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Abstract

In this paper, we propose an information-theoretic approach to design the functional representations

to extract the hidden common structure shared by a set of random variables. The main idea is to measure

the common information between the random variables by Watanabe’s total correlation, and then find the

hidden attributes of these random variables such that the common information is reduced the most given

these attributes. We show that these attributes can be characterized by an exponential family specified by

the eigen-decomposition of some pairwise joint distribution matrix. Then, we adopt the log-likelihood

functions for estimating these attributes as the desired functional representations of the random variables,

and show that such representations are informative to describe the common structure. Moreover, we

design both the multivariate alternating conditional expectation (MACE) algorithm to compute the

proposed functional representations for discrete data, and a novel neural network training approach for

continuous or high-dimensional data. Furthermore, we show that our approach has deep connections

to existing techniques, such as Hirschfeld-Gebelein-Rényi (HGR) maximal correlation, linear principal

component analysis (PCA), and consistent functional map, which establishes insightful connections

between information theory and machine learning. Finally, the performances of our algorithms are

validated by numerical simulations.
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Fig. 1: The division of images into 8× 8 = 64 overlapping subareas. Each subarea has 6× 6
pixels, and nearby subareas overlap with 3 pixels.

I. INTRODUCTION

Given a set of d discrete random variables Xd = (X1, . . . , Xd) with the (unknown) joint

distribution PXd , and a sequence of observed sample vectors x(`) = (x
(`)
1 , . . . , x

(`)
d ) i.i.d. generated

from this joint distribution, for ` = 1, . . . , n, our goal in this paper is to efficiently and effectively

extract the hidden common information structure (or simply called common structure) shared

by these random variables from the observed sample vectors. This is a typical unsupervised

learning problem, and such common structures can be useful in many machine learning scenarios.

As a motivating example, in the MNIST digits recognition problem [1], we often divide the

images into overlapping sub-images, such as in Fig. 1, and then train feature functions on the

sub-images for learning the digits. In this problem, we can view each sub-image as a random

variable Xi, and the training images as the observed data vectors. Since these sub-images are

constructed from the written digits, the digit is the key common information shared by these

sub-images. Therefore, effectively mining the information of the shared structure among these

random variables can be helpful for recognizing the digits.

In addition, the concept of extracting common structure shared by multiple random variables or

objects has also appeared or implicitly posted in several disciplines. For instance, linear principal

component analysis (PCA) [2], the most widely adopted unsupervised learning technique, can

be viewed as resolving a principal direction that conveys the most common randomness among
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different dimensions of data vectors. In addition, the consistent functional map network [3]–[5],

a recently proposed effective approach in computer vision, takes each Xi as a shape, and aims

to find the shared components among different shapes. The main issue behind these problems

is: how to design good low-dimensional functions of the random variables Xd, such that these

functional representations are effective to reveal the common structure among these random

variables. This can also be viewed as the unsupervised dimension reduction problem with the

particular focus on extracting the common information of random variables. In this paper, our

goal is to apply the ideas from information theory to design good algorithms for finding such

useful functional representations.

Our approach can be delineated in the following steps. Firstly, we want to identify the targeted

random variable U embedded in the random variables Xd with some joint distribution PUXd ,

such that U contains much information about the common structure shared by Xd. For this

purpose, we apply the Watanabe’s total correlation (or simply called the total correlation [6])

to measure the amount of information shared by multiple random variables, and then find the

optimal embedded U such that the reduction of the total correlation given the knowledge of

U is maximized. To extract the effective low-dimensional features, we restrict the information

volume of U about X1, . . . , Xd to be small, so that we can concentrate on the most “learnable”

part of information about the common structures from the data. We show that in this small

information rate regime of U , the optimal embedded U can be characterized by an exponential

family induced by the largest eigenvector of a pairwise joint distribution matrix. Then, we apply

the log-likelihood function of estimating U from X1, . . . , Xd in this exponential family as the

functional representation for extracting the common structure. Since U is informative about the

common structure and the log-likelihood function is the sufficient statistic of the observed data

vectors about the target U , such a functional representation is effective to extract the common

structure shared by these random variables. In addition, we extend this approach to searching for

a sequence of mutually independent random variables Uk = (U1, . . . , Uk), such that the reduction

of the total correlation is maximized. It turns out that the log-likelihood functions for estimating

Uk precisely correspond to the top k eigenvectors of the pairwise joint distribution matrix, which

establishes a decomposition of the common information between multiple random variables to

principal modes of the pairwise joint distribution matrix.

Moreover, we demonstrate that these functional representations can be directly computed from

the observed data vectors by a multivariate alternating conditional expectation (MACE) algorithm,
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which generalizes the traditional ACE algorithm [7] to more than two random variables. This

offers an efficient and reliable way to compute useful functional representations from discrete

data variables. Furthermore, for high-dimensional or continuous data variables such that the

conditional expectations are hardly accurately estimated from the limited data samples, we show

that the functional representations can be computed through neural networks by optimizing a

pairwise correlation loss. This offers a novel neural network training architecture for jointly

analyzing multi-modal data.

Finally, we show in Section IV that our approach shares deep connections and can be viewed

as generalizations to several existing techniques, including the Hirschfeld-Gebelein-Rényi (HGR)

maximal correlation [8], linear PCA, and consistent functional map network. This combines

the knowledge from different domains, and offers a unified understanding for disciplines in

information theory, statistics, and machine learning. We would also like to mention that the idea

of studying the tradeoff between the total correlation and the common information rate was also

employed in [9] [10] for Gaussian vectors in caching problems, while our works investigate this

tradeoff for general discrete random variables. Moreover, the correlation explanation (CorEx)

introduced by [11] also applied the total correlation as the information criterion to unsupervised

learning. In particular, the authors in [11] solved an optimization problem by restricting the

cardinality of U , and a rather complicated iterative algorithm was derived. On the other hand, in

this paper we restrict the information volume contained in U , which is a more natural constraint

in information theory, and we obtain clean analytical solutions that can be computed by simple

and efficient algorithms.

In the rest of this paper, we introduce the details of our information theoretic approach for

extracting the common structure via functional representations, and present the resulted algorithm

design, as well as their applications to practical problems.

II. THE INFORMATION THEORETIC APPROACH

Given discrete random variables Xd = (X1, . . . , Xd) with the ranges X d , X1 × · · · × Xd and

joint distribution PXd , we model the common structure shared by these random variables as a

high-dimensional latent variable W , in which the random variables X1, . . . , Xd are conditionally

independent given W , i.e., PXd|W = Πd
i=1PXi|W , as depicted in Fig. 2. Our goal is to learn

this common structure from i.i.d. sample vectors generated from PXd . Since the correlation

between W and Xi’s is generally complicated, it is difficult to directly identify and learn the
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Fig. 2: The random variables X1, . . . , Xd are conditional independently generated from some
hidden structure W .

structures of W without the labels and assumptions on the generating models of Xi’s as in the

unsupervised learning scenarios. Therefore, instead of identifying the high-dimensional latent

variable W , we focus on learning the low-dimensional random variable U that contains much

common information shared between Xi’s, which can be viewed as the informative attribute for

the common structure.

To identify such variable, we apply the total correlation1 [6] to measure the amount of common

information shared between multiple random variables. Then, the amount of information that an

attribute U contains about the common structure shared by the random variables Xi’s is measured

by the reduction of the total correlation given the knowledge of U , defined as

L(Xd|U) , D(PXd‖PX1 · · ·PXd
)−D(PXd‖PX1 · · ·PXd

|U). (1)

Our goal is to identify the targeted random variable U with the information rate constraint2

I(U ;Xd) ≤ δ, for some given δ, such that the reduction of the total correlation is maximized.

This can be formulated as the optimization problem:

max
P
UXd

L(Xd|U), (2a)

subject to: I(U ;Xd) ≤ δ. (2b)

1Specifically, for random variables X1, . . . , Xd, the total correlation is defined as the Kullback-Leibler (K-L) divergence
D(PX1···Xd‖PX1 · · ·PXd) between the joint distribution and the product of the marginal distributions.

2Note that I(U ;Xd) measures the amount of information of U about the whole Xd, while L(Xd|U) measure the amount of
information only about the common structure. The constraint I(U ;Xd) ≤ δ allows us to focus on low-dimensional attribute of
W , in which we typically choose δ to be small.
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In particular, we would like to focus on the low-rate regime of U , which assumes δ to be small.

This allows us to concentrate on the most representative low-dimensional attribute for describing

the common structure. In addition, we make an extra constraint that

min
u
PU(u) > γ, (3)

for some finite γ > 0 irrelevant to δ, which is natural for many machine learning problems.

While the optimization problem (2) in general has no analytical solution, in the regime of small

δ, it can be solved by a local information geometric approach, in which the optimal solutions

can be specified by the eigen-decomposition of some pairwise joint distribution matrix.

A. The Local Information Geometry

To delineate our approach and results, we define the matrix B from the pairwise joint

distributions as

B =


I(1) B12 · · · B1d

B21 I(2) · · · B2d

...
... . . . ...

