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A Universal Coding Scheme for Remote Generation
of Continuous Random Variables

Cheuk Ting Li and Abbas El Gamal

Abstract

We consider a setup in which Alice selects a pdff from a set of prescribed pdfsP and sends a prefix-free codewordW to
Bob in order to allow him to generate a single instance of the random variableX ∼ f . We describe a universal coding scheme
for this setup and establish an upper bound on the expected codeword length when the pdff is bounded, orthogonally concave
(which includes quasiconcave pdf), and has a finite first absolute moment. A dyadic decomposition scheme is used to express
the pdf as a mixture of uniform pdfs over hypercubes. Alice randomly selects a hypercube according to its weight, encodesits
position and size intoW , and sends it to Bob who generatesX uniformly over the hypercube. Compared to previous resultson
channel simulation, our coding scheme applies to any continuous distribution and does not require two-way communication or
shared randomness. We apply our coding scheme to classical simulation of quantum entanglement and obtain a better boundon
the average codeword length than previously known.

Index Terms

Universal code, channel simulation, communication complexity, simulation of quantum entanglement.

I. I NTRODUCTION

Consider the one-shot remote random variable generation setting depicted in Figure 1. Alice and Bob both agree on a set
of distributionsP (over a discrete or continuous set). Alice selects a distribution p ∈ P and wishes to have Bob generate a
random variableX according to this distribution. To accomplish this goal, Alice and Bob use an agreed uponuniversal coding
scheme in which Alice uses a stochastic encoder to assign to each p ∈ P a codewordW ∈ {0, 1}∗ from an agreed upon
prefix-free code and Bob uses a stochastic decoder to generate a single instance ofX ∼ p from the received codewordW . Let
L(W ) be the length ofW in bits. Is there a coding scheme such that for every distribution p ∈ P, Bob can generateX ∼ p
with finite expected codeword lengthEp(L(W ))?

PSfrag replacements

W ∈ {0, 1}∗
Encoder Decoderp ∈ P X ∼ p

Figure 1. Universal remote generation of random variables.

The answer to this question clearly depends on the set of distributionsP. Consider the following two simple special cases:

1. Let P be the set of probability mass functions over the integers, then we can use the following “generate–compress”
strategy. Alice generatesX ∼ p and then uses a universal code over the integers, e.g., [1], [2], to encodeX into W .
Upon receivingW , Bob recoversX . Using these codes, the expected codeword lengthEp(L(W )) is finite as long as
Ep(logX) is finite. Note that this scheme uses a stochastic encoder buta deterministic decoder.

2. Let X be continuous and the class of pdfsP has a finite (or countable) cardinality, then we can use the following
“compress–generate” strategy. Alice encodes the index ofp into W . Upon receivingW , Bob first recoversp then use it
to generatesX . Note that in this scheme, the encoder is deterministic but the decoder is stochastic.

If we index the setP by θ ∈ Θ, then our setting can be viewed as a one-shot synthesis (or simulation) of a channel
from θ to X with only one-way communication and without common randomness. Several channel simulation scenarios have
been previously studied in classical and quantum information theory. In [3], Bennett et al. considered the asymptotic setting
and established the reverse Shannon theorem, which states that k uses of a channel with capacityC can be simulated using
kC + o(k) bits of communication with unlimited amount of common randomness. In [4], Winter studied the asymptotic case
with limited common randomness andθi distributed according to a given distribution. He showed that kI(θ;X) + o(k) bits
of communication andkH(X |θ) + o(k) bits of common randomness suffice. Subsequently, Cuff [5] characterized the entire
tradeoff region between communication and common randomness for the same setting.

For the one-shot channel simulation setting, schemes basedon rejection sampling were developed by Steiner [6], who assumed
that Alice and Bob share unlimited common randomness, and byMassar et al. [7], who assumed two-way communication
between Alice and Bob. Harsha et al. [8] established a one-shot version of the reverse Shannon theorem using rejection sampling.
These rejection sampling schemes, however, are sensitive to the size ofP — a large sizeP leads to a high rejection rate,
which in turn leads to a high computation time.

http://arxiv.org/abs/1603.05238v1
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Note that the aforementioned asymptotic and one-shot channel simulation schemes are not universal since a scheme designed
for a channel fromθ to X is guaranteed to work only when the simulated distribution lies in the convex hull of the set of
output distributions{p(x|θ)}.

In this paper, we present a universal coding scheme for remote generation of continuous random variables (over scalars or
vectors), which we will refer to asuniversal dyadic coding scheme. WhenP is restricted to the set of orthogonally concave
pdfs {fX(x)}, (which includes quasiconcave), we are able to establish anupper bound on the expected codeword length of
W in terms ofsupx fX(x) andE(‖X‖∞). Our scheme uses a dyadic decomposition to express the selected pdf as a mixture
of uniform distributions over hypercubes. Alice first selects a hypercube from this mixture at random according to its weight,
then encodes its position and size into a codewordW using an agreed upon universal code over the integers. Upon receiving
W , Bob finds the hypercube and generatesX uniformly over it.

In [9], a similar dyadic decomposition scheme was introduced for distributed simulation of continuous random variables
according to an agreed upon pdf in a non-universal manner. InSection II we provide a more detailed comparison between
these two dyadic coding schemes.

To further motivate our setup and universal dyadic coding scheme, consider the following two applications.

