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Abstract—The large-system decoupling property of a MAP
estimator is studied when it estimates the i.i.d. vectorx from
the observation y = Ax + z with A being chosen from a
wide range of matrix ensembles, and the noise vectorz being
i.i.d. and Gaussian. Using the replica method, we show that the
marginal joint distribution of any two corresponding input and
output symbols converges to a deterministic distribution which
describes the input-output distribution of a single user system
followed by a MAP estimator. Under the bRSB assumption, the
single user system is a scalar channel with additive noise where
the noise term is given by the sum of an independent Gaussian
random variable and b correlated interference terms. As the
bRSB assumption reduces to RS, the interference terms vanish
which results in the formerly studied RS decoupling principle.

I. I NTRODUCTION

A linear vector system with Additive White Gaussian Noise
(AWGN) is described by

y = Ax+ z (1)

where the independent and identically distributed (i.i.d.) source
vectorxn×1, taken from supportXn, is measured by the ran-
dom system matrixAk×n and corrupted by an i.i.d. Gaussian
noise vectorzk×1. The observation vectory is given to the
vector estimatorg(·) which maps thek-dimensional vector
y to ann-dimensional vector̂xn×1 ∈ Xn. The entries of̂x
are in general correlated due to the coupling imposed byA

and g(·). Considering the entriesxj and x̂j , 1 ≤ j ≤ n,
the marginal joint distribution of(x̂j , xj) in the large-system
limit, i.e. k, n ↑ ∞, is of interest. To clarify the point, consider
the linear estimation, i.e.g(y) = GTy for someGk×n, and
denoteA = [a1 · · · an] andG = [g1 · · ·gn] with ai and gi

beingk × 1 vectors fori ∈ {1, . . . , n}. Thus,

x̂j =
(

gT
j aj

)

xj +

n
∑

i=1,i6=j

(

gT
j ai

)

xi + gT
j z. (2)

One considers the right hand side (r.h.s.) of (2) as the linear
estimation of a single user system with additive impairment
in which the impairment term is not necessarily Gaussian and
the system is indexed byj. For some families ofA andG, it
is shown that the index dependency of these systems vanishes
and the impairment term converges to a Gaussian noise term
with modified power level when the system dimensions tend
to infinity, e.g. [1]. Thus, one can assume the linear vector
estimator in the large-system limit to decouple into a bank of
single user linear estimators operating overn parallel scalar
systems with additive Gaussian noise terms. This decoupling
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property of the linear estimators is rigorously justified invoking
the central limit theorem and the properties of large random
matrices. For nonlinear forms ofg(·), however, the analysis
faces difficulties, since the output entries do not linearly
decouple. Tanaka noted the similarity between the asymptotic
analysis of spin glasses [2] and vector estimators and showed
that the performance of a vector estimator in the large-system
limit can be represented as the macroscopic parameter of a
spin glass [3]. Consequently, a class of generally nonlinear
estimators was analyzed using the nonrigorous replica method
developed in statistical mechanics. Inspired by [3], several
works employed the replica method to study the performance
of nonlinear estimators in the asymptotic regime considering
different classes of estimators, system matrices, and perfor-
mance measures, e.g. [4]. Having the decoupling property
of the linear estimators in mind, it was conjectured that this
property holds for nonlinear estimators as well. In [5], Guo
and Verdú justified this conjecture for the postulated Minimum
Mean Square Error (MMSE) estimator

g(y) = E{x|y,A} (3)

whereA is considered to be i.i.d., and the expectation is taken
over x due to some postulated posterior distributionqx|y,A.
For this setup, the authors showed the Replica Symmetry (RS)
decoupling principle which says that under the RS assumption
the marginal joint distribution of(xj , x̂j) converges to the
input-output joint distribution of a scalar channel with additive
Gaussian noise followed by a single user MMSE estimator.
The RS decoupling principle was further extended to the case
with a postulated Maximum-A-Posteriori (MAP) estimator in
[6] where Rangan et al. studied

g(y) = argmin
v

[

1

2λ
‖y −Av‖2 + u(v)

