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A Universal Coding Scheme for Remote Generation
of Continuous Random Variables

Cheuk Ting Li and Abbas ElI Gamal

Abstract

We consider a setup in which Alice selects a gdfrom a set of prescribed pdf$? and sends a prefix-free codewdid to
Bob in order to allow him to generate a single instance of #relom variableX ~ f. We describe a universal coding scheme
for this setup and establish an upper bound on the expectsivood length when the pdf is bounded, orthogonally concave
(which includes quasiconcave pdf), and has a finite first labseonoment. A dyadic decomposition scheme is used to expres
the pdf as a mixture of uniform pdfs over hypercubes. Alicedmnly selects a hypercube according to its weight, encades
position and size intd?’, and sends it to Bob who generat&suniformly over the hypercube. Compared to previous resuits
channel simulation, our coding scheme applies to any cootis distribution and does not require two-way commurooabr
shared randomness. We apply our coding scheme to classiualaion of quantum entanglement and obtain a better bamd
the average codeword length than previously known.

Index Terms

Universal code, channel simulation, communication comiplesimulation of quantum entanglement.

|. INTRODUCTION

Consider the one-shot remote random variable generatitingselepicted in Figur€]1. Alice and Bob both agree on a set
of distributions#? (over a discrete or continuous set). Alice selects a digioh p € &2 and wishes to have Bob generate a
random variableX according to this distribution. To accomplish this goalicAland Bob use an agreed upamversal coding
scheme in which Alice uses a stochastic encoder to assigadoec & a codewordiW € {0,1}* from an agreed upon
prefix-free code and Bob uses a stochastic decoder to geresingle instance of ~ p from the received codeword’. Let
L(W) be the length of¥ in bits. Is there a coding scheme such that for every didgtdhyp € &2, Bob can generat& ~ p
with finite expected codeword leng, (L(WW))?

W e {0,1}*

pe P —» Encoder Decoder —»X ~p

Figure 1. Universal remote generation of random variables.

The answer to this question clearly depends on the set afldisons 2. Consider the following two simple special cases:

1. Let & be the set of probability mass functions over the integérsn twve can use the following “generate—compress”
strategy. Alice generate¥ ~ p and then uses a universal code over the integers, Elg./2]1]td encodeX into .
Upon receivinglV, Bob recoversX. Using these codes, the expected codeword leBg{{L(W)) is finite as long as
E,(log X) is finite. Note that this scheme uses a stochastic encodex Haterministic decoder.

2. Let X be continuous and the class of pdf8 has a finite (or countable) cardinality, then we can use tlleviig
“compress—generate” strategy. Alice encodes the indexinfo WW. Upon receivinglV, Bob first recoverg then use it
to generatesy. Note that in this scheme, the encoder is deterministic litdiecoder is stochastic.

If we index the set?” by # € ©, then our setting can be viewed as a one-shot synthesis rfaiagion) of a channel
from 6 to X with only one-way communication and without common randess Several channel simulation scenarios have
been previously studied in classical and quantum informnatheory. In [[8], Bennett et al. considered the asymptatitirey
and established the reverse Shannon theorem, which shetels ises of a channel with capacify can be simulated using
kC + o(k) bits of communication with unlimited amount of common ramgess. In[[4], Winter studied the asymptotic case
with limited common randomness ag distributed according to a given distribution. He showealt #V (0; X) + o(k) bits
of communication andH (X |6) + o(k) bits of common randomness suffice. Subsequently, Cuff [Bfatterized the entire
tradeoff region between communication and common randemfue the same setting.

For the one-shot channel simulation setting, schemes lmasegjection sampling were developed by Steihér [6], whoass]
that Alice and Bob share unlimited common randomness, anagsar et al.[[7], who assumed two-way communication
between Alice and Bob. Harsha et al. [8] established a onevarsion of the reverse Shannon theorem using rejectiopléag.
These rejection sampling schemes, however, are sengititleetsize of%? —a large sizeZ leads to a high rejection rate,
which in turn leads to a high computation time.
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Note that the aforementioned asymptotic and one-shot @hamulation schemes are not universal since a schemengesig
for a channel fron¥ to X is guaranteed to work only when the simulated distributies in the convex hull of the set of
output distributions{p(x|6)}.

In this paper, we present a universal coding scheme for eigeberation of continuous random variables (over scalars o
vectors), which we will refer to aaniversal dyadic coding scheme. When 7 is restricted to the set of orthogonally concave
pdfs { fx(x)}, (which includes quasiconcave), we are able to establishpger bound on the expected codeword length of
W in terms ofsup,, fx (z) andE(||X|, ). Our scheme uses a dyadic decomposition to express theeskfedf as a mixture
of uniform distributions over hypercubes. Alice first ségea hypercube from this mixture at random according to iteyhte
then encodes its position and size into a codewdrdising an agreed upon universal code over the integers. Usmgiving
W, Bob finds the hypercube and generatesiniformly over it.