Bd1 Bd2 · · · I(d)

 (4)

where I(i) are |Xi|×|Xi| identity matrices, for all i, and Bij are (|Xi|×|Xj|)-dimensional matrices

with the entry in the xi-th row and xj-th column defined as, for all i 6= j,

Bij(xi;xj) =
PXiXj

(xi, xj)√
PXi

(xi)
√
PXj

(xj)
.

The eigen-decomposition of the matrix B has the following properties.

Lemma 1. Let the eigenvalues and eigenvectors of the matrix B be λ(0) ≥ λ(1) ≥ · · · ≥ λ(m−1)

and ψ(0),ψ(1), . . . ,ψ(m−1), respectively, where m ,
∑d

i=1 |Xi| is the dimensionality of B. In

addition, let vi be the |Xi|-dimensional vector such that vi(xi) =
√
PXi

(xi), then

1) B is a positive semidefinite matrix, i.e., λ(m−1) ≥ 0.

2) The largest eigenvalue λ(0) = d with the corresponding eigenvector ψ(0) = 1√
d

[
vT1 , . . . ,v

T
d

]T.

3) The second largest eigenvalue λ(1) ≥ 1.

4) The last d − 1 eigenvalues λ(m−d+1) = · · · = λ(m−1) = 0, and the subspace of the

corresponding d− 1 eigenvectors is spanned by the vectors ψ =
[
α1v

T
1 , . . . , αdv

T
d

]T, such

that the scalars αi’s satisfy
∑d

i=1 αi = 0.
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5) For each 1 ≤ ` ≤ m − d, if we partition the corresponding eigenvector ψ(`) into |Xi|-

dimensional subvectors ψ(`)
i , such that

ψ(`) =


ψ

(`)
1

...

ψ
(`)
d

 , (5)

then ψ(`)
i is orthogonal to vi, for all i.

Proof. See Appendix A.

It will also be convenient to define the matrix B̃:

B̃ , B− d ·ψ(0)(ψ(0))T. (6)

Then from Lemma 1, the eigenvalues of B̃ are λ(1) ≥ · · · ≥ λ(m−d) ≥ 0 = λ(m−d+1) = · · · = λ(m),

with the corresponding eigenvectors ψ(1), . . . ,ψ(m−1),ψ(0). Moreover, we define a collection of

functions f (`)
i : Xi 7→ R as

f
(`)
i (xi) =

ψ
(`)
i (xi)√
PXi

(xi)
, for all i, `, (7)

where ψ(`)
i is the i-th subvector of ψ(`) as defined in (5). Then, it follows from Lemma 1 and (7)

that f (`)
i (Xi)’s are zero-mean functions and

∑d
i=1 E[(f

(`)
i (Xi))

2] = 1. In addition, these functions

induce an exponential family of joint distributions for U,Xd.

Definition 1. Let H be the set of functions h : U 7→ R with zero mean and unit variance. Then,

an exponential family P(δ)
exp on U,Xd is defined as

P(δ)
exp =

{
1

Z
PU(u)PXd(xd) · exp

(
√

2δ
h(u)√
λ(1)

d∑
i=1

f
(1)
i (xi)

)
: h ∈ H

}
,

where Z is the normalizing factor.

Note that this also defines a family of random variables U embedded in Xd corresponding to

the collection of distributions in P(δ)
exp. It turns out that this exponential family characterizes the

optimal solution of (2) in the regime of small δ, which is demonstrated as follows.

Theorem 1. The optimal value of (2a) is

max
P
UXd

L(Xd|U) = δ
(
λ(1) − 1

)
+ o(δ), (8)

which is attainable by the distributions in P(δ)
exp. Moreover, for any distribution PUXd achieving (8),
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there exists a distribution P̂UXd ∈ P(δ)
exp, such that for all (u, xd) ∈ U × X d,∣∣∣PUXd(u, xd)− P̂UXd(u, xd)

∣∣∣ = o
(√

δ
)
.

Proof. See Appendix B.

From Theorem 1, the family of random variables U embedded in Xd defined by P(δ)
exp are

the set of attributes that contain the most amount of information about the common structure

shared by Xd. To extract such information from data, we consider the log-likelihood function to

estimate U from Xd:

log
PXd|U=u(x

d)

PXd(xd)
=

√
2δh(u)√
λ(1)

d∑
i=1

f
(1)
i (xi) + o

(√
δ
)
. (9)

Although the log-likelihood functions for different U = u in the exponential family P(δ)
exp may

have different magnitudes due to h(u), all of them are proportional to the functional representation∑d
i=1 f

(1)
i (xi) of the data vectors. This can be interpreted as the 1-dimensional subspace of the

functional space of Xd that is the most informative about the shared structure. This is similar

to what linear PCA [2] aims to achieve in the space of data, while we are searching for the

optimal subspace of the general functional space. Later on we will show that our result is indeed

a nonlinear generalization of linear PCA.

In addition, note that ψ(1) is the second largest eigenvector of B, which maximizes ψTBψ

over all unit vectors ψ orthogonal to ψ(0). This implies that the functions f (1)
i (Xi) defined

from (7) form the optimal solution of the joint correlation optimization problem:

max
fi : Xi 7→R, i=1,...,d

E

[∑
i 6=j

fi(Xi)fj(Xj)

]

subject to: E [fi(Xi)] = 0, i = 1, . . . , d,

E

[
d∑
i=1

f 2
i (Xi)

]
= 1, i = 1, . . . , d.

Therefore, the functional representation f (1)
i (Xi) essentially searches for a 1-dimensional subspace

for each functional space of Xi, such that the joint correlation between these subspaces is

maximized. As a consequence, these subspaces and the corresponding functional representations

convey much information about the common structure shared among these random variables.
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B. The Informative k-dimensional Attributes

In addition to the largest eigenvector ψ(1), the rest eigenvectors of B̃ essentially lead to

functional representations, which correspond to informative k-dimensional attributes for the

common structure. To show that, we consider the optimization problem for k-dimensional

attribute Uk = (U1, . . . , Uk):

max
P
UkXd

L
(
Xd|Uk

)
, (10)

where L
(
Xd|Uk

)
is as defined in (1), and the maximization is over all joint distributions

PUkXd such that the constituent variables Ui with ranges Ui, for i = 1, . . . , k, satisfy: 1) δ ≥

I(U1;X
d) ≥ · · · ≥ I(Uk;X

d); 2) minui∈Ui PUi
(ui) > γ for all i = 1, . . . , d and some constant

γ > 0 independent of δ; 3) U1, . . . , Uk are mutually independent variables; 4) U1, . . . , Uk are

conditionally independent variables given Xd. To solve the optimization problem (10), we define

the following exponential family for k-dimensional attributes.

Definition 2. Let Hi be the set of functions hi : Ui 7→ R with zero mean and unit variance, for

i = 1, . . . , k. Then, an exponential family P(δ)
exp,k on Uk, Xd is defined as

P(δ)
exp,k =

{
1

Zk

[
k∏
j=1

PUi
(ui)

]
PXd(xd) · exp

(
√

2δ

k0∑
`=1

h`(u`)

k0∑
j=1

qj`√
λ(j)

d∑
i=1

f
(j)
i (xi)

)

: h` ∈ H`,Q = [qij]k0×k0 ,Q
TQ = Ik0

}
,

where f (j)
i (xi) is as defined in (7), Zk is the normalizing factor, k0 = min{k, k∗} and

k∗ , max
{
i : λ(i) > 1

}
.

Then, the exponential family P(δ)
exp,k characterizes the optimal solutions of (10).

Theorem 2. The optimal value of (10) is

max
P
UkXd

L
(
Xd|Uk

)
= δ

(
k0∑
`=1

λ(`) − k0

)
+ o(δ), (11)

which is attainable by the distributions in P(δ)
exp,k. Moreover, for any distribution PUkXd achiev-

ing (11), there exists a distribution P̂UkXd ∈ P(δ)
exp,k, such that for all (uk, xd) ∈ U1×· · ·×Uk×X d,∣∣∣PUkXd(uk, xd)− P̂UkXd(uk, xd)

∣∣∣ = o
(√

δ
)
.

Proof. See Appendix C.
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Note that from Definition 2 and Theorem 2, when k > k∗, the optimal solution is to design

PUk∗Xd to follow the distributions in P(δ)
exp,k∗ , and let the last k − k∗ attributes Uk∗+1, . . . , Uk be

independent of Xd. This implies that only the top k∗ attributes can effectively reduce the total

conditional correlation, which leads to an intrinsic criterion for designing the dimensionality k

of the attributes.

Moreover from Definition 2, the log-likelihood functions for the optimal attributes correspond

to the functional representations
∑d

i=1 f
(`)
i (xi), for ` = 1, . . . , k. This generalizes (9) for providing

the informative k-dimensional representations about the common structure shared by X1, . . . , Xd.