Application 1 (Classical simulation of quantum entanglement). The simulation of correlations induced by quantum entan-
glement using classical communication has been widely studied, e.g., see [10], [11], [6]. Consider the Bell state|Φ+〉 =
(|0〉A|0〉B + |1〉A|1〉B)/

√
2 of a pair of qubits [12], one held by Alice and the other held byBob. If Alice measures her qubit

in the directionθA (unknown to Bob) to obtainYA ∈ {±1} and Bob measures his qubit in the directionθB (unknown to
Alice) to obtainYB ∈ {±1}, thenP{YA = 1} = P{YB = 1} = 1/2 andE[YAYB] = − cos(θA − θB). By Bell’s theorem, it is
impossible to simulate the joint distribution of(YA, YB) for all θA andθB using a classical common randomness source (local
hidden variables) between Alice and Bob in place of the qubits. However, such simulation is possible if we instead allow Alice
to send a codewordW to Bob. By a modification of the expression in [13] and lettingX ∈ [0, 2π] be a random variable with
conditional pdf

f(x|yA; θA) =
1

2
max{cos(yA(x− θA)), 0}, (1)

and YB = − sgn(cos(X − θB)), then (YA, YB) follows the desired distribution. Hence Alice can generateYA and use our
universal remote generation coding scheme to encodef(x|YA; θA) intoW to allow Bob to generateX andYB . Using Theorem 3
in Section IV, we show that the expected number of bits is bounded asE(L(W )) ≤ 12.31, and using numerical computation
we show thatE(L(W )) ≤ 8.96 is achievable. In comparison, the scheme in [7], which requires two-way communication (we
only allow one-way) provides a looser upper bound of 20 bits on the average number of bits needed.

Application 2 (Minimax mixed strategy with a helper). In decision theory, it is sometimes desirable to adopt a mixed strategy
in which the decision is chosen at random. Suppose the payoffg(X, θ) depends on the agent’s decisionX and an unknown
parameterθ selected from a setΘ (which may be chosen by an adversary). The optimal minimax mixed strategy to chooseX
is

F ∗
X(x) = argmax

FX (x)

inf
θ∈Θ

E [g(X, θ)] .

Now suppose the parameterθ = (θ1, θ2), whereθ1 is known to a helper (Alice) butθ2 is not known to Alice or the decision
agent (Bob). Alice wishes to help Bob generate the decisionX with the optimal pdf givenθ1,

F ∗
X(x; θ1) = argmax

FX (x)

inf
θ2

E [g(X, θ1, θ2)] .

To help Bob generateX using this optimal pdf, Alice can use our universal remote generation coding scheme. For example,
consider the payoff function

g(x, θ) =

{

e2θ−x if x ≥ θ

0 if x < θ,

whereθ ≥ 0. If nothing else is known aboutθ, then the optimal minimax mixed strategy would be to chooseX according to
the pdff∗

X(x) = e−x for x ≥ 0, which guarantees a payoff of1/2. Now assume that Alice knows thatθ ≥ a ≥ 0, then the
optimal mixed strategy isf∗

X(x; a) = e−(x−a) for x ≥ a, which results in a payoff of(1/2)ea. As shown in Theorem 2 in
Section III, Alice can use our universal remote generation coding scheme to enable Bob to generateX according to this pdf
using no more thanlog(a+ 1) + 2 log(log(a+ 1) + 12) + 23 bits on average. Our universal coding scheme can also be used
to perform mixed strategies in other scenarios, e.g., Nash equilibrium [14] in non-cooperative games.

The rest of the paper is organized as follows. For clarity of presentation, we first present the construction of our universal
dyadic coding scheme for uniform distributions over subsets of Rn and upper bound its expected codeword length. In Section
III, we extend our scheme to non-uniform distributions, establishing an upper bound on the expected codeword length for
orthogonally concave pdfs. In Section IV, we present a variant of our scheme for distributions with a uniform bounded support
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and apply it to the simulation of the Bell state. Finally, in Section V, we present a lower bound on the expected codeword
length in terms of the relative entropy between the actual and the implied distribution of our scheme.

A. Notation

Throughout this paper, we assume thatlog is base 2 and entropyH is in bits. Log in basee is written asln. We use the
notation:[a : b] = [a, b] ∩ Z,

A setA ⊆ Rn is orthogonally convex if for any lineL parallel to one of then axes,L∩A is a connected set (empty, a point
or an interval). A functionf is orthogonally concave if the hypograph{(x, α) : x ∈ Rn, α ≤ f(x)} is orthogonally convex.

For a Lebesgue measurable setA ⊆ Rn, we define the volumeVn(A) =
´

Rn 1A(x)dx. ForA,B ⊆ Rn, A+B denotes the
Minkowski sum{a+ b : a ∈ A, b ∈ B}, and forx ∈ Rn, A + x = {a+ x : a ∈ A}. For γ ∈ R, γA = {γa : a ∈ A}. For
M ∈ Rn×n, MA = {Ma : a ∈ A}. The erosion A⊖B is defined as{x ∈ Rn : B + x ⊆ A}.

II. U NIFORM DISTRIBUTIONS

In this section, we develop our universal dyadic coding scheme for the set of uniform pdfs over finite volume setsA ⊆ Rn.
We first introduce the dyadic decomposition of a set [9], which is the building block of our coding scheme.

Definition 1 (Dyadic decomposition). For v ∈ Zn andk ∈ Z, define the hypercubeCk,v = 2−k([0, 1]n + v) ⊂ Rn. For a set
A ⊆ Rn with a boundary of measure zero andk ∈ Z, define the set

Dk(A) =
{

v ∈ Zn : Ck,v ⊆ A andCk−1,⌊v/2⌋ * A
}

,

where⌊v/2⌋ is the vector formed by the entries⌊vi/2⌋. Thedyadic decomposition of A is the partitioning ofA into hypercubes
{Ck,v} such thatv ∈ Dk(A) andk ∈ Z. Since every pointx in the interior ofA is contained in some hypercube inA, the
interior of A is contained in∪k∈Z, v∈Dk(A)Ck,v, and the set of points inA not covered by the hypercubes has measure zero.

Our scheme uses a universal code over the integers to encode the position and size of the hypercubes. In particular, we will
use the signed Elias delta code defined as follows [2]. Let

gγ+(k) = 0N ‖ 1 ‖ aN−1aN−2 . . . a0,

gδ+(k) = gγ+(N + 1) ‖ aN−1aN−2 . . . a0.