In [9], a similar dyadic decomposition scheme was introdufme distributed simulation of continuous random variable
according to an agreed upon pdf in a non-universal manneBektion[1l we provide a more detailed comparison between
these two dyadic coding schemes.

To further motivate our setup and universal dyadic codirtgeste, consider the following two applications.

Application 1 (Classical simulation of quantum entanglemerithe simulation of correlations induced by quantum entan-
glement using classical communication has been widelyiestiuce.g., see[[10][[11]/]6]. Consider the Bell stafe") =
(10)4]0) B + 1) 4|1)B)/+/2 of a pair of qubits[[12], one held by Alice and the other heldBnb. If Alice measures her qubit

in the directiond, (unknown to Bob) to obtaity € {+1} and Bob measures his qubit in the directi®s (unknown to
Alice) to obtainYp € {£1}, thenP{Y4 =1} = P{Yp =1} = 1/2 andE[YaYs| = —cos(4 — 0). By Bell's theorem, it is
impossible to simulate the joint distribution ¢4, Y5) for all #4 andfp using a classical common randomness source (local
hidden variables) between Alice and Bob in place of the gulblbwever, such simulation is possible if we instead alldigeA

to send a codewor®” to Bob. By a maodification of the expression [n[13] and lettiKige [0, 27| be a random variable with
conditional pdf

f(elya304) = 5 max{eos(ya (e — 0)), 0}, )

andYp = —sgn(cos(X — 0p)), then (Y4, Yy) follows the desired distribution. Hence Alice can generdiieand use our
universal remote generation coding scheme to engédg’s; 04) into W to allow Bob to generat& andYg. Using Theorerhl3
in Sectior1V, we show that the expected number of bits is bedrasE(L(1V)) < 12.31, and using numerical computation
we show thatE(L(W)) < 8.96 is achievable. In comparison, the schemelin [7], which neguiwo-way communication (we
only allow one-way) provides a looser upper bound of 20 bitste average number of bits needed.

Application 2 (Minimax mixed strategy with a helper)n decision theory, it is sometimes desirable to adopt a chsteategy
in which the decision is chosen at random. Suppose the payaffd) depends on the agent’s decisighand an unknown
parametey) selected from a se&d (which may be chosen by an adversary). The optimal minimasethstrategy to choos&
is

F%(xz) = argmax inf E[g(X,0)].

Fx (z) 0O

Now suppose the parameter= (61, 6-), whered; is known to a helper (Alice) bui, is not known to Alice or the decision
agent (Bob). Alice wishes to help Bob generate the decigiowith the optimal pdf givert,,

F%(z;601) = argmaxi(glf Elg(X,61,02)].
Fx(z) 2

To help Bob generat& using this optimal pdf, Alice can use our universal remoteegation coding scheme. For example,
consider the payoff function
2= ifr>0
g(z,0) = { ~

0 if <6,

wheref > 0. If nothing else is known about, then the optimal minimax mixed strategy would be to cho&saccording to

the pdf f% (x) = e~* for z > 0, which guarantees a payoff @f/2. Now assume that Alice knows that> « > 0, then the
optimal mixed strategy ig% (v;a) = e~(*~ for z > a, which results in a payoff of1/2)e®. As shown in Theorerfi]2 in
Sectionll, Alice can use our universal remote generatioding scheme to enable Bob to generateaccording to this pdf
using no more thatog(a + 1) + 2log(log(a + 1) 4+ 12) + 23 bits on average. Our universal coding scheme can also be used
to perform mixed strategies in other scenarios, e.g., Ngsiililerium [14] in non-cooperative games.

The rest of the paper is organized as follows. For clarity refspntation, we first present the construction of our usaler
dyadic coding scheme for uniform distributions over subsétR™ and upper bound its expected codeword length. In Section
[T we extend our scheme to non-uniform distributions,abfishing an upper bound on the expected codeword length for
orthogonally concave pdfs. In Sectiponl IV, we present a warid our scheme for distributions with a uniform boundedmap



and apply it to the simulation of the Bell state. Finally, ircBon[M, we present a lower bound on the expected codeword
length in terms of the relative entropy between the actudltae implied distribution of our scheme.

A. Notation

Throughout this paper, we assume that is base 2 and entrop¥{ is in bits. Log in base: is written asln. We use the
notation:[a : b] = [a,b] N Z,

A set A C R" is orthogonally convex if for any liné, parallel to one of thew axes,L.N A is a connected set (empty, a point
or an interval). A functionf is orthogonally concave if the hypograpl, o) : =z € R", o < f(x)} is orthogonally convex.