Furthermore, it is shown in Appendix D that the functions f (`)
i as defined in (7) form the optimal

solution of the following optimization problem:

max
f
i
: Xi 7→Rk, i=1,...,d

E

[∑
i 6=j

fT

i
(Xi)f j(Xj)

]
(12a)

subject to: E
[
f
i
(Xi)

]
= 0, for all i, (12b)

E

[
d∑
i=1

f
i
(Xi)f

T

i
(Xi)

]
= Ik, (12c)

where Ik is the k-dimensional identity matrix. Therefore for i = 1, . . . , d, the functional

representations f (`)
i (Xi), ` = 1, . . . , k, form the k-dimensional functional subspace of Xi, such

that the joint correlation between these subspaces for different Xi’s is maximized.

Example 1 (Common Bits Patterns Extraction). Suppose that b1, . . . , br ∈ {1,−1} are mutually

independent Bern(1
2
) bits, and each random variable Xi = bIi , (bj)j∈Ii is a subset of these

random bits, where Ii ⊆ {1, . . . , r} denotes the index set. Then, our information theoretic

approach essentially extracts the bit patterns that appear the most among the random variables

Xd. To show that, we define w(I) as the number of sets Ii (i = 1, . . . , d) that include I, i.e.,

w(I) ,
d∑
i=1

1{I⊂Ii}, (13)

where 1· is the indicator function. In addition, we denote ∅ = J0, . . . ,J2r−1 as the 2r subsets of

{1, . . . , r} with the decreasing order d = w(J0) ≥ w(J1) ≥ · · · ≥ w(J2r−1). Then, it is shown

in Appendix E that the eigenvalues for the corresponding matrix B are

λ(`) = w(J`), ` = 0, . . . ,m− 1. (14)

where m =
∑d

i=1 2|Ii| is the dimensionality of B. Therefore, the eigenvalue λ(`) of the matrix

B essentially counts the number of times the corresponding bits pattern bJ` appears among
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the random variables Xd, and the largest eigenvalue indicates the most appeared bits pattern.

Moreover for λ(`) > 0, the corresponding functions f (`)
i (Xi) (i = 1, . . . , d) as defined in (7) are

f
(`)
i (Xi) =


1√
w(J`)

∏
j∈J`

bj, if J` ⊂ Ii,

0, otherwise.

(15)

Thus, the `-th optimal functional representation of Xd (cf. Section II-B) is
d∑
i=1

f
(`)
i (Xi) =

√
w(J`)

∏
j∈J`

bj,

which depends only on the bits indexed by J`. For instance, if r = d = 3, and X1 = {b1, b2}, X2 =

{b2, b3}, and X3 = {b1, b3}, then for all subsets of {1, 2, 3}, the values for the function w(·) as

defined in (13) are

w(∅) = 3, w({1}) = w({2}) = w({3}) = 2,

w({1, 2}) = w({2, 3}) = w({3, 1}) = 1, w({1, 2, 3}) = 0.

Therefore, the corresponding eigenvalues of B are

λ(0) = 3, λ(1) = λ(2) = λ(3) = 2, λ(4) = λ(5) = λ(6) = 1, λ(7) = 0.

Moreover, the corresponding f (`)
i (Xi)’s satisfy
3∑
i=1

f
(`)
i (Xi) =

√
2b`, ` = 1, 2, 3,

and

3∑
i=1

f
(`)
i (Xi) =


b1b2, ` = 4,

b2b3, ` = 5,

b3b1, ` = 6.

III. THE ALGORITHM TO COMPUTE THE FUNCTIONAL REPRESENTATION FROM DATA

While our information theoretic approach provides a guidance for searching informative func-

tional representations, it remains to derive the algorithm to compute these functions from observed

data vectors. Intuitively, one can first estimate the empirical distribution between X1, . . . , Xd from

the data samples, and then construct the matrix B to solve the eigen-decomposition. However,

this is often not feasible in practice due to: (1) there may not be enough number of samples to

estimate the joint distribution accurately, (2) the dimensionality of B may be extremely high
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Algorithm 1 The Multivariate ACE (MACE) Algorithm

Require : The data samples x(`) = (x
(`)
1 , . . . , x

(`)
d ), ` = 1, . . . , n of variables X1, . . . , Xd

1. Initialization: randomly pick zero-mean functions ~f = (f1, . . . , fd).
repeat :

2. The alternating conditional operation: fi(Xi)← fi(Xi) + E
[∑

j 6=i fj(Xj)
∣∣∣Xi

]
.

3. The normalization step: fi(Xi)← fi(Xi)/

√
E
[∑d

i=1 f
2
i (Xi)

]
.

until : The E
[∑

i 6=j fi(Xi)fj(Xj)
]

stops increasing.

especially for big data applications, so that the singular value decomposition (SVD) can not be

computed directly.

A. The Multivariate Alternating Conditional Expectation (MACE) Algorithm

Alternatively, it is well-known that eigenvectors of a matrix can be efficiently computed by the

power method [12]. The power method iteratively multiplies the matrix to an initial vector, and

if all the eigenvalues are nonnegative, it converges to the eigenvector with respect to the largest

eigenvalue with an exponential convergence rate. To apply the power method for computing

the second largest eigenvector of B, we choose an initial vector ψ =
[
ψT

1 · · · ψT
d

]T
, such

that ψi is orthogonal to vi, for all i. This forces ψ to be orthogonal to ψ(0), and since B is

positive semidefinite, the power iteration will converge to the second largest eigenvector if ψ

is not orthogonal to ψ(1). Then, the algorithm iteratively computes the matrix multiplication

ψ ← Bψ, or equivalently

ψi ← ψi +
∑
j 6=i

Bijψj, (16)

for all i. Note that if we write fi(xi) = ψi(xi)/
√
PXi

(xi), then as shown in [13], the step (16)

is equivalent to a conditional expectation operation on functions:

fi(Xi)← fi(Xi) + E

[∑
j 6=i

fj(Xj)

∣∣∣∣∣Xi

]
, (17)

Therefore, the power method can be transferred to an algorithm based on the alternating conditional

expectation (ACE) [7] algorithm as shown in Algorithm 1, which computes the optimal functional

representation derived in Section II. Note that the choice of ψi to be orthogonal to vi is transferred

to the zero-mean choice of functions in the initialization step of the algorithm.
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Algorithm 2 The Computation of ~f (k)

Require : The data samples x(i) = (x
(i)
1 , . . . , x

(i)
d ), i = 1, . . . , n of variables X1, . . . , Xd, and

the previously computed functions ~f (1), . . . , ~f (k−1).
1. Initialization: randomly pick zero-mean functions ~f (k) = (f

(k)
1 , . . . , f

(k)
d ).

repeat :

2. Run step 2 and 3 of Algorithm 1 for ~f (k).
3. The Gram-Schmidt procedure: ~f (k) ← ~f (k) −

∑k−1
`=1 〈~f (`), ~f (k)〉 · ~f (`)

until : The E
[∑

i 6=j f
(k)
i (Xi)f

(k)
j (Xj)

]
stops increasing.

B. Finding k Functional Representations from Eigen-decomposition

The Algorithm 1 can be further extended to compute the top k eigenvectors ψ(1), . . . ,ψ(k),

and the corresponding functional representations. To design the algorithm for computing these

functions, we denote the `-th functional representation as ~f (`) = (f
(`)
1 , . . . , f

(`)
d ), where f (`)

i is as

defined in (7). Then, since ψ(k) is orthogonal to ψ(`), for ` ≤ k − 1, the k-th functional

representation ~f (k) can be computed by the power method similar to the first functional

representation ~f (1), but with extra orthogonality constraints〈
~f (`), ~f (k)

〉
,

d∑
i=1

E
[
f
(`)
i (Xi)f

(k)
i (Xi)

]
= 0, for ` ≤ k − 1

to maintain the orthogonality to the first k − 1 functional representations. Therefore, ~f (k) can be

computed by the power method as in Algorithm 1 with the extra step of Gram-Schmidt procedure

to guarantee the orthogonality, which is illustrated in Algorithm 2. Note that the computation

complexities of Algorithm 1 and Algorithm 2 are both linear to the size of the dataset, which is

often much more efficient than the singular value decomposition of the matrix B.

C. Generating Informative Functional Representations for High-Dimensional Data

While the Algorithm 2 generally requires less training samples than estimating the joint

distribution and the matrix B, in order to obtain an acceptable estimation for the conditional

expectation step (17), it is still necessary to acquire training samples in the size comparable to the

cardinality of the random variable Xi. This is often difficult for high-dimensional or continuous

random variables in practice. In such cases, we propose a neural network based approach to

generate the informative functional representations by deep neural networks. The key idea is
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to note that by Eckart-Young-Mirsky theorem [14], the top k ≤ m eigenvectors of B̃ can be

computed from the low-rank approximation problem:

Ψ∗ = min
Ψ∈Rm×k

∥∥B̃−ΨΨT
∥∥2
F

(18)

where the columns of Ψ∗ are the top k eigenvectors of B̃. The unconstrained optimization

problem (18) leads to a training loss for generating informative functions by neural networks.