]

(4)

for some “utility function”u(·) : Rn → R

+ and non-negative
real “estimation parameter”λ. Except for the cases with an
i.i.d. system matrix, the decoupling property of nonlinear
estimators for a larger class of matrix ensembles has not
yet been addressed precisely. In [7], the authors investigated
this issue partially by studying the support recovery of sparse
Gaussian sources. They considered the case of a source vector
which is first randomly measured by a squared matrix, and
then, the measurements are sparsely sampled by an i.i.d. binary
vector. Employing a MAP estimator for recovering, the RS
decoupling principle was justified for the case in which the
measuring matrix belongs to a large set of matrix ensembles.
Although the class of matrices is broadened in [7], the result
cannot be considered as a complete generalization of [5] and
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[6], since it is restricted to cases with a sparse Gaussian
source andkn−1 ≤ 1. Another issue not investigated in the
literature is the marginal joint distribution under the Replica
Symmetry Breaking (RSB) assumption. In fact, the previous
studies investigated the decoupling principle considering the
RS ansatz; however, despite the RS validity in some particular
cases, there are still several cases requiring further RSB
investigations, e.g. [8], [9].

In this paper, we address both the issues and broaden the
scope of the decoupling principle stated in [6] to both a larger
set of matrix ensembles, and the RSB ansätze. More precisely,
we justify the decoupling property of the postulated MAP
estimator when

1) A is chosen from a large family of random matrices,
2) kn−1 takes any non-negative real number, and
3) the RS and RSB ansätze are considered.

For this setup, we show that under all replica ansätze, the joint
distribution of (xj , x̂j) in the large-system limit converges to
the input-output distribution of a scalar system in which the
source symbol is corrupted by effective noise and estimatedby
a single user MAP estimator. We determine the effective noise
term and estimation parameter under the RSB assumption with
b steps of breaking (bRSB), and show that the noise term
under this assumption is given by the sum of an independent
Gaussian random variable andb correlated terms. By reducing
the assumption to RS, the correlated terms vanish, and the
noise term becomes Gaussian. Thus, one can consider the
decoupling principle of [6] to be a special case of the more
general decoupling principle illustrated here.

Notation: We represent vectors, scalars and matrices with
bold lower case, non-bold lower case, and bold upper case
letters, respectively. The set of real numbers is denoted byR,
andAT andAH indicate the transposed and Hermitian ofA.
Im is them × m identity matrix,1m is the matrix with all
entries equal to one, and⊗ denotes the Kronecker product. For
a random variablex, px represents either the Probability Mass
Function (PMF) or Probability Density Function (PDF), and
Fx represents the Cumulative Distribution Function (CDF).
We denote the expectation overx by Ex, and an expectation
over all random variables involved in a given expression by
E. For sake of compactness, the set of integers{1, . . . , n} is
denoted by[1 : n], the zero-mean and unit-variance Gaussian
PDF byπ(·), and

∫

Dt :=

∫

π(t)dt. (5)

Whenever needed, we consider the entries ofx to be discrete
random variables; the results of this paper, however, are infull
generality and directly extend to continuous distributions.

II. PROBLEM FORMULATION

Let the system in (1) satisfy the following constraints.

(a) The number of observationsk is a deterministic sequence
of n such that

lim
n↑∞

k

n
=

1

r
< ∞. (6)

(b) xn×1 is an i.i.d. random vector with each element being
distributed due topx overX in whichX ⊆ R.

(c) Ak×n is randomly generated overAk×n ⊆ Rk×n, such
thatJ = ATA has the eigendecomposition

J = UDUT (7)

whereU is an orthogonal Haar distributed matrix and
D is a diagonal matrix with the empirical eigenvalue
distribution (density of states) converging asn ↑ ∞ to
a deterministic distributionFJ.