Then the signed Elias code is

gδ(k) =

{

gδ+(1− 2k) if k ≤ 0,

gδ+(2k) if k > 0,

whereaNaN−1 . . . a0 is the binary representation ofk. The length of the codewordgδ(k) is

L(gδ(k)) = ⌊log(2|k| + 1)⌋+ 2 ⌊log (⌊log(2|k| + 1)⌋+ 1)⌋+ 1. (2)

We are now ready to define the universal dyadic coding scheme for the set of uniform pdfs.
Universal dyadic coding scheme for uniform pdfs. The universal dyadic coding scheme for the set of uniform pdfs over
positive, finite volume subsetsA ⊂ Rn with a boundary of measure zero consists of:

1) A stochastic encoder that generatesx̃ according to the observed uniform pdf overA. It then findsw = (k, v) such that
v ∈ Dk(A) and x̃ ∈ Ck,v. The encoder then maps(k, v) into a codewordw which consists of the concatenation of
signed Elias delta codewords fork, v1, . . . , vn, i.e.,w = gC(k, v) = gδ(k) ‖ gδ(v1) ‖ · · · ‖ gδ(vn).

2) A stochastic decoder that upon receivingw recovers(v, k) and generatesx according to a uniform pdf overCk,v .

The dyadic decomposition forR2 and the assignments of codeword to the squares are illustrated in Figure 2.
The following illustrates how our scheme is used for a given pdf.

Example 1. Consider a uniform pdf over the ellipseA =
{

x ∈ R2 : xTKx < 1
}

, K =





4/3 −2/3

−2/3 4/3



. Figure 3 depicts

the universal dyadic coding scheme for this pdf. The encoderfirst generates a point in the ellipse uniformly at random, and
then sends the codeword representing the square containingthe point. The expected codeword length (computed by listing all
squares in the dyadic decomposition with side length at least 2−16) is 15.6. Note that the entropy ofW , H(W ) = 6.35 is
significantly smaller since the code is universal.

The length of the codeword of the universal dyadic coding scheme depends on the magnitude ofk andv1, . . . , vn, (which
depends onk and ‖x‖), hence the length can be bounded usingk and‖x‖. in [9], it is shown that the expected value ofk
can be bounded using the following quantity.
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101011 111

101010101 110101

010010100 010001000100

010011 010001001

011000110001110 011000111001110

011000110001100 011000111001100

0, (−1, 0) 0, (0, 0)

0, (−1,−1) 0, (0,−1)

1, (0, 1) 1, (1, 1)

1, (0, 0) 1, (1, 0)

2, (2, 3) 2, (3, 3)

2, (2, 2) 2, (3, 2)

Figure 2. Dyadic squaresCk,v used in the dyadic decomposition forn = 2, showing their associatedk, v and codeword assignments.

011000111101111

011000111101101

01100011110101

011000110101111 01100010101111

010001010101

010001011

010010101

010011

01100101100 01100010001100

01100011001

01100011000100

011000110001100

Figure 3. Universal dyadic coding scheme on the uniform distribution over an ellipse.

Definition 2 (Erosion entropy). Theerosion entropy of the setA by the setB, whereA ⊆ Rn with Vn(A) < ∞, andB ⊆ Rn

is a convex set, is defined as

h⊖B(A) =

ˆ ∞

−∞

(

1 {t ≥ 0} − Vn (A⊖ 2−tB)

Vn(A)

)

dt,

whereA⊖B = {x ∈ Rn : B + x ⊆ A} is the erosion ofA by B.

If A is orthogonally convex, the erosion entropy ofA by the hypercube[0, 1]n can be bounded by the expected norm of
the uniform distribution onA, as shown in the following.

Lemma 1. Let the set A ⊆ Rn be orthogonally convex with Vn(A) < ∞, and let X ∼ Unif(A), then

h⊖[0,1]n(A) ≤ (n− 1) logE [‖X‖∞]− logVn(A) + 4n.

The proof of this lemma is given in Appendix A. We now use the erosion entropy to bound the expected codeword length
of the universal dyadic coding scheme.



5

Theorem 1. The expected codeword length of the universal dyadic coding scheme for uniform pdfs for X ∼ Unif(A) is upper
bounded as

E [L(W )] ≤ nℓδ

(

h+ E
[

log
(

‖X‖∞ +V1/n
n (A)

)]

+ 4
)

+ ℓδ

(

log

(

h+ 2max
{

logV1/n
n (A), 0

}

+
5

2

)

+ 2

)

≤ nℓδ (h+ logE[‖X‖∞] + 8) + ℓδ (log (h+ 2max {logE[‖X‖∞], 0}+ 9) + 2) ,

where ℓδ(t) = t+ 2 log t and h = h⊖[0,1]n(A).

Theorem 1 shows that the expected codeword length depends onthe erosion entropy, the expected magnitude ofX , and the
volume of the set. Intuitively, the erosion entropy measures the complexity of the set (or loosely speaking its surface area to
volume ratio). However, the erosion entropy is invariant under shifting. Since our universal scheme is sensitive to theposition
of A as well its shape, the bound in Theorem 1 depends also on the expected magnitude ofX . The functionℓδ(t) in Theorem 1
comes from the length of the Elias delta code in (2). Other universal codes for integers may be used in place of Elias delta
code, and result in a different bound.