Proposition 1. Let Ψi be |Xi| × k matrices, for i = 1, . . . , d, such that Ψ =
[
ΨT

1 · · ·ΨT
d

]T,

and define k-dimensional functions f
i
: Xi 7→ Rk, i = 1, . . . , d, as f

i
(xi) = ΨT

i (xi)/
√
PXi

(xi),

where Ψi(xi) denotes the xi-th row of the matrix Ψi. Then, it follows that∥∥B̃−ΨΨT
∥∥2
F

=
∥∥B̃∥∥2

F
− 2H

(
f
1
(X1), . . . , fd(Xd)

)
, (19)

where

H
(
f
1
(X1), . . . , fd(Xd)

)
,

d∑
i=1

d∑
j=1

H
(
f
i
(Xi), f j(Xj)

)
,

and H
(
f
i
(Xi), f j(Xj)

)
is defined as, for all i, j,

H
(
f
i
(Xi), f j(Xj)

)
, E

[
fT

i
(Xi)f j(Xj)

]
−
(
E
[
f
i
(Xi)

])T
E
[
f
j
(Xj)

]
− 1

2
tr
{
E
[
f
i
(Xi)f

T

i
(Xi)

]
E
[
f
j
(Xj)f

T

j
(Xj)

]}
,

where tr {·} denotes the trace of its matrix argument.

Proof. See Appendix F.

Note that H
(
f
i
(Xi), f j(Xj)

)
coincides with the H-score [15] when the means of the functions

are zero, hence we term H
(
f
1
(X1), . . . , fd(Xd)

)
the multivariate H-score (MH-score). Then

from (19), the optimization problem (18) is equivalent to the functional optimization problem

max
fi : Xi 7→Rk, i=1,...,d

H
(
f
1
(X1), . . . , fd(Xd)

)
, (20)

for solving the informative functional representations for the common structure. The optimization

problem (20) leads to a neural network training strategy. Specifically, given the training samples

of X1, . . . , Xd, we design d neural networks, where the i-th neural network NNi takes Xi as the

input and generates the representations f
i
(Xi). Then, the weights of these neural networks are

trained to minimize the negative MH-score as the loss function. Finally, the informative functional

representations are generated by the trained d neural networks that attempts to optimize (20), as

illustrated in Fig. 3.
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NN1 NN2 · · · NNd

X1 X2 Xd

MH-score Estimator

H
(
f
1
(X1), . . . , fd(Xd)

)

f
1
(X1) f

2
(X2) f

d
(Xd)

Fig. 3: The network architecture to estimate optimal functional representations, where each NNi
is a neural network to extract feature f

i
(Xi) from the i-th input Xi.

IV. CONNECTIONS TO EXISTING TECHNIQUES

In this section, we demonstrate the relationship between our functional representations

and the Hirschfeld-Gebelein-Rényi (HGR) maximal correlation [8], linear PCA [2], and the

consistent functional map [3]. This demonstrates the deep connections between our approach

and existing techniques, while offering novel information theoretic interpretations to machine

learning algorithms.

A. The HGR maximal correlation

The HGR maximal correlation is a variational generalization of the well-known Pearson

correlation coefficient, and was originally introduced as a normalized measure of the dependence

between two random variables [8].

Definition 3 (Maximal Correlation). For jointly distributed random variables X and Y , with

discete ranges X and Y respectively, the maximal correlation between X and Y is defined as:

ρ(X;Y ) , max
f : X 7→R, g : Y7→R

E [f(X)g(Y )]

where the maximum is taken over zero-mean and unit-variance functions f(X) and g(Y ).

The HGR maximal correlation has been shown useful not only as a statistical measurement,

but also in designing machine learning algorithms for regression problems [16] [13] [17]. To

draw the connection, note that in the bivariate case d = 2, the functions derived in Section II are
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precisely the maximal correlation functions for two random variables. In addition, our functional

representation for general cases essentially defines a generalized version of the maximal correlation

[cf. (12)].

Definition 4. The generalized maximal correlation for jointly distributed random variables

X1, . . . , Xd with discrete ranges Xi, for i = 1, . . . , d, is defined as

ρ∗(X1, · · · , Xd) , max
1

d− 1
E

[∑
i 6=j

fi(Xi)fj(Xj)

]
(21)

for the functions fi : Xi 7→ R, with the constraints E [fi(Xi)] = 0, E
[∑d

i=1 f
2
i (Xi)

]
= 1, for all

i.

It is easy to verify that 0 ≤ ρ∗(X1, · · · , Xd) ≤ 1, and ρ∗(X1, · · · , Xd) = 0 if and only if

X1, . . . , Xd are pairwise independent.

Note that there are some other generalizations to maximal correlations to multiple random

variables. For example, the network maximal correlation (NMC) proposed in [18] defined

a correlation measurement in the same way as (21) but with a slightly different constraint:

E [fi(Xi)] = 0, E [f 2
i (Xi)] = 1, for all i. In addition, [19] proposed a maximally correlated

principal component analysis, which considered the SVD of a matrix similar to B. However, our

approach and results essentially offer the information theoretic justification of generalizing the

maximal correlation as extracting common structures shared among random variables, and also

provide the guidance to algorithm designs.

B. Linear PCA

It turns out that the functional representation derived in Section II is a nonlinear generalization

to the linear PCA [2]. To see that, consider a sequence of data vectors x(`) = (x
(`)
1 , . . . , x

(`)
d ) ∈ Rd,

for ` = 1, . . . , n, where the sample mean and variance for each dimension are zero and one,

respectively, i.e.,
∑n

`=1 x
(`)
i = 0, and 1

n

∑n
`=1(x

(`)
i )2 = 1, for all i. Then, the linear PCA aims to

find the principle vector w = (w1, . . . , wd) with unit norm such that
∑n

`=1〈w, x(`)〉2 is maximized;

or equivalently, to maximize

1

n

n∑
`=1

∑
i 6=j

(
wix

(`)
i

)(
wjx

(`)
j

)
= E

[∑
i 6=j

(wiXi) · (wjXj)

]
(22)
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subject to the constraint

1 =
d∑
i=1

w2
i =

d∑
i=1

E
[
(wiXi)

2] , (23)

where the expectations in (22) and (23) are taking over the empirical distributions PXiXj
and PXi

from the data vectors. Comparing to the Definition 4, we can see that our functional representation

generalizes the linear PCA to nonlinear functional spaces of data. We would like to emphasize

that [13] also provides a nonlinear generalization to PCA for the Gaussian distributed data vectors

by the local geometric approach. Our approach presented in this paper essentially offers another

generalization for general discrete data vectors.

C. Consistent Functional Map

In computer vision, a typical question is to find the shared components among a collection

of shapes, for example, the legs of chairs, when some noisy maps between these shapes are

given. An effective approach to extract such shared structure between shape collections, called

consistent functional map network, is recently proposed in [3]–[5]. The main idea of the consistent

functional map network is to formulate the shared components as low-dimensional subspaces

of the functional spaces of these shapes, and the given noisy maps between these shapes are

formulated as the transition maps between these functional spaces. Then, the goal of the consistent

functional map network is to find a low-dimensional subspace of the functional space of each

shape, such that under a cycle of transition maps between shapes, this low-dimensional subspace

remains the same.

Note that this idea is similar to the functional representation we derived in this paper, except

that the consistent functional map network considers the transition maps between shapes that are

deterministic maps, while we consider stochastic maps between random variables. In fact, it is

shown in [3] that if we write the noisy maps between shapes i and j as Mij , then such subspaces

can be solved by the eigen-decomposition of a matrix by replacing the stochastic transition

map Bij of B in (4) into the noisy (deterministic) maps Mij between shapes. Therefore, the

functional representation presented in this paper can be viewed as an extension of the consistent

functional map network to general stochastic object, which can essentially be applied to a wider

range of problems.
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V. THE NUMERICAL SIMULATIONS

The functional representations of the data can be viewed as low-dimensional feature functions

selected from the hidden common structure. In this section, we show that such selected low-

dimensional feature functions can practically be useful by verifying the performance in the

MNIST Handwritten Digit Database [1] for digits recognition. In the MNIST database, there are

n = 60 000 images contained in the training sets, and each image has a label that represents the

digits “0” to “9”. The images in this database are consisted of 28× 28 pixels, where each image

pixel takes the value ranging from 0 to 255. While this is a supervised learning problem, we

will show that both Algorithm 2 and the low-rank approximation method described in Section

III-C can be applied to select features from images directly without the knowledge of labels, and

these features, although selected in an unsupervised way, have good performance in handwritten

digit recognition.

To begin, we need to identify the random variables Xi in the MNIST problem. For this purpose,

we divide each image into 8× 8 = 64 overlapping subareas, where each sub-image has 6× 6

pixels, and two nearby subareas are overlapped with 3 pixels. Fig. 1 illustrates this division of

images.