(d) zk×1 is a real i.i.d. zero-mean Gaussian random vector
with varianceλ0, i.e., z ∼ N (0, λ0Ik).

(e) x, A, andz are independent.

In order to estimate the source vector, the postulated MAP esti-
mator as defined in (4) is employed. The estimators postulates
a non-negative estimation parameterλ and a non-negative util-
ity function u(·) which decouples, i.e.,u(x) =

∑n
i=1 u(xi).

Defining the estimated vector̂x := g(y), the conditional
distribution of x̂j givenxj for somej ∈ [1 : n] is denoted by
p
j(n)
x̂|x . Thus, the marginal joint distribution ofxj andx̂j at the

mass point(v̂, v) is written as

px̂j ,xj
(v̂, v) = px(v)p

j(n)
x̂|x (v̂|v). (8)

Considering the large-system limit, we define the asymptotic
conditional distribution of̂xj given xj at (v̂, v) as

pj
x̂|x(v̂|v) := lim

n↑∞
p
j(n)
x̂|x (v̂|v). (9)

We also suppose the self averaging assumption which says

(f) Given A of the form (7) withFJ, the limit in (9) exists
and is almost surely constant in realizations ofA.

III. G ENERAL DECOUPLING PRINCIPLE

The main contribution of this study is to extend the scope of
the decoupling principle. To illustrate the result, consider the
following single user system: the inputx is passed through the
channely = x+ z wherez ∼ pz|x for the given inputx. The
observationy is then given to a single user MAP estimator
with the same utility function as for the vector estimator
defined in Section II, i.e.u(·), and an estimation parameter
denoted byλs. Indicating the conditional distribution of the
estimator’s output̂x for the given inputx by px̂|x, our general
decoupling principle says that under a set of assumptions

(a) the asymptotic conditional distributionpj
x̂|x is indepen-

dent of the indexj, and we havepj
x̂|x = px̂|x.

(b) pz|x and λs are determined in terms ofλ, λ0 and the
statistics ofx andA.

The set of assumptions which yields the validity of the above
statements are enforced within the large-system analysis.In the
following, we briefly illustrate our approach and determinethe
parameters of the single user system.

IV. D ERIVATION OF GENERAL DECOUPLINGPRINCIPLE

Before illustrating our derivation approach, let us define the
R-transform. For a random variablet, the Stieltjes transform



over the upper half complex plane is defined asGt(s) = E [t−
s]−1. Denoting the inverse with respect to (w.r.t.) composition
with G−1

t (·), the R-transform isRt(ω) = G−1
t (ω) − ω−1

such thatlimω↓0 Rt(ω) = E t. The definition also extends
to matrix arguments. Assuming a matrixMn×n to have the
eigendecompositionM = U diag[λ1, . . . , λn]U

−1, Rt(M) is
then defined asRt(M) = U diag[Rt(λ1), . . . ,Rt(λn)] U

−1.

The derivation of the general decoupling principle is based
on the moment method. To clarify the approach, consider the
non-negative integersk and ℓ, and define the joint moment
M

j(n)
k,ℓ = E x̂k

jx
ℓ
j , for j ∈ [1 : n]. After evaluating the limit of

M
j(n)
k,ℓ asn ↑ ∞, we show that for allk andℓ the asymptotic

joint moment is equivalent to the corresponding joint moment
of the single user system. Consequently, using the uniqueness
of the mapping from the set of integer moments’ sequences
to the set of measures, under a set of conditions investigated
in the classical moment problem [10], we conclude that both
couples(x̂j , xj) and(x̂, x) have a same distribution. We start
with evaluating the limit ofMj(n)

k,ℓ . The evaluation is based on
the nonrigorous method of replicas developed in the theory
of spin glasses [2], and accepted as a mathematical tool in
information theory. To do so, define the “weighted average
joint moment” over the index setW ⊂ [1 : n] as