For a Lebesgue measurable set R", we define the volum&,,(A) = [;, 1a(x)dz. For A, B C R", A+ B denotes the
Minkowski sum{a+b: a € A, b€ B}, and forx € R", A+z ={a+z:a€ A}. Fory € R, vyA = {ya: a € A}. For
M eR"™" MA={Ma: ac A}. Theerosion Ao B is defined ajz € R" : B+ 1 C A}.

II. UNIFORM DISTRIBUTIONS

In this section, we develop our universal dyadic coding sahéor the set of uniform pdfs over finite volume sets” R™.
We first introduce the dyadic decomposition of a §ét [9], Whie the building block of our coding scheme.

Definition 1 (Dyadic decomposition)For v € Z" andk € Z, define the hypercub€).., = 27%([0, 1]" 4+ v) C R™. For a set
A C R™ with a boundary of measure zero ahd: Z, define the set

Dk(A) = {’U ez : Ck,v CA andC’k_l,Lv/gj g A},

where|v/2] is the vector formed by the entri¢s; /2]|. Thedyadic decomposition of A is the partitioning of4 into hypercubes
{Ck.»} such thatv € D,(A) andk € Z. Since every point: in the interior of A is contained in some hypercube iy the
interior of A is contained iNUycz, vep, (4)Cr,v,» and the set of points ial not covered by the hypercubes has measure zero.

Our scheme uses a universal code over the integers to erfeeg@sition and size of the hypercubes. In particular, wé wil
use the signed Elias delta code defined as folldws [2]. Let

g,y+(k) = ON H 1 H aN—-1aN—-2...0a0,
9s5+(k) = gy+(N +1) [ an—1an—2 . . . ao.

Then the signed Elias code is
1—-2k) if k<0,
g5(k) = 9o+ ( ) S
g5+(2]€) if k& > O,

whereanan_1 ... ag is the binary representation &f The length of the codewordgs (k) is
L(gs(k)) = [log(2lk| +1)] +2 [log ([log(2|k| + 1)] +1)] + 1. ®)

We are now ready to define the universal dyadic coding schemthé set of uniform pdfs.
Universal dyadic coding scheme for uniform pdfs The universal dyadic coding scheme for the set of uniforrfs paver
positive, finite volume subsetd C R” with a boundary of measure zero consists of:

1) A stochastic encoder that generateaccording to the observed uniform pdf ovér It then findsw = (k,v) such that
v € Di(A) andz € Cy,. The encoder then mag#,v) into a codewordw which consists of the concatenation of
signed Elias delta codewords férvy, ..., v,, i.e.,w = go(k,v) = gs(k) | gs(v1) || -~ || g5(vn)-
2) A stochastic decoder that upon receivingecovers(v, k) and generates according to a uniform pdf ovef’, ,.
The dyadic decomposition f@&? and the assignments of codeword to the squares are illedtiatFigure 2.
The following illustrates how our scheme is used for a giveh p

4/3  —2/3

—-2/3  4/3
the universal dyadic coding scheme for this pdf. The encfidgrgenerates a point in the ellipse uniformly at randond an
then sends the codeword representing the square contaiv@ngpint. The expected codeword length (computed by ¢saih
squares in the dyadic decomposition with side length att [2a&’) is 15.6. Note that the entropy ofV, H(W) = 6.35 is
significantly smaller since the code is universal.

Example 1. Consider a uniform pdf over the ellipsé= {z € R? : 27Kz <1}, K = . Figure[3 depicts

The length of the codeword of the universal dyadic codingeswd depends on the magnitudekoénd vy, . .., v,, (which
depends ork and||z||), hence the length can be bounded usingnd ||z||. in [9], it is shown that the expected value bf
can be bounded using the following quantity.
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Figure 3. Universal dyadic coding scheme on the unifornritigion over an ellipse.

Definition 2 (Erosion entropy) The erosion entropy of the setA by the setB, whereA C R™ with V,,(A) < co, andB C R"

is a convex set, is defined as ) .
o " 27'B
hen(4) = | Va(A©275) )) dt,

1{t>0}—
[ (120 - 2055
whereAc B ={z € R": B+x C A} is the erosion ofA by B.

If A is orthogonally convex, the erosion entropy 4fby the hypercubg0, 1] can be bounded by the expected norm of
the uniform distribution on4, as shown in the following.

Lemma 1. Let the set A C R™ be orthogonally convex with V,,(A) < oo, and let X ~ Unif(A), then
hepo(A) < (n —1)1log E[[| X|| o] —log Vi (A) + 4n.

The proof of this lemma is given in AppendiX A. We now use thesen entropy to bound the expected codeword length
of the universal dyadic coding scheme.