The purpose of dividing entire image into subareas is to reduce the complexity of training

joint feature functions among image pixels, while capturing the correlations between nearby

pixels. Then, each sub-image i of the 64 subareas can be viewed as a random variable Xi, for

i = 1, . . . , 64. Therefore, if we denote x(`)i as the value of the sub-image i of the `-th image of

the MNIST database, then each random variable Xi has n training samples x(1)i , . . . , x
(n)
i .

A. Apply the MACE Algorithm to MNIST

To apply the MACE Algorithm 2, we further quantize each image pixel into binary signals “0”

and “1” with the quantization threshold 40. Note that each x(`)i is essentially a 36-dimensional

binary vector, thus the cardinality of the alphabet |Xi| = 236. To reduce the cardinality, for each

subarea i, we go through n training images to find all possible binary vectors in {0, 1}36, and

then map these binary vectors into a smaller alphabet set, such that two binary vectors with

Hamming distance no greater than three are mapped into the same alphabet. This quantization

procedure is illustrated in Algorithm 3.

After this pre-processing, 64 random variables Xi are specified, and each image ` can be viewed

as a 64-dimensional data vector (x
(`)
1 , . . . , x

(`)
64 ), for ` = 1, . . . , n. Then, we apply Algorithm 2
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Algorithm 3 Quantizing Alphabets to Reduce the Cardinality

Require: training samples
{
x
(`)
i : ` = 1, . . . , n

}
Initialize: set the alphabet Xi ← ∅.
For ` = 1 : n

If ∃x ∈ Xi, such that dH
(
x, x

(`)
i

)
≤ 3.

Then set x(`)i ← x.
Else Xi ← Xi ∪

{
x
(`)
i

}
End

to compute k feature functions ~fi = (f
(1)
i , . . . , f

(k)
i ) for each random variable Xi. These feature

functions map the pre-processed training image ` into a (64k)-dimensional score vector

~s` =
(
~f1(x

(`)
1 ), . . . , ~f64(x

(`)
64 )
)
,

which extracts non-linear features of the image. Note that in this step, we select the feature

functions only from the image pixels but without the knowledge of the labels.

With the score vectors computed, at the second step we apply the linear support vector machine

(SVM) [20] to classify the vectors ~s`, for ` = 1, . . . , n into ten groups with respect to the labels

z`. This results in a linear classifier that associates a label ẑ` ∈ {0, . . . , 9} to each score vector

~s`, and the label represents the recognized digit of the image corresponding to the score vector.

To test the performance of this linear classifier in the set of test images, we first conduct

the same pre-processing to the test images, and map the pre-processed test images into (64k)-

dimensional score vectors by the feature functions ~fi. Then, the linear classifier is applied to

recognize the digits in the test images, and the error probabilities of recognizing the digits via

the score vectors with different values of k are demonstrated in the following table.

k 4 8 12 16 20 24

Error rate (%) 4.74 2.44 2.36 2.21 2.15 2.08

Note that our approach can be viewed as mapping the image pixels to the feature space by

one layer of informative score functions and then apply the linear classification. It turns out that

the error rate of our approach is comparable to the neural networks with two layers of feature

mapping by the sigmoid functions (the error rate is 2.95% for a 3-layer fully-connected neural

network with 500 and 150 units in two hidden layers [1], [21]). Moreover, the neural networks

select the features with the aid of labels, while the feature functions in our approach are selected

without the knowledge of label but from the shared structure between subareas. This essentially
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NNiInput Image Xi: 6 × 6

Conv: 2 × 2 × 16

Conv: 2 × 2 × 32

Max Pooling: 2 × 2

Dropout (0.25)

Flatten

Fully Connected

k-dimensional
Output: f

i
(Xi)

Fig. 4: The architecture of the i-th neural network NNi that extracts feature f
i
(Xi) from the input

Xi.

shows how the information from shared structures can be applied to practical problems by our

algorithms.

B. Finding Functional Representations by Neural Networks

As illustrated in Section III-C, we first use 64 neural networks NN1, . . . , NN64 to generate repre-

sentations f
1
(X1), . . . , f 64

(X64) from images, where each neural network NNi consists of two con-

volutional layers as shown in Fig. 4. Using the negative MH-score −H
(
f
1
(X1), . . . , f 64

(X64)
)

as the loss function, we then train these 64 neural networks to obtain the optimal functional

representations.

With the functional representations trained from the training set, we again adopt the linear

SVM for the classification task and use this linear classifier to recognize the test images. The

following table shows the classification error with different values of k.

k 4 8 12 16 20 24

Error rate (%) 3.46 1.73 1.43 1.17 1.15 1.11

Compared with the results from the MACE Algorithm 2, the neural network approximation

method has better performance. This performance gain is mainly from directly processing the

subareas of images by the CNNs without the information loss in the quantization step. In addition,
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the features extracted in this unsupervised approach can achieve the performance comparable

to the CNN-based supervised learning algorithms, such as LeNet-4, which has an error rate of

1.1% [21].

APPENDIX A

PROOF OF LEMMA 1

To show the first property, we define the |Xi|× (|X1| · |X2| · · · |Xd|) matrix Bi, for i = 1, . . . , d,

as

Bi(x
′
i;x

d) =


√
P
Xd (xd)√
PXi

(x′i)
, if x′i = xi,

0, otherwise.

Then, one can verify that

B =


B1

...

Bd

[BT
1 · · · BT

d

]
,

which implies that B is positive semidefinite.

To establish the second property, note that ψ(0) is an eigenvector of B with eigenvalue d, and

thus
(
ψ(0)

)T
Bψ(0) = d. Moreover, it is shown in [22] that the largest singular value of Bij is 1,

i.e., ‖Bij‖s = 1, where ‖·‖s denotes the spectral norm of its matrix argument.

Therefore, for ψ =
[
ψT

1 , . . . ,ψ
T
d

]T with each ψi being an |Xi|-dimensional vector, we have

ψTBψ =
d∑
i=1

d∑
j=1

ψT
i Bijψj ≤

d∑
i=1

d∑
j=1

‖ψi‖ · ‖Bij‖s · ‖ψj‖ =

(
d∑
i=1

‖ψi‖

)2

≤ d
d∑
i=1

‖ψi‖2 = d‖ψ‖2,

where the second inequality follows from the fact that the arithmetic mean is no greater than the

quadratic mean. Hence, we have

max
ψ : ‖ψ‖=1

ψTBψ = d,

i.e., the largest eigenvalue of B is d.

To verify the third property, we construct ψ′ as

ψ′ =

ψ′1
0

 ,
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where ψ′1 ∈ R|X1| is chosen such that 〈ψ′1,v1〉 = 0 and ‖ψ′1‖2 = 1, and where 0 is the (m−|X1|)-

dimensional zero vector. Therefore, we have
〈
ψ′,ψ(0)

〉
= 0 and ‖ψ′‖2 = 1. Note that the second

eigenvalue λ(1) of B can be written as

λ(1) = max
ψ : ‖ψ‖=1,〈ψ,ψ(0)〉=0

ψTBψ,

which implies that λ(1) ≥ (ψ′)T Bψ′ = ‖ψ′1‖2 = 1.

To verify the fourth property, we define the (d− 1)-dimensional subspace Seig as

Seig ,

{
ψ =

[
α1v

T
1 , . . . , αdv

T
d

]T
:

d∑
i=1

αi = 0

}
. (24)

Then, for all ψ ∈ Seig, from Bijvj = vi, it is straightforward to verify that Bψ = 0m, where 0m is

the zero vector in Rm. Therefore, Seig is an eigenspace of B associated with d−1 zero eigenvalues.

Since B is positive semidefinite, without loss of generality we can assume that Seig is spanned

by ψ(m−d+1), . . . ,ψ(m−1), which correspond to eigenvalues λ(m−d+1) = · · · = λ(m−1) = 0.

Finally, to establish the last property, for each ` = 1, . . . ,m − d, from
〈
ψ(`),ψ(0)

〉
= 0 we

have
d∑
i=1

〈
ψ

(`)
i ,vi

〉
= 0.

Therefore, from the third property, we have

ψ′ =


〈
ψ

(`)
1 ,v1

〉
v1

...〈
ψ

(`)
d ,vd

〉
vd

 ∈ Seig.
Hence, we obtain 〈ψ′,ψ(`)〉 = 0, i.e.,

d∑
i=1

〈
ψ

(`)
i ,vi

〉2
= 0,

which implies that
〈
ψ

(`)
i ,vi

〉
= 0 for i = 1, . . . , d.