M
W(n)
k,ℓ (x̂;x) := E

1

|W|

∑

w∈W

x̂k
wx

ℓ
w. (10)

SettingW = [j : j + nη] for someη ∈ (0, 1], the asymptotic
joint moment ofjth entry can be written as

M
j
k,ℓ

:= lim
n↑∞

M
j(n)
k,ℓ = lim

n↑∞
lim
η↓0

M
W(n)
k,ℓ (x̂;x). (11)

Thus, the evaluation of the asymptotic moment reduces to
taking the limits in the r.h.s. of (11) which needs the weighted
average joint moment in (10) to be explicitly calculated foran
arbitrary integern. Alternatively, we can define the function

Z(β, h) =
∑

v

e−β[ 1
2λ‖y−Av‖2+u(v)]+hnM

W(n)
k,ℓ

(v;x). (12)

with v ∈ Xn. Noting thatx̂ = g(y) with g(·) defined in (4),

M
W(n)
k,ℓ (x̂;x) = lim

β↑∞
lim
h↓0

1

n

∂

∂h
E logZ(β, h). (13)

The logarithmic expectation in the r.h.s. of (13) is not a trivial
task to do, and therefore, one bypasses the direct evaluation
using the Riesz equality which for any random variablet states
E log t = limm↓0 m

−1 logE tm. Thus, regarding (11) and (13)

M
j
k,ℓ = lim

n↑∞
lim
η↓0

lim
β↑∞

lim
h↓0

lim
m↓0

1

n

∂

∂h

logE [Z(β, h)]m

m
(14)

for W = [j : j + nη]. In (14), we face two major difficulties:
1) evaluating the real moments i.e.,E [Z(β, h)]

m, and 2) tak-
ing the limits in the order stated. Basic analytical methods
fail to address these challenges properly, and therefore, we
invoke the nonrigorous method of replicas. The replica method
suggests to evaluate the moment for an arbitrary integerm as
an analytic function inm; then, assume that 1) the “replica

continuity” holds which means that the function analytically
continues from the set of integers to the real axis (or at least a
vicinity of zero), and 2) the limits are exchangeable. Following
the above prescription, we consider the first assumption and
find E [Z(β, h)]m which for an integerm reduces to

E

m
∏

a=1

∑

va

e−β[ 1
2λ‖A(x−va)+z‖2+u(va)]+hnM

W(n)
k,ℓ

(va;x). (15)

In order to evaluate (15), one can initially take the expectation
overz andA. Due to the lack of space, we leave the details for
the extended version of the manuscript; however, we briefly
explain the strategy. After taking the expectations, and defining
the m×m “replica correlation matrix”Q such that[Q]ab =
n−1(x− va)

T(x− vb), (15) is given in terms ofQ as

E [Z(β, h)]
m

= Ex

∫

e−nG(TQ)enI(Q)dQ (16)

with dQ :=
∏m

a,b=1 d[Q]ab, T := 1
2λIm − β λ0

2λ2 1m, and the

integral being taken overRm2

. For a givenx, enI(Q) measures
the probability weight of the set of replicas,{va}ma=1, in which
the correlation matrix isQ; moreover,G(·) is defined as

G(M) =

∫ β

0

Tr{MRJ(−2ωM)}dω + ǫn (17)

whereTr{·} denotes the trace,RJ(·) is theR-transform w.r.t.
FJ, andǫn tends to zero asn ↑ ∞. Here, one can employ the
Laplace method of integration and replace the r.h.s. of (16)
in the large-system limit with the integrand at its saddle point
multiplied by some bounded coefficientKn; thus, asn ↑ ∞