Theorem 1. The expected codeword length of the universal dyadic coding scheme for uniform pdfs for X ~ Unif(A) is upper
bounded as

E[L(W)] < nts (h+ E [1og (HXHOO n V}/"(A))] T 4) + 45 (1og (h+ 2 max {1ogv}/n(A), 0} + g) + 2)
< nls (h+log E[|| X[ o] + 8) + £5 (log (h + 2 max {log E[| X || ], 0} +9) +2),

where /5(t) =t + 2logt and h = he[0,1]n(A)-

Theorentdl shows that the expected codeword length depenitie @mosion entropy, the expected magnitudé&ofand the
volume of the set. Intuitively, the erosion entropy measuhe complexity of the set (or loosely speaking its surfaea &o
volume ratio). However, the erosion entropy is invariand@mshifting. Since our universal scheme is sensitive toptisition
of A as well its shape, the bound in Theorem 1 depends also on pleetexd magnitude ok. The function/s(¢) in TheorenilL
comes from the length of the Elias delta codelih (2). Othevensal codes for integers may be used in place of Elias delta
code, and result in a different bound.

We now prove Theoreifn 1.

Proof of Theorem[lt Letz € A. Consider the length of the codeword far, k) with v € D, (A) andz € Cy .. We have

z € 27%([0,1]" + v), hence||z||, > 27% max; (Jv; + 1/2| — 1/2). Since2™"* < V,,(A4), k > —(1/n)log V,,(A). Let
7 =2max{(1/n)logV,(A), 0},
then|k| < k + 7. From [2), the length of the codeword fow, k) is
L(go(v, k)) < [log(2|k| +1)] 4 2 [log ([log(2|k[ +1)] + 1)

+ i ([log(2|vi| + 1)] + 2 [log ([log(2|v;| + 1)] +1)]) +n+ 1
i=1
D loa([k] +1/2) + 2log (log([k] +1/2) + 2)
+i(log<vi+%‘+%>+210g<1og( ’ )+2>>+2n+2
< 1og(k +7+1/2)+2log (log(k +7+1/2) +2)
+ Z (log (2 (|||, +27%)) + 21log (log (2% (Jz]|, +27%)) +2)) +2n +2
< logl(_kl—i- T+ 1/2) + 2log (log(k + 7+ 1/2) +2)
+n (log (2’“ (||:10HOo + V}/"(A))) + 2log (log 2k ( ||| + Vl/"(A))) + 2)) +2n+2
=n (log (Hx”oo + V}/"(A)) +k+2+2log (log |z, + Vim(A )) +k+ 2))
+log(k+7+1/2) + 2+ 2log (log(k + 7+ 1/2) + 2)
= nls (log (||17HOO + v}/"(A)) iy 2) + 05 (log(k + 7 +1/2) +2)
where (a) follows by the fact thatlog(2|i| + 1)] < log(|2i + 1| + 1).
Let X ~ Unif(A), andV, K be such thal” € Di(A) and X € Ck . Then we have
E[L(Enc(Unif(A))] = E[L(gc(V, K)]
< nE [t; (log (X[« + VY™ (4)) + K +2)] + E 6 (log(K +7+1/2) +2)]

< nls (E [log (||X||OO + V}/”(A)ﬂ +E[K] + 2) + 05 (log(E[K] + 7 +1/2) + 2)

by Jensen’s inequality and the concavity/ef We now proceed to bound

E[K " Dy(A)].

k——oo

Consider

Z 27" Dy(A)| =27 [{v € Z™ : . C A}
l=—o0

> 2~k Hv ez Ck—l,(v—w)/2 - A}‘ .



for any w € [0,1]", sinceCy ., € Cy_1, (v—w)/2- NOte that the(v — w)/2 in the subscript may not have integer entries. The
same definition of” , = 27%(]0,1]" + v) can still be applied, however. Also

/[ o€z O ooy € 4} = Z/[ R
0,1]™ 0,1]"

vEL™

- 2"/ 1{Ch1.0 C A} duw
= 272070y, (A6 [0, 27 )n)

= onky, (A oo, 2—““—1)]") .

Hence N
S22 Du(A) 2V, (4 o260
l=—00
and -
> 27 Di(A)] < Vi(4) = Vi (A [0, 2750
l=k+1
As a result,
EIK] = 5y O ko2 DA
n k=—o0
00 k
- 1(A) 3 <1 k> 0}Va(4) = 3 27 |Dl(A)|>
n k=—o0 l=—00
<3 1(A) i (1462 0} Va(4) = Vo (46 0, 27 % 1))
" k=—o0
< V#(AU / (1{t >0}V, (A) =V, (Ac[0,271")) dt + 2
- h@[O,l]"(A) + 2
We have

E[L(W)] < nls (h +E [1og (HXHOO + V}/"(A))] + 4) 40 (1og (h + 2max {1ogv,1/”(,4), o} + 5) + 2) .
It remains to boundJ}/"(A) by E[|| X||.]. By the Markov inequality,
1 1/n 1 1/n
E[IX]) > 7VA/"(4) - P IIX ] > TVH"(4)