APPENDIX B

PROOF OF THEOREM 1

First, we replace δ by 1
2
ε2 for the convenience of presentation when applying the local geometric

approach. With this notation, the constraint (2) becomes

I(U ;Xd) ≤ 1

2
ε2, (25)
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with ε assumed to be small. Then, it follows from (3) and (25) that for all u, the conditional

distribution PXd|U=u can be written as a perturbation to the marginal distribution:

PXd|U(xd|u) = PXd(xd) + ε
√
PXd(xd)φu(x

d) (26)

where φu can be viewed as an (|X1| · |X2| · · · |Xd|)-dimensional vector. Moreover, it follows from

the second order Taylor’s expansion for the K-L divergence that

I(U ;Xd) = EU
[
D(PXd|U‖PXd)

]
=

1

2
ε2EU

[
‖φU‖2

]
+ o(ε2),

where ‖ · ‖ denotes the l2-norm. Thus, by ignoring the higher order term of ε as we assume ε to

be small, the constraint I(U ;Xd) ≤ 1
2
ε2 can be reduced to

EU [‖φU‖2] ≤ 1. (27)

In addition, the objective function `(Xd|U) can also be expressed in terms of mutual informa-

tions:

D(PXd‖PX1 · · ·PXd
)−D(PXd‖PX1 · · ·PXd

|U) =
d∑
i=1

I(U ;Xi)− I(U ;Xd) (28)

and for each i, the mutual information I(U ;Xi) can be again approximated as the l2-norm square

I(U ;Xi) =
1

2
ε2EU [‖ψi,U‖2] + o(ε2),

where for U = u, the vector ψi,u is the |Xi|-dimensional perturbation vector defined as

ψi,u(xi) =
PXi|U(xi|u)− PXi

(xi)

ε
√
PXi

(xi)
(29)

Then, by ignoring the higher order terms of ε, the optimization problem we want to solve can

be transferred to a linear algebraic problem

max
EU [‖φU‖2]≤1

d∑
i=1

EU [‖ψi,U‖2]− EU [‖φU‖2]. (30)

To solve (30), observe that PXi
and PXi|U are marginal distributions of PXd and PXd|U , thus

there is a correlation between φU and ψi,U :

ψi,u(xi) =
∑

x1,...,xi−1,xi+1,...,xd

√
PXd(xd)√
PXi

(xi)
φu(x

d)

which can be represented in matrix form as ψi,u = Bi·φu, where Bi is an |Xi|×(|X1|·|X2| · · · |Xd|)

matrix with entries

Bi(x
′
i; (x1, . . . , xd)) =


√
P
Xd (xd)√
PXi

(x′i)
if x′i = xi,

0 otherwise.
(31)
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Therefore, if we define an (|X1|+ · · ·+ |Xm|)× (|X1| · · · |Xm|)-dimensional matrix

B0 ,


B1

...

Bd

 , (32)

then since
d∑
i=1

EU [‖ψi,U‖2] =
d∑
i=1

EU [‖Bi · φU‖2] = EU [‖B0 · φU‖2],

we can rewrite (30) as

max
EU [‖φU‖2]≤1

EU [‖B0 · φU‖2]− EU [‖φU‖2]. (33)

Moreover, since φU is a perturbation vector of probability distributions, by summing over all xd

for both sides of (26), it has to satisfy an extra constraint∑
xd

√
PXd(xd)φu(x

d) = 0, (34)

which implies that φU is orthogonal to an (|X1| · |X2| · · · |Xd|)-dimensional vector φ(0), whose

entries are
√
PXd(xd). In particular, it is shown in [22] that φ(0) is the right singular vector of

B0 with the largest singular value σ0 =
√
d, and the corresponding left singular vector is ψ(0).

In addition, it can be verified that B0 satisfies B0B
T
0 = B with B as defined in (4). Therefore,

the second largest singular value of B0 is σ1 =
√
λ(1) ≥ 1, and the optimal solution of (33) is to

align the vectors φU=u, for all u, along the second largest right singular vector of B0.

It turns out that it is easier to compute the second largest left singular vector of B0 instead

of the right one. This is equivalent to computing the second largest eigenvector of the matrix

B0B
T
0 = B.

Now, the second largest right singular vector φ(1) of B0 can be computed as

φ(1)(xd) =
1√
λ(1)

(BT
0ψ

(1))(xd) =
1√
λ(1)
·

(√
PXd(xd)

d∑
i=1

ψ
(1)
i (xi)√
PXi

(xi)

)

=
√
PXd(xd) ·

(
1√
λ(1)

d∑
i=1

f
(1)
i (xi)

)
, (35)

where BT
0ψ

(1) is a vector and (BT
0ψ

(1))(xd) is the xd-th entry of this vector. Since all the φU=u

should be aligned to φ(1), there exists a function h : U 7→ R, such that

PXd|U(xd|u) = PXd(xd)

(
1 +

εh(u)√
λ(1)

d∑
i=1

f
(1)
i (xi)

)
+ o(ε),

where the term o(ε) comes from the local approximation we made for (27). Therefore, the optimal
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joint distributions for our optimization problem can be written as

PUXd(u, xd) = PU(u)PXd(xd)

(
1 +

εh(u)√
λ(1)

d∑
i=1

f
(1)
i (xi)

)
+ o(ε). (36)

Note that if we sum both sides of (36) over all u ∈ U , then we have
∑

u∈U PU(u)h(u) = 0,

which implies that h(U) is a zero-mean function. Moreover, it is easy to compute from (27) that

the variance E[h2(U)] = 1. Finally, note that the exponential family P(δ)
exp, when δ is small, can

be written as

P(δ)
exp =

{
PU(u)PXd(xd) ·

(
1 +

√
2δh(u)√
λ(1)

d∑
i=1

f
(1)
i (xi)

)
+ o

(√
δ
)

: h ∈ Hδ

}
. (37)

Since δ = 1
2
ε2 the proof is completed by comparing (37) and (36).

APPENDIX C

PROOF OF THEOREM 2

First, we introduce a useful lemma (see, e.g., [23, Corollary 4.3.39, p. 248]).

Lemma 2. Given an arbitrary k1 × k2 matrix A and any k ∈
{

1, . . . ,min{k1, k2}
}

, we have

max
M∈Rk2×k

∥∥AM
∥∥2
F

=
k∑
i=1

σ2
i , (38)

where ‖ · ‖F denotes the Frobenius norm, and where σ1 ≥ · · · ≥ σmin{m,n} denotes the singular

values of A. Moreover, the maximum in (38) can be achieved by M =
[
v1 · · · vk

]
Q, where

vi denotes the right singular vector of A corresponding to σi, for i = 1, . . . ,min{m,n}, and

Q ∈ Rk×k is an orthogonal matrix.

To begin the proof, similar to Theorem 1, we replace δ by 1
2
ε2 and write the conditional

distribution PXd|Uk=uk as a perturbation to the joint distribution PXd:

PXd|Uk(xd|uk) = PXd(xd) + ε
√
PXd(xd)φuk(xd), (39)

where φuk is an (|X1| · |X2| · · · |Xd|)-dimensional vector. Again, it follows from the second-order

Taylor series expansion of the K-L divergence that

I(Uk;Xd) = EUk [D(PXd|Uk‖PXd)] =
1

2
ε2EUk

[
‖φUk‖2

]
+ o(ε2).

Similarly, for all i = 1, . . . , k, the conditional distribution PXd|Ui=ui can be written as

PXd|Ui
(xd|ui) = PXd(xd) + ε

√
PXd(xd)φui(x

d), (40)
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and we have

I(Ui;X
d) =

1

2
ε2EUi

[
‖φUi
‖2
]

+ o(ε2).

Therefore, by ignoring the higher order terms of ε, the first constraint can be reduced to

1 ≥ EU1

[
‖φUi
‖2
]
≥ · · · ≥ EUk

[
‖φUi
‖2
]
.

Moreover, due to the independence and conditional independence among the Uk, φuk and φui
satisfy

φuk =
k∑
i=1

φui + o(1) (41)

and

〈φui ,φuj〉 = 0, for all i 6= j, ui ∈ Ui, uj ∈ Uj. (42)

Indeed, we have

PXd|Uk(xd|uk) =
PXd(xd)PUk|Xd(uk|xd)

PUk(uk)
= PXd(xd)

k∏
i=1

PUi|Xd(ui|xd)
PUi

(ui)
,

which implies

PXd|Uk(xd|uk)
PXd(xd)

=
k∏
i=1

PUi|Xd(ui|xd)
PUi

(ui)
=

k∏
i=1

PXd|Ui
(xd|ui)

PXd(xd)
. (43)

Substituting (39) and (40) into (43) then yields

1 + ε
φuk(xd1)√
PXd(xd)

=
k∏
i=1

[
1 + ε

φui(x
d
1)√

PXd(xd)

]
,

and via comparing the ε-order terms for both sides we obtain (41).

To obtain (42), note that from (40), for all i 6= j, ui ∈ Ui and uj ∈ Uj , we have

ε2
〈
φui ,φuj

〉
= ε2

∑
xd

φui(x
d)φuj(x

d) (44a)

=
∑
xd1

(
1

PXd(xd)
· [PXd|Ui

(xd|ui)− PXd(xd)] · [PXd|Uj
(xd|ui)− PXd(xd)]

)
(44b)

=
∑
xd1

PXd|Ui
(xd|ui)PXd|Uj

(xd|uj)
PXd(xd)

− 1 (44c)

=
∑
xd1

PXd(xd) ·
PUi|Xd(ui|xd)
PUi

(ui)
·
PUj |Xd(uj|xd)
PUj

(uj)
− 1 (44d)

=
1

PUiUj
(ui, uj)

∑
xd1

PXd(xd)PUiUj |Xd(ui, uj|xd)− 1 (44e)
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= 0, (44f)

where to obtain (44e) we have again exploited the independence and conditional independence

of Ui and Uj .