E [Z(β, h)]m
.
= Kne

−n[G(TQ̃)−I(Q̃)] (18)

at the saddle point̃Q. Substituting (18) in (14), we have

M
j
k,ℓ = lim

η↓0
lim
β↑∞

lim
m↓0

E

∑

v M
[1:m]
k,ℓ (v;x)E(Q̃,x,v;β)
∑

v E(Q̃,x,v;β)
(19)

wherexm×1 = [x, . . . , x]T with x ∼ px, vm×1 ∈ Xm and

E(Q̃,x,v;β) = e−β(x−v)TTRJ(−2βTQ̃)(x−v)−βu(v). (20)

Here, one needs to find the saddle point which is not a feasible
task in general. The strategy for pursuing the analysis is to
restrict the saddle point, i.e.̃Q, to be of a special form, and find
the solution within the restricted set of matrices. This is where
an additional assumption such as the RS or RSB assumption
arises. It is clear that these restrictions do not lead us to the
correct solution in general, and therefore, one needs to widen
the set of replica correlation matrices to find a more accurate
solution. In the sequel, we consider different structures on
the correlation matrix and find the replica ansatz under those
assumptions. However, considering (19), it is observed that
“regardless of the structure” oñQ, the joint momentMj

k,ℓ is
independent of the indexj even before taking the limitη ↓ 0.
Therefore, employing the moment method, we conclude

Proposition 1 Let the vector system satisfy the constraints
in Section II; moreover, assume the replica continuity to hold,



+ gmap[(·);λs, u]
x y x̂

√

λs
0
z

Fig. 1: The decoupled scalar system under the RS ansatz.

and the limits in(14) to exist and exchange. Thenpj
x̂|x, as

defined in(9), does not depend on the indexj.
Proposition 1 states a more general form of the decoupling

principle studied in previous works. In fact, the only assump-
tions which need to be satisfied are the replica continuity and
the exchange of limits; and, no structure of the correlation
matrix is imposed. However, the decoupled scalar system does
depend on the structure imposed onQ̃. To find the decoupled
single user system, we start with the most primary structure
which is imposed by considering the RS assumption.
RS Assumption: Here, we restrict the search to the set of
parameterized matrices which are of the form

Q̃ = q1m +
χ

β
Im. (21)

for someχ, q ∈ R+. Substituting in (19), we have

M
j
k,ℓ = E

∫

gkxℓDz (22)

whereg := gmap[(y);λ
s, u] with y = x+

√

λs
0z and

gmap[(y);λ
s, u] = argmin

v

[

1

2λs
(y − v)2 + u(v)

]

. (23)

Moreover,λs
0 andλs are defined as

λs
0 =

[

RJ(−
χ

λ
)
]−2 ∂

∂χ

{

[λ0χ− λq] RJ(−
χ

λ
)
}

(24a)

λs =
[

RJ(−
χ

λ
)
]−1

λ (24b)

whereq = E
∫

[g − x]2Dz, andχ satisfies
√

λs
0χ = λs

E

∫

[g − x]zDz. (25)

(23) describes a single user MAP estimator with the postulated
utility function u(·) and estimation parameterλs. Thus,
Proposition 2 Let the assumptions in Proposition 1, as well
as the RS assumption hold, and consider the single user system
in Figure 1 withλs

0 andλs as defined in(24a)and (24b). Then
for j ∈ [1 : n], pj

x̂|x as defined in(9) describes the conditional
distribution of x̂ givenx in Figure 1 wheregmap[(·);λs, u] is
a single user MAP defined in(23), andpz|x(z|x) = π(z).