Va {x cA: |zl > (1/4)\/}/"(,4)}

_ l 1/n
=g V.. (4)
1 Va(4) = ((1/2)v2/"(4))
> 2V,/M(A) -
4" V. (A)
> LVIn(A) 3
Hence,
5
E[L(W)] <nls (h+1ogE[||X]| ] +4 +1og9) + ¢s (log (h + 2max {log E[|| X| ] + 3, 0} + 5) + 2) . (4)
This completes the proof of the theorem. [ |

Combining LemmdJl and Theorel 1, we can bound the expectefhlesf the universal dyadic coding scheme for
orthogonally convex sets.



Corollary 1. The expected codeword length of the universal dyadic coding scheme for uniform pdfs applied to an orthogonally
convex A C R™ is upper bounded as

E[L(W)] < nls ((n—1)logr +log(||2|, +7) —log V. (A) +4n + 8)
+ 45 (log ((n — 1) logr 4+ 2max {r, 0} —log V,, (A) +4n+9) + 2).
for any & € R™, where {5(t) =t + 2logt and r = E[|| X — Z|| ]
Proof of Corollary[ll By Lemmall,
hepo (A) < (n—1)1og E[| X — 2| ] —log Vn(A) + 4n.

By Theorent1L,
E[L h+ log ( 1X]|.] + v}/”(A)) + 4) + 05 (log (h + 2max {1ogv}/"(A), o} + g) + 2)
< nls(h+logE[|| X| ]+ 8) + £5 (log (h + 2max {log E[|| X — Z|| ], 0} +9) +2)
< nls((n—1)logE[||X — &[]+ log E[[ X|| ] — log Vi (A) + 4n + 8)
+ 45 (log ((n —1)log E[|| X — 2| ] + 2max {log E[| X — &[], 0} —log V,(A) +4n+9) +2).
[ |
An added benefit of our universal dyadic coding scheme isithat can be generated in a distributed manner. Suppodse
is ann-dimensional vectoX, ..., X,, and instead of having one decoder wishing to genekateve haven decoders that all

receiveW and decodef wishes to generate only(;, ¢ € [1 : n]. Such distributed generation is possible using our unalers
dyadic coding scheme since decoderan generateX; uniformly over the interval2=%v;, 2=%(v; + 1)] without any need
to cooperate with other decoders. [n [9]. we described a idydecomposition coding scheme for distributed generatioa
given pdf. The scheme in this paper differs from that[in [9k&veral aspects.

e The scheme in this paper is universal, while the schemglis[8pnstructed for a given pdf known to both the encoder
and the decoders.

e In [9] we used an optimal prefix free code, such as Huffman ctalencode the hypercubes, while in this paper we use
a universal code over the integers since the distributiotherhypercubes is known a priori.

e In [9], we can perform scaling (and bijective transformagipon each variablé&’; before applying the dyadic decompo-
sition scheme. It is not possible to perform such prepracgdsere since the decoder would not know the scaling factor
or the bijective transformation used.

e In the analysis of the expected codeword length[in [9], ifise$§ to consider only the distribution of the sizes of the
hypercubes. In our universal scheme, both the size and thiiggoof the hypercube affect the length of the codeword
assigned to it.

IIl. NON-UNIFORM DISTRIBUTIONS

In this section, we extend the results of the previous sedtiothe case where the pdf &f = (X;,...,X,,) is selected
from a set of arbitrary (not necessarily uniform) pdfs. They kdea in extending our scheme is the following. Note that in
general, any pdf can be written as a mixture of uniform pdfst £ ~ fz, where fz(z) = V, (LT (f)) for = > 0 and
LY(f) ={x e R": f(z) > z} is the superlevel set of. Let X|{Z = z} ~ Unif(LI(f)), then we haveX ~ f(z). Hence
f(z) can be expressed as a mixture of uniform distributions dvetf) for different values ofz. Alice can first generate
Z ~ fz, then apply the universal dyadic coding scheme for uniforstridutions onL/,(f). The scheme is formally defined
as follows.

Universal dyadic coding scheme for general pdfsThe universal dyadic coding scheme for the set of almostyexere
continuous pdfs? consists of:

1) A stochastic encoder that generafescccording to the observefl and Z ~ Unif[0, f(Z)], and finds(k, v) such that

v € Di(LE(f)) andz € Cy,. The encoder mapék, v) into a codewordw that consists of the concatenation of the
signed Elias delta codewords féruvy, ..., v, i.e.,w = go(k,v) = gs(k) || gs(v1) || -+ || gs(vn).

2) A stochastic decoder that upon receivingecovers(v, k) and generates uniformly overCy, ,,.