We now prove Theorem 1.
Proof of Theorem 1: Let x ∈ A. Consider the length of the codeword for(v, k) with v ∈ Dk(A) andx ∈ Ck,v. We have

x ∈ 2−k ([0, 1]n + v), hence‖x‖∞ ≥ 2−k maxi (|vi + 1/2| − 1/2). Since2−nk ≤ Vn(A), k ≥ −(1/n) logVn(A). Let

τ = 2max {(1/n) logVn(A), 0} ,

then |k| ≤ k + τ . From (2), the length of the codeword for(v, k) is

L(gC(v, k)) ≤ ⌊log(2|k| + 1)⌋+ 2 ⌊log (⌊log(2|k| + 1)⌋+ 1)⌋

+
n
∑

i=1

(⌊log(2|vi | + 1)⌋+ 2 ⌊log (⌊log(2|vi | + 1)⌋+ 1)⌋) + n+ 1

(a)

≤ log(|k| + 1/2) + 2 log (log(|k| + 1/2) + 2)

+

n
∑

i=1

(

log

(∣

∣

∣

∣

vi +
1

2

∣

∣

∣

∣

+
1

2

)

+ 2 log

(

log

(∣

∣

∣

∣

vi +
1

2

∣

∣

∣

∣

+
1

2

)

+ 2

))

+ 2n+ 2

≤ log(k + τ + 1/2) + 2 log (log(k + τ + 1/2) + 2)

+

n
∑

i=1

(

log
(

2k
(

‖x‖∞ + 2−k
))

+ 2 log
(

log
(

2k
(

‖x‖∞ + 2−k
))

+ 2
))

+ 2n+ 2

≤ log(k + τ + 1/2) + 2 log (log(k + τ + 1/2) + 2)

+ n
(

log
(

2k
(

‖x‖∞ +V1/n
n (A)

))

+ 2 log
(

log
(

2k
(

‖x‖∞ +V1/n
n (A)

))

+ 2
))

+ 2n+ 2

= n
(

log
(

‖x‖∞ +V1/n
n (A)

)

+ k + 2 + 2 log
(

log
(

‖x‖∞ +V1/n
n (A)

)

+ k + 2
))

+ log(k + τ + 1/2) + 2 + 2 log (log(k + τ + 1/2) + 2)

= nℓδ

(

log
(

‖x‖∞ +V1/n
n (A)

)

+ k + 2
)

+ ℓδ (log(k + τ + 1/2) + 2)

where(a) follows by the fact that⌊log(2|i|+ 1)⌋ ≤ log(|2i+ 1|+ 1).
Let X ∼ Unif(A), andV,K be such thatV ∈ DK(A) andX ∈ CK,V . Then we have

E [L(Enc(Unif(A))] = E [L(gC(V,K)]

≤ nE
[

ℓδ

(

log
(

‖X‖∞ +V1/n
n (A)

)

+K + 2
)]

+ E [ℓδ (log(K + τ + 1/2) + 2)]

≤ nℓδ

(

E
[

log
(

‖X‖∞ +V1/n
n (A)

)]

+ E[K] + 2
)

+ ℓδ (log(E[K] + τ + 1/2) + 2)

by Jensen’s inequality and the concavity ofℓδ. We now proceed to bound

E[K] =
1

Vn(A)

∞
∑

k=−∞

k · 2−nl |Dl(A)| .

Consider
k
∑

l=−∞

2−nl |Dl(A)| = 2−nk |{v ∈ Zn : Ck,v ⊆ A}|

≥ 2−nk
∣

∣

{

v ∈ Zn : Ck−1, (v−w)/2 ⊆ A
}∣

∣ .
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for any w ∈ [0, 1]n, sinceCk,v ⊆ Ck−1, (v−w)/2. Note that the(v − w)/2 in the subscript may not have integer entries. The
same definition ofCk,v = 2−k([0, 1]n + v) can still be applied, however. Also

ˆ

[0,1]n

∣

∣

{

v ∈ Zn : Ck−1, (v−w)/2 ⊆ A
}∣

∣ dw =
∑

v∈Zn

ˆ

[0,1]n
1
{

Ck−1, (v−w)/2 ⊆ A
}

dw

= 2n
ˆ

Rn

1 {Ck−1,w ⊆ A} dw

= 2n2n(k−1)Vn

(

A⊖ [0, 2−(k−1)]n
)

= 2nkVn

(

A⊖ [0, 2−(k−1)]n
)

.

Hence
k
∑

l=−∞

2−nl |Dl(A)| ≥ Vn

(

A⊖ [0, 2−(k−1)]n
)

,

and
∞
∑

l=k+1

2−nl |Dl(A)| ≤ Vn(A)−Vn

(

A⊖ [0, 2−(k−1)]n
)

.

As a result,

E[K] =
1

Vn(A)

∞
∑

k=−∞

k · 2−nl |Dl(A)|

=
1

Vn(A)

∞
∑

k=−∞

(

1 {k ≥ 0}Vn(A)−
k
∑

l=−∞

2−nl |Dl(A)|
)

≤ 1

Vn(A)

∞
∑

k=−∞

(

1 {k ≥ 0}Vn(A) −Vn

(

A⊖ [0, 2−(k−1)]n
))

≤ 1

Vn(A)

ˆ

(

1 {t ≥ 0}Vn(A) −Vn

(

A⊖ [0, 2−t]n
))

dt+ 2

= h⊖[0,1]n(A) + 2.

We have

E [L(W )] ≤ nℓδ

(

h+ E
[

log
(

‖X‖∞ +V1/n
n (A)

)]

+ 4
)

+ ℓδ

(

log

(

h+ 2max
{

logV1/n
n (A), 0

}

+
5

2

)

+ 2

)

.

