2 Let the assumptions in Propositigh 1, as well X+ pg = \//\—SE /[g — x]21dF(21)Dzo (30b)
1

as the RS assumption hold, and consider the single usensyste

in Figure[d with\§ and \* as defined if24a)and (24K) Then for somey being a solution to the fixed point equation

forj e[l :n], pélm as defined if[@) describes the conditional xS xS 1 [ w

distribution of z givenz in Figure[ wheregm.p[(-); X°, u] is e [ )\sq - M)\serp} 2)\/ RJ(—X)dw =

a single user MAP defined i23), andp.,(z|z) = 7(2). — (o 5 31
The results in the literature have always considered the RS = (212, 20) + D (pzy [I) (31)

ansatz, and can be recovered as special cases of Prop@sitiamherel(-; -) and Dk, (-||-) indicate the mutual information and

E.g., results ofi[6] are derived by settifiy (w) = (1—1w)~!. the so-called “Kullback-Leibler” distance respectiveind the

The RS ansatz, however, does not provide a valid solutiaandom variableSz, 29, 21) ~ pz(z)7(20) [A7(z1)]. Thus,

in general. Parisi in [11] introduced the RSB scheme whiane can conclude the following proposition.

widens the restricted set of saddle point matrices recelssiv

To illustrate the RSB scheme, I§® be a basic structure for Proposition 3 Let the assumptions in Propositibh 1, as well

the replica correlation matrix; moreover, assumeto be a as the 1RSB assumption hold, and consider the single user

multiple of an integek. Then, the correlation matrix can besystem in Figurgl2 with§, A\; and \* as defined irf29a)(29d)

grouped as & x £ matrix of blocks with each block being anThen, forj € [1 : n], pj|m in (@) is the conditional distribution

T
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Fig. 3: The decoupled scalar system under 4R&B ansatz.

of & givenx in Figure[2 wheregmap[(+); A°, u] is a single user

MAP estimator defined i23), p., |, (20|z) = 7(20), and
Pz |z,z20 (21|SC, ZO) = Aﬂ-(zl) (32)

with A = [[ ADz;]~'A and A defined in(28).

reduces to the RS ansatz. Thus, one can consider the dedouple
system under the RS ansatz to be a special case of the more
general decoupled system given in Figlile 3.

V. CONCLUSION

Decoupling seems to be a generic property of MAP estima-
tors, as Propositidd 1 justifies it for any source distribotand
a wide range of matrix ensembles. The validity of the result
relies only on replica continuity; however, the equivalgingle
user system depends on the structure of the replica caoomlat
matrix. Recent results in statistical mechanics have shban
failures in finding the exact solution via the replica method

Here, the decoupled system differs from the system obtain@@ mainly caused by the assumed structure, and not replica
under the RS ansatz within one additive tap which is inteigiv continuity. Inspired by the Sherrington-Kirkpatrick moas
approximating the interference caused by the couplingatn f SPin glasses, for which thecRSB ansatz has been proved
the RS ansatz assumes the coupling caused by the sysi@rRe correct, one may consider Figlie 3 to be the general
matrix and vector estimator to vanish as the system tendsd@coupled system as T co. However, in many cases an
its large limits; however, the 1RSB solution takes the cimgpl &CCurate approximation might be prowded by a finite number
into account and approximates it with one tap of interfeeenc®f RSB steps. An extreme case is the RS ansatz where all
This approximation may become more accurate, if we let tﬁl@e interference terms in the RSB decoupled system become
correlation matrix to be chosen from a larger set of matricd§dependent and Gaussian. Thus, one concludes that the pre-

bRSB Assumption: Iterating the RSB scheme withsteps,
b

A X
Q:q1m+2pyl% ® 1y + 31 (33)
for somey, ¢, {pv, 11, }%_; € R*. Thus, we have
b
ML, = E / ¢"z* T dF(z,)Dz (34)

v=1

whereg = gmap[(y); A°, u] with y = = + Zg:o A8z, and
dF(z,) = A,Dz,. Forv € [1:b], A, is a function ofz and

{ZC}Z:o- Due to the page limitations, we leave the expressions

of s, {\$}°_, and{A,}’_, for the extended version.

vious results in the literature were both special and ex¢rem
cases of the RSB decoupled system. The RSB decoupled
system raises several issues which require further investi
gations. For example, nothing is known about the distance
between the conditional distributions of the interferetezens

and independent Gaussian distributions in probabilitycepa
The distance variation w.r.t. the number of interferengesta
can then describe the improvement caused by increasing the
number of RSB steps.
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