We illustrate this scheme in the following.

Example 2. Assume that the selected pdf is Gaussian with zero mean dhdaniance. Figur&l4 depicts the universal dyadic
coding scheme for this pdf. The horizontal and vertical axegsesent: and z, respectively. The encoder sends the codeword
for the rectangle containin@:, z). The expected codeword length (computed by listing allrirtts in the dyadic decomposition
with length at leas2—29) is 7.06.

As a consequence of Theoréin 1, we have the following boundh@mexpected codeword length.
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Figure 4. Universal dyadic coding scheme &f{(0, 1).

Theorem 2. The expected codeword length of the universal dyadic coding scheme for X ~ f(x) is upper bounded as
E[L(W)] <nls (Ez[h] +logE[|| X|| ] + 8) + £5 (log (Ez [h] + 2 max {log E[|| X|| ], 0} + 10) + 2),
where (5(t) =t + 2logt and h = hgjo,15- (L% (f)) is a random variable, where Z ~ fz, fz(z) = V(LI (f)) for z > 0.
Proof: Using [4),
E[L(W)] <nEz[l;s (h+1ogE[||X] | Z] +8)] + Ez [{s (log (h + 2max {log E[|| X | ], 0} + 8.5) + 2)]
< nls (Ez [h] +1ogE[|| X|| ] + 8) + €5 (log (Ez [h] + 2 Ez [max {log E[|| X|| . | Z], 0}] + 8.5) + 2).
To boundE 7z [max {log E[|| X || | Z], 0}], define a concave functiop: [0, c0) — [0, 00),
R

Note that
max{logt, 0} < ¢(t) < max{logt, 0} + e 'loge.

Hence,
Ez [max {log E[|| X|| , | Z], 0}] < Ez [q(E[[|X|| | Z])]
< q(E[l[ X))
< max {log E[|| X|| ], 0} + e 'loge.

Note that we also neeflf (f) to have a boundary of measure zero for almost aih order for the coding scheme to succeed
almost surely. This is implied by the almost everywhere icwity of f(x). The proof of this claim is given in Appendix] B.
[ |
We can also generalize Corolldry 1 to orthogonally concaifs pwhich includes quasiconcave pdfs) as follows.

Corollary 2. The expected codeword length of the universal dyadic coding scheme for X ~ f(x), where f is orthogonally
concave, is upper bounded as

E[L(W)] < nls ((n— 1)logr + log([| ||, +7) + h(Z) + 4n + 8)
+ 05 (log ((n — 1) logr + 2max {logr, 0} + h(Z) + 4n + 10) + 2).



for any & € R", where (5(t) = t + 2logt, r = E[|X — &|| ], Z ~ fz, fz(2) = VL. (LI(f)) for z > 0. As a result, if
sup,, f(z) < oo,

E[L(W)] < nls ((n —1)logr +log(||z| ., +7) +logsup f(x) 4 4n + 8>
+ 45 <1og <(n —1)logr + 2max {logr, 0} + logsup f(z) + 4n + 10> + 2> .

IV. BOUNDED SUPPORTDISTRIBUTIONS

In this section, we present a variant of the universal dyaditing scheme for a set of distributions with a uniform bound
on their support. Without loss of generality, assugfeconsists of the set of pdfs ovér, 1]™. Since thev in the definition of
our universal dyadic coding scheme (corresponding to ttsitipon of the hypercube) is bounded, we can use a fixed length
code to encodéuvy, ..., v,). This allows us to reduce the expected codeword length.
Universal dyadic coding scheme for pdfs over the unit hypenebe. The universal dyadic coding scheme for pdfs oed]"
consists of:

1) A stochastic encoder that generatesiccording to the observefl and z ~ Unif|0, f(Z)] and finds(k,v) such that

v € Di(LI(f)) andz € Cy,. The encoder then magé, v) into a codeword which consists of the concatenation of

the unsigned Elias gamma codeword fo# 1, and thek-bit binary representations af;, . .., v,, i.e.,w = go(k,v) =
Gyt (B +1) | gok(v1) || -+ |l gv,x(v1), Wheregy, 1 (4) is the binary representation ofwith % bits, possibly with leading
zeros.

2) A stochastic decoder that upon observingecovers(v, k) and generates uniformly overCy, .
Since the length of the unsigned Elias gamma codewo(# + 1) is 2 [log(k + 1)] + 1, the length ofw is

L(w) = nk +2|log(k+1)| + 1.
The expected codeword length is upper bounded as follows.