It remains to boundV1/n
n (A) by E[‖X‖∞]. By the Markov inequality,

E[‖X‖∞] ≥ 1

4
V1/n

n (A) · P
{

‖X‖∞ ≥ 1

4
V1/n

n (A)

}

=
1

4
V1/n

n (A) ·
Vn

{

x ∈ A : ‖x‖∞ ≥ (1/4)V
1/n
n (A)

}

Vn(A)

≥ 1

4
V1/n

n (A) ·
Vn(A)−

(

(1/2)V
1/n
n (A)

)n

Vn(A)

≥ 1

8
V1/n

n (A). (3)

Hence,

E [L(W )] ≤ nℓδ (h+ logE[‖X‖∞] + 4 + log 9) + ℓδ

(

log

(

h+ 2max {logE[‖X‖∞] + 3, 0}+ 5

2

)

+ 2

)

. (4)

This completes the proof of the theorem.
Combining Lemma 1 and Theorem 1, we can bound the expected length of the universal dyadic coding scheme for

orthogonally convex sets.
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Corollary 1. The expected codeword length of the universal dyadic coding scheme for uniform pdfs applied to an orthogonally
convex A ⊆ Rn is upper bounded as

E [L(W )] ≤ nℓδ ((n− 1) log r + log(‖x̂‖∞ + r) − logVn(A) + 4n+ 8)

+ ℓδ (log ((n− 1) log r + 2max{r, 0} − logVn(A) + 4n+ 9) + 2) .

for any x̂ ∈ Rn, where ℓδ(t) = t+ 2 log t and r = E [‖X − x̂‖∞].

Proof of Corollary 1: By Lemma 1,

h⊖[0,1]n(A) ≤ (n− 1) logE [‖X − x̂‖∞]− log Vn(A) + 4n.

By Theorem 1,

E [L(W )] ≤ nℓδ

(

h+ log
(

E[‖X‖∞] + V1/n
n (A)

)

+ 4
)

+ ℓδ

(

log

(

h+ 2max
{

logV1/n
n (A), 0

}

+
5

2

)

+ 2

)

≤ nℓδ (h+ logE[‖X‖∞] + 8) + ℓδ (log (h+ 2max{logE[‖X − x̂‖∞], 0}+ 9) + 2)

≤ nℓδ ((n− 1) logE [‖X − x̂‖∞] + logE[‖X‖∞]− logVn(A) + 4n+ 8)

+ ℓδ (log ((n− 1) logE [‖X − x̂‖∞] + 2max {logE[‖X − x̂‖∞], 0} − log Vn(A) + 4n+ 9) + 2) .

An added benefit of our universal dyadic coding scheme is thatif X can be generated in a distributed manner. SupposeX
is ann-dimensional vectorX1, . . . , Xn and instead of having one decoder wishing to generateX , we haven decoders that all
receiveW and decoderi wishes to generate onlyXi, i ∈ [1 : n]. Such distributed generation is possible using our universal
dyadic coding scheme since decoderi can generateXi uniformly over the interval[2−kvi, 2

−k(vi + 1)] without any need
to cooperate with other decoders. In [9]. we described a dyadic decomposition coding scheme for distributed generationof a
given pdf. The scheme in this paper differs from that in [9] inseveral aspects.

• The scheme in this paper is universal, while the scheme in [9]is constructed for a given pdf known to both the encoder
and the decoders.

• In [9] we used an optimal prefix free code, such as Huffman code, to encode the hypercubes, while in this paper we use
a universal code over the integers since the distribution onthe hypercubes is known a priori.

• In [9], we can perform scaling (and bijective transformations) on each variableXi before applying the dyadic decompo-
sition scheme. It is not possible to perform such preprocessing here since the decoder would not know the scaling factor
or the bijective transformation used.

• In the analysis of the expected codeword length in [9], it suffices to consider only the distribution of the sizes of the
hypercubes. In our universal scheme, both the size and the position of the hypercube affect the length of the codeword
assigned to it.

III. N ON-UNIFORM DISTRIBUTIONS

In this section, we extend the results of the previous section to the case where the pdf ofX = (X1, . . . , Xn) is selected
from a set of arbitrary (not necessarily uniform) pdfs. The key idea in extending our scheme is the following. Note that in
general, any pdf can be written as a mixture of uniform pdfs. Let Z ∼ fZ , wherefZ(z) = Vn(L

+
z (f)) for z ≥ 0 and

L+
z (f) = {x ∈ Rn : f(x) ≥ z} is the superlevel set off . Let X |{Z = z} ∼ Unif(L+

z (f)), then we haveX ∼ f(x). Hence
f(x) can be expressed as a mixture of uniform distributions overL+

z (f) for different values ofz. Alice can first generate
Z ∼ fZ , then apply the universal dyadic coding scheme for uniform distributions onL+

Z (f). The scheme is formally defined
as follows.
Universal dyadic coding scheme for general pdfs. The universal dyadic coding scheme for the set of almost everywhere
continuous pdfsP consists of:

1) A stochastic encoder that generatesx̃ according to the observedf andZ ∼ Unif[0, f(x̃)], and finds(k, v) such that
v ∈ Dk(L

+
z (f)) and x̃ ∈ Ck,v. The encoder maps(k, v) into a codewordw that consists of the concatenation of the

signed Elias delta codewords fork, v1, . . . , vn, i.e.,w = gC(k, v) = gδ(k) ‖ gδ(v1) ‖ · · · ‖ gδ(vn).
2) A stochastic decoder that upon receivingw recovers(v, k) and generatesx uniformly overCk,v.

We illustrate this scheme in the following.

Example 2. Assume that the selected pdf is Gaussian with zero mean and unit variance. Figure 4 depicts the universal dyadic
coding scheme for this pdf. The horizontal and vertical axesrepresentx andz, respectively. The encoder sends the codeword
for the rectangle containing(x, z). The expected codeword length (computed by listing all intervals in the dyadic decomposition
with length at least2−20) is 7.06.

As a consequence of Theorem 1, we have the following bound on the expected codeword length.
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Figure 4. Universal dyadic coding scheme onN (0, 1).

Theorem 2. The expected codeword length of the universal dyadic coding scheme for X ∼ f(x) is upper bounded as

E [L(W )] ≤ nℓδ (EZ [h] + logE[‖X‖∞] + 8) + ℓδ (log (EZ [h] + 2max {logE[‖X‖∞], 0}+ 10) + 2) ,

where ℓδ(t) = t+ 2 log t and h = h⊖[0,1]n(L
+
Z (f)) is a random variable, where Z ∼ fZ , fZ(z) = Vn(L

+
z (f)) for z ≥ 0.