The results in the literature have always considered the RS
ansatz, and can be recovered as special cases of Proposition2.
E.g., results of [6] are derived by settingRJ(ω) = (1−rω)−1.
The RS ansatz, however, does not provide a valid solution,
in general. Parisi in [11] introduced the RSB scheme which
widens the restricted set of saddle point matrices recursively.
To illustrate the RSB scheme, letQb be a basic structure for
the replica correlation matrix; moreover, assumem to be a
multiple of an integerξ. Then, the correlation matrix can be
grouped as aξ× ξ matrix of blocks with each block being an

+ + gmap[(·);λs, u]
x y x̂

√

λs
0
z0

√

λs
1
z1

Fig. 2: The decoupled scalar system under the 1RSB ansatz.

m
ξ
× m

ξ
matrix. In this case, a new structure for the correlation

matrix is obtained by setting the diagonal blocks to beQb and
the off-diagonal blocks to beκ1m

ξ
for someκ. In fact, the new

set of correlation matrices is constructed by imposing the RS
structure block-wisely usingQb andκ1m

ξ
as basic blocks. The

RSB scheme can be recursively iterated: one can set the basic
structureQb and find the new structureQb

1; then, by takingQb
1

as the new basic structure, a wider set of correlation matrices
is found. Parisi considersQb to have the RS structure.
1RSB Assumption:Using the RSB scheme with one step of
iteration, the structure of the correlation matrix is foundas

Q̃ = q1m + pImβ
µ

⊗ 1µ
β
+

χ

β
Im (26)

for someχ, p, q, µ ∈ R+. Therefore, the joint moment reads

M
j
k,ℓ = E

∫

gkxℓdF(z1)Dz0 (27)

whereg := gmap[(y);λ
s, u] with y = x +

√

λs
0z0 +

√

λs
1z1,

anddF(z1) = ΛDz1 with Λ = [
∫

Λ̃Dz1]
−1Λ̃ and

Λ̃ = e
−µ

{

1
2λs [(y−g)2−(y−x)2]+u(g)

}

. (28)

Moreover, by denoting̺ := χ+ µp, we have

λs
0 =

[

RJ(−
χ

λ
)
]−2 ∂

∂̺

{

[λ0̺− λq + λp] RJ(−
̺

λ
)
}

, (29a)

λs
1 =

[

RJ(−
χ

λ
)
]−2 [

RJ(−
χ

λ
)− RJ(−

̺

λ
)
]

λµ−1, (29b)

λs =
[

RJ(−
χ

λ
)
]−1

λ. (29c)

Here,q = E
∫

[g − x]2dF(z1)Dz0, andχ andp satisfy

χ+ µp =
λs

√

λs
0

E

∫

[g − x]z0dF(z1)Dz0 (30a)

χ+ µq =
λs

√

λs
1

E

∫

[g − x]z1dF(z1)Dz0 (30b)

for someµ being a solution to the fixed point equation

µ

2λs

[

µ
λs
1

λs
q − µ

λs
1

λs
p+ p

]

−
1

2λ

∫ ̺

χ

RJ(−
ω

λ
)dω =

= I(z1;x, z0) + DKL(pz1‖π) (31)

whereI(·; ·) andDKL(·‖·) indicate the mutual information and
the so-called “Kullback-Leibler” distance respectively,and the
random variables(x, z0, z1) ∼ px(x)π(z0) [Λπ(z1)]. Thus,
one can conclude the following proposition.

Proposition 3 Let the assumptions in Proposition 1, as well
as the 1RSB assumption hold, and consider the single user
system in Figure 2 withλs

0, λs
1 andλs as defined in(29a)-(29c).

Then, forj ∈ [1 : n], pj
x̂|x in (9) is the conditional distribution



+ + + gmap[(·);λs, u]
x y x̂

√

λs
0
z0

√

λs
1
z1

√

λs
bzb

Fig. 3: The decoupled scalar system under thebRSB ansatz.

of x̂ givenx in Figure 2 wheregmap[(·);λs, u] is a single user
MAP estimator defined in(23), pz0|x(z0|x) = π(z0), and

pz1|x,z0(z1|x, z0) = Λπ(z1) (32)

with Λ = [
∫

Λ̃Dz1]
−1Λ̃ and Λ̃ defined in(28).