Theorem 3. The expected codeword length of the universal dyadic coding scheme for pdfs over the unit hypercube for
X ~ f(x), where f is orthogonally concave, is upper bounded as

E[LW)] <n(h(Z)+1logn +loge+2)+ 2log (h(Z) + logn + loge + 3) + 1,
where Z ~ fz, fz(z) = V(LT (f)) for z > 0. As a result, if sup, f(z) < oo,

E[LW)] <n (logsupf(:c) —|—1ogn—|—1oge+2) + 2log (logsupf(a:) —|—1ogn—|—1oge+3) +1

Proof: In [9] (Theorem 1), it was shown that the erosion entropy fiahagonally convexA is bounded as

hejo,1n (A) < log ( 1V ) ! +loge,

whereVP\;(A) = {(@1,...,Zi—1,Tiy1,...,Tn) : © € A} Let Z ~ fz, fz(2) = V. (L} (f)), then
hepan (L7 (f)) < —log Vi (LE (f)) +logn + loge.

Hence

<nE[K]+ 210g(E[K] 1)+

< n (Elhgjon (L3 ()] +2) + 2log (Elhefo,un (L2 ()] +3) +1

< n (E[~log V,, (L% (f))] +1logn +loge + 2) + 2log (E[—log V,, (L% (f))] + logn + loge + 3) + 1
n (h(Z) +logn +loge + 2) + 2log (h(Z) + logn + loge + 3) + 1.

As an example, we apply this result to simulating the Beltesta Application[1
f(z]6) = 7w max{cos(2m(z — 0)), 0},

fitted to the interval0, 1]. Although this pdf is not orthogonally concave, it can beateposed into at most two orthogonally
concave parts with disjoint support, hence the expecte@éwod length is the weighted average of the expected codkewor
lengths for those two pieces, which incurs a penalty of attridsit. By Theorem[(B),

E[L(W)] <logm+loge + 2+ 2log (logm + loge + 3) + 2 ~ 12.31.

Figure[® plots the numerical values BflL(W)] versusf computed by listing all intervals in the dyadic decompasitivith
length at leasR~!7. As can be seerk [L(W)] < 8.96 for all 6.
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Figure 5. Universal dyadic coding scheme for pdfs over thié hypercube applied to the simulation of the Bell state.

V. LOWERBOUND ON EXPECTED CODEWORDLENGTH
In the previous sections we focused on schemes for univegsadte generation of continuous random variables and upper
bounds on their expected codeword length. In this secti@establish a lower bound on the expected codeword length tha

every remote generation scheme must satisfy.
Consider a universal remote generation coding scheme watlefac-free codeword set' C {0, 1}*. Upon receivingw € C,
Bob generates(|{W = w} ~ p,, according to a distributiop,, (dx). Define theimplied distribution of this scheme as

i) = (¥ 24”3 ot

w'eC wel
We now show that the expected codeword lenigfiZ (1)) is lower bounded by the relative entropy betweeand py, .

Theorem 4. For a universal remote generation scheme with an implied distribution py,,, the average codeword length for

p e £ islower bounded as
E,(L(W)) > D(p||pmm).

Proof: Consider the input distributiop. Assume the encoder outputswith probability a(w). Thenp =3 .~ a(w)puw,
Ep(L(W)) = > e alw)L(w). By convexity of relative entropy,

D(p|lpm) = D <Z a(w)puw |p1m>

wel

< a(w)D (pul|pm)

wel

gZawLw

wel
= Ep(L(W)).
|

Consider the (unbounded support) dyadic universal code iffiplied distribution in this case is described by a fidf(x) o
2] (log ||:c||oo)72”. Theoreni# gives the lower bound on the expected codewogdHeor generatingX ~ f,

D (fx || fim) = h(X) + nE [£5(log [ X]| )] -

Comparing this to Theoref 1, we see that the upper bound s ¢the lower bound whepX || _ is the dominant term.
Note that Theorerfil4 continues to hold even when Alice and Beba#lowed to share unlimited common randomness
(denoted by the random variab{@). Suppose the prefix-free codeword set whgn= ¢ is C, C {0,1}*. Upon receiving
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w € C, Bob generateX |{Q = ¢, W = w} ~ pg..,. The implied distribution is

Prm(dz) / ( > 2o ““)) > 27 M5, 4 (da)pg (dg).

w'eCy weCy
Theorent# still holds due to the convexity of relative enyrdpomparing this lower bound to the average length of thectijn
sampling scheme in[8] (which requires common randomnegsh achieves
Ep(L(W)) < D(pllp") + 21log(D(pllp*) + 1) + O(1)

for somep*. Hence, the lower bound is quite tight when unlimited commamdomness is allowed.