Proof: Using (4),

E [L(W )] ≤ nEZ [ℓδ (h+ logE[‖X‖∞ | Z] + 8)] + EZ [ℓδ (log (h+ 2max{logE[‖X‖∞], 0}+ 8.5) + 2)]

≤ nℓδ (EZ [h] + logE[‖X‖∞] + 8) + ℓδ (log (EZ [h] + 2EZ [max {logE[‖X‖∞ | Z], 0}] + 8.5) + 2) .

To boundEZ [max {logE[‖X‖∞ |Z], 0}], define a concave functionq : [0,∞) → [0,∞),

q(t) =

{

te−1 log e if t ≤ e

log t if t > e.

Note that
max{log t, 0} ≤ q(t) ≤ max{log t, 0}+ e−1 log e.

Hence,

EZ [max {logE[‖X‖∞ | Z], 0}] ≤ EZ [q(E[‖X‖∞ | Z])]

≤ q(E[‖X‖∞])

≤ max {logE[‖X‖∞], 0}+ e−1 log e.

Note that we also needL+
z (f) to have a boundary of measure zero for almost allz, in order for the coding scheme to succeed

almost surely. This is implied by the almost everywhere continuity of f(x). The proof of this claim is given in Appendix B.

We can also generalize Corollary 1 to orthogonally concave pdfs (which includes quasiconcave pdfs) as follows.

Corollary 2. The expected codeword length of the universal dyadic coding scheme for X ∼ f(x), where f is orthogonally
concave, is upper bounded as

E [L(W )] ≤ nℓδ ((n− 1) log r + log(‖x̂‖∞ + r) + h(Z) + 4n+ 8)

+ ℓδ (log ((n− 1) log r + 2max{log r, 0}+ h(Z) + 4n+ 10) + 2) .
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for any x̂ ∈ Rn, where ℓδ(t) = t + 2 log t, r = E [‖X − x̂‖∞], Z ∼ fZ , fZ(z) = Vn(L
+
z (f)) for z ≥ 0. As a result, if

supx f(x) < ∞,

E [L(W )] ≤ nℓδ

(

(n− 1) log r + log(‖x̂‖∞ + r) + log sup
x

f(x) + 4n+ 8

)

+ ℓδ

(

log

(

(n− 1) log r + 2max {log r, 0}+ log sup
x

f(x) + 4n+ 10

)

+ 2

)

.

IV. B OUNDED SUPPORTDISTRIBUTIONS

In this section, we present a variant of the universal dyadiccoding scheme for a set of distributions with a uniform bound
on their support. Without loss of generality, assumeP consists of the set of pdfs over[0, 1]n. Since thev in the definition of
our universal dyadic coding scheme (corresponding to the position of the hypercube) is bounded, we can use a fixed length
code to encode(v1, . . . , vn). This allows us to reduce the expected codeword length.
Universal dyadic coding scheme for pdfs over the unit hypercube. The universal dyadic coding scheme for pdfs over[0, 1]n

consists of:
1) A stochastic encoder that generatesx̃ according to the observedf and z ∼ Unif[0, f(x̃)] and finds(k, v) such that

v ∈ Dk(L
+
z (f)) and x̃ ∈ Ck,v. The encoder then maps(k, v) into a codeword which consists of the concatenation of

the unsigned Elias gamma codeword fork + 1, and thek-bit binary representations ofv1, . . . , vn, i.e.,w = gC(k, v) =
gγ+(k + 1) ‖ gb,k(v1) ‖ · · · ‖ gb,k(v1), wheregb,k(i) is the binary representation ofi with k bits, possibly with leading
zeros.

2) A stochastic decoder that upon observingw recovers(v, k) and generatesx uniformly overCk,v.
Since the length of the unsigned Elias gamma codewordgγ(k + 1) is 2 ⌊log(k + 1)⌋+ 1, the length ofw is

L(w) = nk + 2 ⌊log(k + 1)⌋+ 1.

The expected codeword length is upper bounded as follows.

Theorem 3. The expected codeword length of the universal dyadic coding scheme for pdfs over the unit hypercube for
X ∼ f(x), where f is orthogonally concave, is upper bounded as

E [L(W )] ≤ n (h(Z) + logn+ log e+ 2) + 2 log (h(Z) + log n+ log e+ 3) + 1,

where Z ∼ fZ , fZ(z) = Vn(L
+
z (f)) for z ≥ 0. As a result, if supx f(x) < ∞,

E [L(W )] ≤ n

(

log sup
x

f(x) + logn+ log e+ 2

)

+ 2 log

(

log sup
x

f(x) + logn+ log e+ 3

)

+ 1.

Proof: In [9] (Theorem 1), it was shown that the erosion entropy for orthogonally convexA is bounded as

h⊖[0,1]n(A) ≤ log

(
∑n

i=1 Vn−1P\i(A)

Vn(A)

)

+ log e,

whereVP\i(A) = {(x1, . . . , xi−1, xi+1, . . . , xn) : x ∈ A}. Let Z ∼ fZ , fZ(z) = Vn(L
+
z (f)), then

h⊖[0,1]n(L
+
z (f)) ≤ − logVn(L

+
z (f)) + logn+ log e.

Hence

E [L(W )] ≤ nE[K] + 2 log(E[K] + 1) + 1

≤ n
(

E[h⊖[0,1]n(L
+
Z (f))] + 2

)

+ 2 log
(

E[h⊖[0,1]n(L
+
Z (f))] + 3

)

+ 1

≤ n
(

E[− logVn(L
+
Z (f))] + logn+ log e+ 2

)

+ 2 log
(

E[− logVn(L
+
Z (f))] + logn+ log e + 3

)

+ 1

= n (h(Z) + logn+ log e+ 2) + 2 log (h(Z) + logn+ log e+ 3) + 1.