In addition, the objective function L(Xd|Uk) can be expressed as [cf. (28)]

D(PXd‖PX1 . . . PXd
)−D(PXd‖PX1 . . . PXd

|Uk) =
d∑
i=1

I(Uk;Xi)− I(Uk;Xd)

=
d∑
i=1

I(Uk;Xi)−
k∑
j=1

I(Uj;X
d), (45)

where to obtain the last equality we have used the fact that

I(Uk;Xd) = EUkXd

[
log

PUk|Xd(Uk|Xd)

PUk(Uk)

]
(46a)

= EUkXd

[
k∑
j=1

log
PUj |Xd(Uj|Xd)

PUj
(Uj)

]
(46b)

=
k∑
j=1

I(Uj;X
d), (46c)

and where (46b) follows from the facts that U1, . . . , Uk are mutually independent and are

conditionally independent given Xd.

For each i, the mutual information I(Uk;Xi) can be approximated as

I(Uk;Xi) =
1

2
ε2EUk

[∥∥ψi,Uk

∥∥2]+ o(ε2),

where for Uk = uk, the vector ψi,uk is an |Xi|-dimensional perturbation vector defined as

ψi,uk(xi) =
PXi|Uk(xi|uk)− PXi

(xi)

ε
√
PXi

(xi)
.

Therefore, by ignoring the higher order terms of ε, the maximization of total correlation can be

rewritten as

max
φ

uk

d∑
i=1

EUk

[∥∥ψi,Uk

∥∥2]− k∑
j=1

EUj

[∥∥φUj

∥∥2] (47a)

subject to: 1 ≥ EU1

[
‖φU1‖

2] ≥ · · · ≥ EUk

[
‖φUk

‖2
]
, (47b)

〈φui ,φuj〉 = 0, i 6= j, ui ∈ Ui, uj ∈ Uj, (47c)〈
φuj ,φ

(0)
〉

= 0,∀uj ∈ Uj, j = 1, . . . , k, (47d)

φuk =
k∑
j=1

φuj , ∀uk ∈ U1 × · · · × Uk. (47e)
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To solve (47), first observe that we have ψi,Uk = BiφUk , where Bi is as defined in (31). Then,

the objective function (47a) can be rewritten as
d∑
i=1

EUk

[∥∥ψi,Uk

∥∥2]− k∑
j=1

EUj

[∥∥φUj

∥∥2] =
d∑
i=1

EUk

[
‖BiφUk‖2

]
−

k∑
j=1

EUj

[∥∥φUj

∥∥2] (48a)

= EUk

[
‖B0φUk‖2

]
−

k∑
j=1

EUj

[∥∥φUj

∥∥2] (48b)

= EUk

∥∥∥∥∥
k∑
j=1

B0φUj

∥∥∥∥∥
2
− k∑

j=1

EUj

[∥∥φUj

∥∥2] (48c)

=
k∑
j=1

EUj

[∥∥B0φUj

∥∥2]− k∑
j=1

EUj

[∥∥φUj

∥∥2] (48d)

=
k∑
j=1

EUj

[∥∥B0φUj

∥∥2 − ∥∥φUj

∥∥2] (48e)

where B0 is as defined in (32). To obtain (48d), we have used the fact that

EUk

[
φT
Ui

BT
0 B0φUj

]
= (EUi

[φUi
])T BT

0 B0

(
EUj

[
φUj

])
= 0, i 6= j,

where the first equality follows from the fact that Ui and Uj are independent, and the second

equality follows from that EUi
[φUi

] = 0.

To maximize (48e), φui should be aligned to the same direction for all ui ∈ Ui. Otherwise,

we can align all φui to

arg max
φui : ui∈Ui

‖B0φui‖2

‖φui‖2

while keeping EUi
[‖φUi

‖2] fixed, which yields a larger value for the objective function.

Therefore, for each i and ui ∈ Ui, we can write φui as

φui = hi(ui)φi, (49)

where hi : Ui 7→ R and φi is a unit-norm vector. Then, we have EUi
[φUi

] = EUi
[hi(Ui)]φi = 0

and

EUi
[‖φUi

‖2] = EUi
[h2i (Ui)], (50a)

EUi
[‖B0φUi

‖2] = EUi
[h2i (Ui)]‖B0φi‖2. (50b)

Now, the constraint (47b) can be reduced to

1 ≥ EU1 [h
2
1(U1)] ≥ · · · ≥ EUk

[h2k(Uk)]. (51)

In addition, it follows from (50) that EUi
[‖B0φUi

‖2]−EUi
[‖φUi

‖2] = EUi
[h2i (Ui)] [‖B0φi‖2 − 1].
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As a result, to maximize (48e), hi should be chosen such that

EUi
[h2i (Ui)] =

1 if ‖B0φi‖2 > 1,

0 otherwise.

Then, from (51) there exists k0 ∈ {1, . . . , k} such that

EUi
[h2i (Ui)] =

1 i = 1, . . . , k0,

0 i > k0,
(52)

and the objective function (48e) can be reduced to
k∑
j=1

EUj

[∥∥B0φUj

∥∥2 − ∥∥φUj

∥∥2] =

k0∑
j=1

‖B0φi‖2 − k0 = ‖B0Φ0‖2F − k0,

where we have defined Φ0 ,
[
φ1 · · · φk0

]
.

As a result, the optimization problem (47) is equivalent to

max
Φ0

‖B0Φ0‖2F − k0 (53a)

subject to: ΦT
0 Φ0 = Ik0 , (53b)

ΦT
0φ

(0) = 0k0 , (53c)

where Ik0 is the identity matrix of order k0, and 0k0 is the zero vector in Rk0 . In addition, since

φ(0) is the first right singular vector of B0, (53) can be further reduced to

max
Φ0

∥∥∥B̃0Φ0

∥∥∥2
F
− k0 (54a)

subject to: ΦT
0 Φ0 = Ik0 , (54b)

where B̃0 , B0 −
√
λ(0)ψ0

(
φ(0)

)T.

From Lemma 2, the optimal value of (54) is
k0∑
i=1

λ(i) − k0 =

k0∑
i=1

[
λ(i) − 1

]
. (55)

To maximize (55), k0 should be chosen as the largest i such that λ(i) > 1, i.e., k0 = min{k, k∗}.

In addition, the optimal Φ0 is Φ0 =
[
φ(1) · · · φ(k0)

]
Q for Q ∈ Rk0×k0 with QTQ = Ik0 .

Hence, we have

φ` =

k0∑
j=1

qj`φ
(j)
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Following the same derivation as that for (35), we can express φ(j) as

φ(j)(xd)√
PXd(xd)

=
1√
λ(j)

d∑
i=1

f
(j)
i (xi).

and thus

φ`(x
d)√

PXd(xd)
=

k0∑
j=1

qj` ·
φ(j)(xd)√
PXd(xd)

=

k0∑
j=1

qj`√
λ(j)

d∑
i=1

f
(j)
i (xi).

Then, it follows from (49) that

φu`(x
d)√

PXd(xd)
= h`(u`)

k0∑
j=1

qj`√
λ(j)

d∑
i=1

f
(j)
i (xi) (56)

for ` = 1, . . . , k0. Moreover, from (47e), we have

φuk =
k∑
`=1

φu` =

k0∑
`=1

φu` ,

where the second equality follows from the consequence of (49) and (52) that φu` = 0 for

` > k0.

Therefore,

φuk(xd)√
PXd(xd)

=

k0∑
`=1

φu`(x
d)√

PXd(xd)
=

k0∑
`=1

h`(u`)

k0∑
j=1

qj`√
λ(j)

d∑
i=1

f
(j)
i (xi),

which implies

PXd|Uk(xd|uk) = PXd(xd)

[
1 + ε

φuk(xd)√
PXd(xd)

]
+ o(ε)

= PXd(xd)

[
1 + ε

k0∑
`=1

h`(u`)

k0∑
j=1

qj`√
λ(j)

d∑
i=1

f
(j)
i (xi)

]
+ o(ε)

and

PXdUk(xd, uk) = PXd(xd)

[
k∏
j=1

PUj
(uj)

]
·

[
1 + ε

k0∑
`=1

h`(u`)

k0∑
j=1

qj`√
λ(j)

d∑
i=1

f
(j)
i (xi)

]
+ o(ε).