APPENDIX
A. Proof of Lemmal[]l

The lemma is trivial whem = 1 since A can only be an interval. Hence we assumg 2.
From the definition of erosion entropy,

hoppa (A) = /_°° (1 is0p Vo (A\?j(;l)[o, 1]n)) B

[ ()

O 1 [T e g
Ot | o) ava (a0
! - ; n—i i n—i+1 i—1
_Vn(A)/O (logs) - d ;( n (A {0} % [0,5]") = V,, (A6 {0}~ x [0, 5] )))
1

:vn(A)/o (~logs) Zvn-lp\i%@[&s]”)) ds

where (i) is by substituting = 27, andP\;(A) = {(z1,...,@i—1, Tip1,...,2n) : € A} CR" 1 Let

| T Ve P40 (047
ale) = V()

Then we havef;~ q(s)ds = 1, fo (—log s)q(s)ds = hgo,1»(A). Also

E (x|, / | do

- Vn(A) /000 ;S </Ae[0 ” lxlooda:> ds
ol < [ |a:|ooda:>
= Vn_(lA) /ooo zj; a(zi </A@[07511x»~[o,sn1 Hf[l:nJ\iHoodév>

1 o
]\ d nl\i d
"(A)/O <1z_:/\1(,4@[05] [EEN Hoo Z ]\) S

1 ° 1 n—
w ) (Sevemreacn)s
n i=1

n /(n=1)
1 *  in-1) n

=1

(8150-,8n)=(8,...,5)

<

v
<

>~

_ énfl/mfnvgl/(nfl)(A)/ =D (5)ds,
0



where (i) is by [[B) in the proof of Theorernl (1). Let
ils) = {Wog ) (-

0
where = ¢"27", h = hgg 1y (A). Then [° G

00 B
0 0

log (s/5))" "

s)ds =1, fo

qn/(n—l) (S)dS

i B B —1 3

Eﬁ([;a@rﬁw”mﬁ ((A @@W”"l%k> |
5 1)

= () (=1 g 5 () (n=1)

(A (s d) (A (s <>d>
= (n(grmy 0y Y (Uoge)l(ﬂI(nD 1t
> (n (ﬂl—x(n))fl/(nfl))—l/(ﬂ—l) <(loge)1 (8T(n)) 1/(n
= (n (BT )" (10ge) ™ (Br(m) "

=n (B0 (n)) /Y,

where (i) is by weighted power mean inequality. As a result,

El1X1]

Y

0
1

>

-8

h<(n—-1)
= (n—1)log E[[[X] ] —log Vi (4) +3(n—1) — (n
< (n=1)IogE[[[X|[ ] —log Vi(4) +3(n = 1) = (n
=(n—1)logE[| X, ] —1logV,(A) +3(n —1) +2logn + loge
< (n— 1) logE[| X ] — log Va(4) + dn.

B. Proof of the claim on measure zero boundary in Theorem[2

12

if s<p
if s> 1,

—log s)q(s)ds = h. Hence,

n/(n-1)
@WWD@@vaw>w>

n/(n—1)

n/(n—1)

n/(n—1)

%n—1/<"—1>v;/<"—1>(A)/ "= (8)ds

_n(n—2)/(n—1)V:l/(n—l)(A) (enz—hr(n))_l/(n_l) ’

1
n—1 (10gE [ X]|] — log (§n("_2)/("_1)v,1l/("_1)(A))) +logI'(n) + nloge

—2)logn +1logT'(n) + nloge
—2)logn+ (nlogn — (n—1)loge) +nloge

We will prove that if f is a pdf which is continuous almost everywhere, theh( f) has a boundary of measure zero for
almost allz. Assume the contrary that there exist an uncountabie [0, oo) such that/,,(0L} (f)) > 0 for all = € G (note that
OLt(f)is aBorel set and thus measurable). Then we show that thists ex# 2, € G such thatv,,(OLY (f)NOLL (f)) >0
(which follows from o-finiteness, though we include a proof here for completéndss show the claim, note that for any

z € G, there exists a hypercubj@, 1] + v, v € Z" such tha®L} (f)N
hypercubd0, 1] + v such tha® L1 (f)N ([0, 1]" +

([0, 1]+

collection of positive numbers must contain a finite sukemilbn with sum greater than 1, we can select . .,
([0,1]™ +v)) > 1, and hence there exists two of these sets with an intersecfioonzero measure.

22 Va(OLZ ()N

v) has nonzero measure. Hence there exists a
v) has nonzero measure for an uncountable setsofSince an uncountable

zm Such that

Now we havez; < z, € G such thatV,, (OLF (f) N OLL, (f)) > 0. Assume there exists in the intersection at which
[ is continuous, since: € 9L, (f), there exist sequencg — = with f(y;) > 22, and hencef(z) > z. Also since

x e LY (f) € cl{y : f(y) < =1}, there exist sequencg — z with f(7;)

< z1, and hencef(z) < z;, leading to a

contradiction. Thereforg is discontinuous i0L7 (f) N dL],(f), contradicting the assumption thatis continuous almost

everywhere. Thereforé?(f) has a boundary of measure zero for almostzall
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