As an example, we apply this result to simulating the Bell state in Application 1

f(x | θ) = πmax{cos(2π(x − θ)), 0},
fitted to the interval[0, 1]. Although this pdf is not orthogonally concave, it can be decomposed into at most two orthogonally
concave parts with disjoint support, hence the expected codeword length is the weighted average of the expected codeword
lengths for those two pieces, which incurs a penalty of at most 1 bit. By Theorem (3),

E [L(W )] ≤ log π + log e+ 2 + 2 log (log π + log e+ 3) + 2 ≈ 12.31.

Figure 5 plots the numerical values ofE [L(W )] versusθ computed by listing all intervals in the dyadic decomposition with
length at least2−17. As can be seen,E [L(W )] ≤ 8.96 for all θ.
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Figure 5. Universal dyadic coding scheme for pdfs over the unit hypercube applied to the simulation of the Bell state.

V. L OWER BOUND ON EXPECTEDCODEWORDLENGTH

In the previous sections we focused on schemes for universalremote generation of continuous random variables and upper
bounds on their expected codeword length. In this section, we establish a lower bound on the expected codeword length that
every remote generation scheme must satisfy.

Consider a universal remote generation coding scheme with aprefix-free codeword setC ⊆ {0, 1}∗. Upon receivingw ∈ C,
Bob generatesX |{W = w} ∼ p̃w according to a distributioñpw(dx). Define theimplied distribution of this scheme as

pIm(dx) =
(

∑

w′∈C

2−L(w′)
)−1 ∑

w∈C

2−L(w)p̃w(dx).

We now show that the expected codeword lengthEp(L(W )) is lower bounded by the relative entropy betweenp andpIm.

Theorem 4. For a universal remote generation scheme with an implied distribution pIm, the average codeword length for
p ∈ P is lower bounded as

Ep(L(W )) ≥ D(p‖pIm).
Proof: Consider the input distributionp. Assume the encoder outputsw with probabilitya(w). Thenp =

∑

w∈C a(w)p̃w,
Ep(L(W )) =

∑

w∈C a(w)L(w). By convexity of relative entropy,

D(p‖pIm) = D

(

∑

w∈C

a(w)p̃w ‖ pIm
)

≤
∑

w∈C

a(w)D (p̃w‖pIm)

≤
∑

w∈C

a(w)L(w)

= Ep(L(W )).

Consider the (unbounded support) dyadic universal code. The implied distribution in this case is described by a pdffIm(x) ∝
‖x‖−n

∞ (log ‖x‖∞)
−2n. Theorem 4 gives the lower bound on the expected codeword length for generatingX ∼ f ,

D (fX ‖ fIm) ≈ h(X) + nE [ℓδ(log ‖X‖∞)] .

Comparing this to Theorem 1, we see that the upper bound is close to the lower bound when‖X‖∞ is the dominant term.
Note that Theorem 4 continues to hold even when Alice and Bob are allowed to share unlimited common randomness

(denoted by the random variableQ). Suppose the prefix-free codeword set whenQ = q is Cq ⊆ {0, 1}∗. Upon receiving
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w ∈ C, Bob generatesX |{Q = q,W = w} ∼ p̃q,w. The implied distribution is

pIm(dx) =

ˆ

Q

(

∑

w′∈Cq

2−L(w′)
)−1 ∑

w∈Cq

2−L(w)p̃q,w(dx)pQ(dq).

Theorem 4 still holds due to the convexity of relative entropy. Comparing this lower bound to the average length of the rejection
sampling scheme in [8] (which requires common randomness),which achieves

Ep(L(W )) ≤ D(p‖p∗) + 2 log(D(p‖p∗) + 1) +O(1)

for somep∗. Hence, the lower bound is quite tight when unlimited commonrandomness is allowed.

APPENDIX

A. Proof of Lemma 1

The lemma is trivial whenn = 1 sinceA can only be an interval. Hence we assumen ≥ 2.
From the definition of erosion entropy,

h⊖[0,1]n(A) =

ˆ ∞

−∞

(

1 {t ≥ 0} − Vn (A⊖ 2−t[0, 1]n)

Vn(A)

)

dt

=

ˆ ∞

−∞

t · d
(

Vn (A⊖ 2−t[0, 1]n)

Vn(A)

)

(i)
=

1

Vn(A)

ˆ ∞

0

(log s) · dVn (A⊖ [0, s]n)

=
1

Vn(A)

ˆ ∞

0

(log s) · d
(

n
∑

i=1

(

Vn

(

A⊖ {0}n−i × [0, s]i
)

−Vn

(

A⊖ {0}n−i+1 × [0, s]i−1
))

)

=
1

Vn(A)

ˆ ∞

0

(− log s)

(

n
∑

i=1

Vn−1P\i (A⊖ [0, s]n)

)

ds

where (i) is by substitutings = 2−t, andP\i(A) = {(x1, . . . , xi−1, xi+1, . . . , xn) : x ∈ A} ⊆ Rn−1. Let

q(s) =

∑n
i=1 Vn−1P\i (A⊖ [0, s]n)

Vn(A)
.