Here, the decoupled system differs from the system obtained
under the RS ansatz within one additive tap which is intuitively
approximating the interference caused by the coupling. In fact,
the RS ansatz assumes the coupling caused by the system
matrix and vector estimator to vanish as the system tends to
its large limits; however, the 1RSB solution takes the coupling
into account and approximates it with one tap of interference.
This approximation may become more accurate, if we let the
correlation matrix to be chosen from a larger set of matrices.
bRSB Assumption: Iterating the RSB scheme withb steps,

Q̃ = q1m +

b
∑

ν=1

pνImβ
µν

⊗ 1µν
β

+
χ

β
Im (33)

for someχ, q, {pν , µν}bν=1 ∈ R+. Thus, we have

M
j
k,ℓ = E

∫

gkxℓ

b
∏

ν=1

dF(zν)Dz0 (34)

whereg := gmap[(y);λ
s, u] with y = x +

∑b
ν=0

√

λs
νzν , and

dF(zν) = ΛνDzν . For ν ∈ [1 : b], Λν is a function ofx and
{zζ}νζ=0. Due to the page limitations, we leave the expressions
of λs, {λs

ν}
b
ν=0 and{Λν}bν=1 for the extended version.

Proposition 4 Let the assumptions in Proposition 1, and
the bRSB assumption hold; moreover, consider the single user
system in Figure 3. Then, forj ∈ [1 : n], pj

x̂|x as defined in(9)
describes the conditional distribution ofx̂ givenx in Figure 3
wheregmap[(·);λ

s, u] is a single user MAP estimator defined
in (23), pz0|x(z0|x) = π(z0), and

pzν |x,{zζ}ν−1
ζ=0

(zν |x, {zζ}
ν−1
ζ=0) = Λνπ(zν) (35)

for ν ∈ [1 : b]. The factorΛν depends onx and{zζ}νζ=0, and
the coefficientsλs and {λs

ν}
b
ν=0 are coupled due to a set of

fixed point equations and bounded asb ↑ ∞.

Considering thebRSB ansatz, one concludes that the ansatz
extends the decoupled system in Figure 2 by approximating
the coupling interference with more taps. The approximation,
however, stops to improve at some stepb∗, if Λν = 1 for any
integerν > b∗. The extreme case is when for anyν ∈ [1 : b] in
thebRSB ansatzΛν = 1. Here, the random variables{zν}bν=1

in Figure 3 become independent Gaussian, and therefore, the
decoupled system reduces to Figure 1. In fact in this case, the
bRSB solution, as well as anyνRSB ansatz withν ∈ [1 : b],

reduces to the RS ansatz. Thus, one can consider the decoupled
system under the RS ansatz to be a special case of the more
general decoupled system given in Figure 3.

V. CONCLUSION

Decoupling seems to be a generic property of MAP estima-
tors, as Proposition 1 justifies it for any source distribution and
a wide range of matrix ensembles. The validity of the result
relies only on replica continuity; however, the equivalentsingle
user system depends on the structure of the replica correlation
matrix. Recent results in statistical mechanics have shownthat
failures in finding the exact solution via the replica method
are mainly caused by the assumed structure, and not replica
continuity. Inspired by the Sherrington-Kirkpatrick model of
spin glasses, for which the∞RSB ansatz has been proved
to be correct, one may consider Figure 3 to be the general
decoupled system asb ↑ ∞. However, in many cases an
accurate approximation might be provided by a finite number
of RSB steps. An extreme case is the RS ansatz where all
the interference terms in the RSB decoupled system become
independent and Gaussian. Thus, one concludes that the pre-
vious results in the literature were both special and extreme
cases of the RSB decoupled system. The RSB decoupled
system raises several issues which require further investi-
gations. For example, nothing is known about the distance
between the conditional distributions of the interferenceterms
and independent Gaussian distributions in probability space.
The distance variation w.r.t. the number of interference taps
can then describe the improvement caused by increasing the
number of RSB steps.
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