(57)

Finally, note that the exponential family P(δ)
exp,k, when δ is small, can be written as

P(δ)
exp,k =

{
PXd(xd)

[
k∏
j=1

PUj
(uj)

]
·

[
1 +
√

2δ

k0∑
`=1

h`(u`)

k0∑
j=1

qj`√
λ(j)

d∑
i=1

f
(j)
i (xi)

]

: h` ∈ H`,Q = [qij]k0×k0 ,Q
TQ = Ik0

}
. (58)

Since δ = 1
2
ε2 the proof is completed by comparing (58) and (57).
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APPENDIX D

JOINT CORRELATION MAXIMIZATION

For functions f
i
: Xi 7→ Rk, i = 1, . . . , d, we define Ψi ∈ R|Xi|×k such that the row vectors

of Ψi are
√
PXi

(xi)f
T

i
(xi), for all xi ∈ Xi. Furthermore, we define the m × k matrix Ψ as

Ψ =
[
ΨT

1 · · · Ψd

]
. Then the optimization problem (12) can be rewritten as

max
Ψ:Ψ∈Rm×k

tr
{
ΨTBΨ

}
(59a)

subject to: ΨT
i vi = 0k, for all i, (59b)

ΨTΨ = Ik, (59c)

where 0k is the zero vector in Rk, and Ik is the k×k identity matrix. To establish the equivalence

of (12) and (59), note that we have

ΨTΨ =
d∑
i=1

ΨT
i Ψi =

d∑
i=1

∑
xi∈Xi

PXi
(xi)f i(xi)f

T

i
(xi)

=
d∑
i=1

E
[
f
i
(Xi)f

T

i
(Xi)

]
= E

[
d∑
i=1

f
i
(Xi)f

T

i
(Xi)

]
and

tr
{
ΨTBΨ

}
=

d∑
i=1

d∑
j=1

tr
{
ΨT
i BijΨj

}
=

d∑
i=1

d∑
j=1

tr
{
E
[
f
i
(Xi)f

T

j
(Xj)

]}

=
d∑
i=1

tr
{
E
[
f
i
(Xi)f

T

i
(Xi)

]}
+
∑
i 6=j

tr
{
E
[
f
i
(Xi)f

T

j
(Xj)

]}

= tr

{
d∑
i=1

E
[
f
i
(Xi)f

T

i
(Xi)

]}
+
∑
i 6=j

tr
{
E
[
f
i
(Xi)f

T

j
(Xj)

]}

= k + E

[∑
i 6=j

fT

i
(Xi)f j(Xj)

]
.

From Lemma 1, for k < m−d, the solution of (59) can be represented as Ψ∗ =
[
ψ(1) · · · ψ(k)

]
Q,

where Q ∈ Rk×k is an orthogonal matrix. Therefore, the optimal solution of (12) corresponds to

f
(`)
i with i = 1, . . . , d and ` = 1, . . . , k.

APPENDIX E

COMMON BITS PATTERNS EXTRACTION

First, we define `max as the largest ` such that w(J`) > 0, i.e., `max , max{` : 0 ≤ ` ≤

2r − 1, w(J`) > 0}. Then, w(J`) > 0 is equivalent to ` ≤ `max, and (14) can be equivalently
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expressed as

λ(`) = w(J`), ` ≤ `max, (60)

and

λ(`) = 0, ` > `max. (61)

Note that (7) establishes a one-to-one correspondence between the functions f (`)
i (i = 1, . . . , d)

and the vector ψ(`). With this correspondence, we use ψ̃(`) to denote the vector corresponding to

the functions f (`)
i as defined in (15). Then the proof can be accomplished in two steps. First,

we show that ψ̃(`) (` = 0, . . . , `max) are (`max + 1) orthogonal eigenvectors of B associated with

eigenvalues w(J`) (` = 0, . . . , `max), i.e., for all 0 ≤ ` ≤ `max and 0 ≤ `′ ≤ `max, the ψ̃(`)’s

satisfy

Bψ̃(`) = w(J`)ψ̃(`) and
〈
ψ̃(`), ψ̃(`′)

〉
= δ``′ , (62)

where δ``′ is the Kronecker delta. Then, it suffices to verify that all other eigenvalues of B are

zeros [cf. (61)].

To begin, we equivalently express (62) using f (`)
i as

d∑
j=1

E
[
f
(`)
j (Xj)

∣∣∣Xi

]
= w(J`)f (`)

i (Xi), 1 ≤ i ≤ d, (63)

and
d∑
i=1

E
[
f
(`)
i (Xi)f

(`′)
i (Xi)

]
= δ``′ . (64)

Then, since we have [cf. (13)]
d∑
i=1

1{J`⊂Ii} =
d∑
j=1

1{J`⊂Ij} = w(J`),

it suffices to show that

E
[
f
(`)
j (Xj)

∣∣∣Xi

]
= f

(`)
i (Xi) · 1{J`⊂Ij}, 1 ≤ i, j ≤ d, (65)

and

E
[
f
(`)
i (Xi)f

(`′)
i (Xi)

]
=
1{J`⊂Ii}

w(J`)
· δ``′ , 1 ≤ i ≤ d. (66)

To obtain (65), note that if J` 6⊂ Ij , it follows from (15) that fj(Xj) = 0, and thus (65) holds.

Otherwise, we have J` ⊂ Ij and

E
[
f
(`)
j (Xj)

∣∣∣Xi

]
=

1√
w(J`)

E

[∏
s∈J`

bs

∣∣∣∣∣Xi

]
. (67)
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Since Xi = bIi is composed of all the bs’s with indices in Ii, we have

E

[∏
s∈J`

bs

∣∣∣∣∣Xi

]
=


∏
s∈J`

bs, if J` ⊂ Ii,

0, otherwise.

Therefore, we obtain

E
[
f
(`)
j (Xj)

∣∣∣Xi

]
=

1√
w(J`)

E

[∏
s∈J`

bs

∣∣∣∣∣Xi

]
=


1√
w(J`)

∏
s∈J`

bs, if J` ⊂ Ii,

0, otherwise

= f
(`)
i (Xi) = f

(`)
i (Xi) · 1{J`⊂Ij} .

Likewise, (66) follows immediately from (15) when ` = `′, and it suffices to consider the case

` 6= `′ and prove that

E
[
f
(`)
i (Xi)f

(`′)
i (Xi)

]
= 0. (68)

Indeed, when J` 6⊂ Ii or J`′ 6⊂ Ii, (68) is trivially true. Otherwise, we have J` ⊂ Ii and J`′ ⊂ Ii,

and it follows from (15) that

f
(`)
i (Xi)f

(`′)
i (Xi) =

1√
w(J`)w(J`′)

∏
j∈J`4J`′

bj,

where “4” denotes the symmetric difference of two sets, i.e., A4B = (A \B) ∪ (B \ A).

Therefore, we have

E
[
f
(`)
i (Xi)f

(`′)
i (Xi)

]
=

1√
w(J`)w(J`′)

∏
j∈J`4J`′

E[bj] = 0,

where we have used the fact that the set (J`4J`′) is non-empty, since J` 6= J`′ .

Finally, to prove (61), i.e., eigenvalues other that w(J`) (` = 0, . . . , `max) are all zeros, note

that
`max∑
`=0

w(J`) =
2r−1∑
`=0

w(J`) =
∑
I⊂[r]

w(I)

=
∑
I⊂[r]

d∑
i=1

1{I⊂Ii}

=
d∑
i=1

∑
I⊂[r]

1{I⊂Ii}

=
d∑
i=1

2|Ii| =
d∑
i=1

|Xi| = m.
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On the other hand, we have the sum of all eigenvalues
m−1∑
`=0

λ(`) = tr {B} = m.

From Lemma 1, all eigenvalues of B are non-negative, which implies (61).

APPENDIX F

PROOF OF PROPOSITION 1

To begin, we write the matrix B̃ of (6) as a block matrix

B̃ =


B̃11 B̃12 · · · B̃1d

B̃21 B̃22 · · · B̃2d

...
... . . . ...

B̃d1 B̃d2 · · · B̃dd

 , (69)

where each block B̃ij is an (|Xi|× |Xj|)-dimensional matrix. Then, we can rewrite
∥∥B̃−ΨΨT

∥∥2
F

as ∥∥B̃−ΨΨT
∥∥2
F

=
d∑
i=1

d∑
j=1

∥∥B̃ij −ΨiΨ
T
j

∥∥2
F

=
d∑
i=1

d∑
j=1

[∥∥B̃ij

∥∥2
F
− 2 tr

{
ΨT
i B̃ijΨj

}
+
∥∥ΨiΨj

∥∥2
F

]

=
d∑
i=1

d∑
j=1

[∥∥B̃ij

∥∥2
F
− 2H

(
f
i
(Xi), f j(Xj)

)]
=
∥∥B̃∥∥2

F
− 2H

(
f
1
(X1), . . . , fd(Xd)

)
, (70)

where we have used the fact that

tr
{

ΨT
i B̃ijΨj

}
− 1

2

∥∥ΨiΨj

∥∥2
F

= E
[
fT

i
(Xi)f j(Xj)

]
−
(
E
[
f
i
(Xi)

])T
E
[
f
j
(Xj)

]
− 1

2
tr
{
E
[
f
i
(Xi)f

T

i
(Xi)

]
E
[
f
j
(Xi)f

T

j
(Xj)

]}
= H

(
f
i
(Xi), f j(Xj)

)
.
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