Then we have
´∞

0 q(s)ds = 1,
´∞

0 (− log s)q(s)ds = h⊖[0,1]n(A). Also

E [‖X‖∞] =
1

Vn(A)

ˆ

A

‖x‖∞ dx

=
−1

Vn(A)

ˆ ∞

0

d

ds

(

ˆ

A⊖[0,s]n
‖x‖∞ dx

)

ds

=
−1

Vn(A)

ˆ ∞

0

n
∑

i=1

∂

∂si

(

ˆ

A⊖[0,s1]×···[0,sn]

‖x‖∞ dx

)∣

∣

∣

∣

∣

(s1,...,sn)=(s,...,s)

ds

≥ −1

Vn(A)

ˆ ∞

0

n
∑

i=1

∂

∂si

(

ˆ

A⊖[0,s1]×···[0,sn]

∥

∥x[1:n]\i

∥

∥

∞
dx

)∣

∣

∣

∣

∣

(s1,...,sn)=(s,...,s)

ds

=
1

Vn(A)

ˆ ∞

0

(

n
∑

i=1

ˆ

P\i(A⊖[0,s]n)

∥

∥x[1:n]\i

∥

∥

∞
dx[1:n]\i

)

ds

(i)

≥ 1

Vn(A)

ˆ ∞

0

(

n
∑

i=1

1

8
Vn−1P

1+1/(n−1)
\i (A⊖ [0, s]n)

)

ds

≥ 1

8Vn(A)

ˆ ∞

0

n−1/(n−1)

(

n
∑

i=1

Vn−1P\i (A⊖ [0, s]n)

)n/(n−1)

ds

=
1

8
n−1/(n−1)V1/(n−1)

n (A)

ˆ ∞

0

qn/(n−1)(s)ds,
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where (i) is by (3) in the proof of Theorem (1). Let

q̃(s) =

{

(

β(log e)n−1Γ(n)
)−1

(− log (s/β))
n−1 if s ≤ β

0 if s > β,

whereβ = en2−h, h = h⊖[0,1]n(A). Then
´∞

0 q̃(s)ds = 1,
´∞

0 (− log s)q̃(s)ds = h. Hence,
ˆ ∞

0

qn/(n−1)(s)ds ≥
ˆ β

0

qn/(n−1)(s)ds

=

ˆ β

0

q̃(s)n/(n−1) (q(s)/q̃(s))
n/(n−1)

ds

(i)

≥
(

ˆ β

0

q̃(s)n/(n−1)ds

)





(

ˆ β

0

q̃(s)n/(n−1)ds

)−1
ˆ β

0

q̃(s)n/(n−1) (q(s)/q̃(s)) ds





n/(n−1)

=

(

ˆ β

0

q̃(s)n/(n−1)ds

)−1/(n−1)(
ˆ β

0

q̃(s)1/(n−1)q(s)ds

)n/(n−1)

=
(

n (βΓ(n))
−1/(n−1)

)−1/(n−1)
(

(log e)
−1

(βΓ(n))
−1/(n−1)

ˆ β

0

(− log s+ log β) q(s)ds

)n/(n−1)

≥
(

n (βΓ(n))
−1/(n−1)

)−1/(n−1)
(

(log e)
−1

(βΓ(n))
−1/(n−1)

ˆ ∞

0

(− log s+ log β) q(s)ds

)n/(n−1)

=
(

n (βΓ(n))
−1/(n−1)

)−1/(n−1) (

(log e)
−1

(βΓ(n))
−1/(n−1)

(h+ log β)
)n/(n−1)

= n (βΓ(n))
−1/(n−1)

,

where (i) is by weighted power mean inequality. As a result,

E [‖X‖∞] ≥ 1

8
n−1/(n−1)V1/(n−1)

n (A)

ˆ ∞

0

qn/(n−1)(s)ds

≥ 1

8
n(n−2)/(n−1)V1/(n−1)

n (A)
(

en2−hΓ(n)
)−1/(n−1)

,

h ≤ (n− 1)

(

logE [‖X‖∞]− log

(

1

8
n(n−2)/(n−1)V1/(n−1)

n (A)

))

+ log Γ(n) + n log e

= (n− 1) logE [‖X‖∞]− log Vn(A) + 3(n− 1)− (n− 2) logn+ log Γ(n) + n log e

≤ (n− 1) logE [‖X‖∞]− log Vn(A) + 3(n− 1)− (n− 2) logn+ (n logn− (n− 1) log e) + n log e

= (n− 1) logE [‖X‖∞]− log Vn(A) + 3(n− 1) + 2 logn+ log e

≤ (n− 1) logE [‖X‖∞]− log Vn(A) + 4n.

B. Proof of the claim on measure zero boundary in Theorem 2

We will prove that if f is a pdf which is continuous almost everywhere, thenL+
z (f) has a boundary of measure zero for

almost allz. Assume the contrary that there exist an uncountableG ⊆ [0,∞) such thatVn(∂L
+
z (f)) > 0 for all z ∈ G (note that

∂L+
z (f) is a Borel set and thus measurable). Then we show that there existsz1 6= z2 ∈ G such thatVn(∂L

+
z1(f)∩∂L+

z2(f)) > 0
(which follows from σ-finiteness, though we include a proof here for completeness). To show the claim, note that for any
z ∈ G, there exists a hypercube[0, 1]n+v, v ∈ Zn such that∂L+

z (f)∩ ([0, 1]n+v) has nonzero measure. Hence there exists a
hypercube[0, 1]n+v such that∂L+

z (f)∩ ([0, 1]n+v) has nonzero measure for an uncountable set ofz’s. Since an uncountable
collection of positive numbers must contain a finite subcollection with sum greater than 1, we can selectz1, . . . , zm such that
∑

iVn(∂L
+
zi(f) ∩ ([0, 1]n + v)) > 1, and hence there exists two of these sets with an intersection of nonzero measure.

Now we havez1 < z2 ∈ G such thatVn(∂L
+
z1(f) ∩ ∂L+

z2(f)) > 0. Assume there existsx in the intersection at which
f is continuous, sincex ∈ ∂L+

z2(f), there exist sequenceyi → x with f(yi) ≥ z2, and hencef(x) ≥ z2. Also since
x ∈ ∂L+

z1(f) ⊆ cl{y : f(y) < z1}, there exist sequencẽyi → x with f(ỹi) < z1, and hencef(x) ≤ z1, leading to a
contradiction. Thereforef is discontinuous in∂L+

z1(f) ∩ ∂L+
z2(f), contradicting the assumption thatf is continuous almost

everywhere. ThereforeL+
z (f) has a boundary of measure zero for almost allz.
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