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Abstract—This paper studies the problem of secure
communication over a K-transmitter multiple access
channel in the presence of an external eavesdropper,
subject to a joint secrecy constraint (i.e., information
leakage rate from the collection of K messages to an
eavesdropper is made vanishing). As a result, we es-
tablish the joint secrecy achievable rate region. To this
end, our results build upon two techniques in addition
to the standard information-theoretic methods. The
first is a generalization of Chia-El Gamal’s lemma on
entropy bound for a set of codewords given partial
information. The second is to utilize a compact repre-
sentation of a list of sets that, together with properties
of mutual information, leads to an efficient Fourier-
Motzkin elimination. These two approaches could also
be of independent interests in other contexts.

I. Introduction

For the problem of reliably communicating independent
messages over a multiple access channel (MAC), Ahlswede
[1] first studied the 2-transmitter and 3-transmitter cases
and determined the respective capacity regions; whilst
Liao [2] considered the general K-transmitter MAC and
fully characterized its capacity region.

Inspired by the pioneering works of Wyner [3] and
Csiszár and Körner [4] that studied the information the-
oretic secrecy of a point-to-point communication in the
presence of an external eavesdropper, a MAC with an
external eavesdropper was first introduced in [5]. In par-
ticular, [5] focused on a degraded Gaussian MAC with
K-transmitters and established achievable rate regions
subject to a pre-specified secrecy measure; while a discrete
memoryless 2-transmitter MAC with an external eaves-
dropper was considered in [6]. Further works on MAC with
an external eavesdropper include but not limited to [7]–
[10]. However, its secrecy capacity region, even for the 2-
transmitter case, still remains an open problem.

In this paper, we consider the secure communication
over a K-transmitter MAC subject to the joint secrecy
constraint (i.e., information leakage rate from the collec-
tion of K messages to an eavesdropper is made vanishing),
the channel model of which is shown in Fig. 1. As a general
result, we establish a joint secrecy achievable rate region.

This work is supported in part by DFG Grant CH 601/2-1 and
NSF award CNS-1617335.
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Fig. 1: K-transmitter DM-MAC with an eavesdropper.

The rest of the paper is organized as follows. Section II
introduces the system model and presents necessary def-
initions; Section III gives the general conditional entropy
bound. The bound plays an important role in establishing
the joint secrecy rate region that is given in Section III.
To enhance the flow of the paper, some details for the
Fourier-Motzkin elimination are relegated to Appendix A.

II. Preliminaries
Consider a discrete memoryless MAC (DM-MAC) with

K transmitters, one legitimate receiver, and one passive
eavesdropper, which is defined by p(y, z|x1, x2, · · · , xK).
The transmitter i, aims to send message mi, to the legiti-
mate receiver, where i ∈ K = {1, 2, · · · ,K}. Suppose that
xni is the channel input at transmitter i, and the channel
outputs at the legitimate receiver and eavesdropper are yn
and zn, respectively. By the discrete memoryless nature of
the channel (without any feedback), we have

p(yn, zn|xn1 , · · · , xnK) =
n∏
i=1

p(yi, zi|x1,i, · · · , xK,i). (1)

A (2nR1 , 2nR2 , · · · , 2nRK , n) secrecy code Cn for the DM-
MAC consists of
• K message setsM1,M2, · · · ,MK , wheremi ∈Mi =

[1 : 2nRi ] for i ∈ K;
• K encoders each assigning a codeword xni to message
mi for i ∈ K; and

• One decoder at the legitimate receiver that
declares an estimate of (m1,m2, · · · ,mK) say
(m̂1, m̂2, · · · , m̂K) or an error to the received
sequence yn.

In this paper, for a list of random variables Wj for
j ∈ K, and a fixed J ⊆ K, we denote WJ = {Wi|i ∈ J }.
Assume that the messages MK are uniformly distributed
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over their corresponding message sets. Therefore, we have
Ri = 1

nH(Mi), for i ∈ K. Denote the average prob-
ability of decoding error at the legitimate receiver as
Pne (Cn) = Pr

{ ⋃
i∈K
{Mi 6= M̂i}|Cn

}
. Define the joint infor-

mation leakage rate to the eavesdropper by RL,K(Cn) =
1
nI(MK;Zn|Cn). The rate pair (R1, R2, · · · , RK) is said to
be achievable under the joint secrecy constraint, if there
exists a sequence of (2nR1 , 2nR2 , · · · , 2nRK , n) codes {Cn}
such that

Pne (Cn) ≤ εn, (2)
RL,K(Cn) ≤ τn, (3)

lim
n→∞

εn = 0 and lim
n→∞

τn = 0. (4)

Recall that K = {1, 2, · · · ,K}. We have the following
definition and lemmas.

Definition 1. The indicator vector of a subset T of set
K, denoted by 1T , is a 1×K vector, with its i-th element
equal to 1 if i ∈ T and 0 otherwise, for 1 ≤ i ≤ K.
For instance, for K = 5, K = {1, 2, 3, 4, 5} and T =
{1, 3, 5}, we have 1T = [1 0 1 0 1], and 1∅ = [0 0 0 0 0].
Let {Ti|1 ≤ i ≤ t} be a list of t subsets of K.

Definition 2. The presence vector of {Ti|1 ≤ i ≤ t} is

defined to be t# =
t∑
i=1

1Ti , which counts the number of

presences of each element of K over {Ti|1 ≤ i ≤ t}.
Definition 3. A compact form of the element rearrange-
ment for {Ti|1 ≤ i ≤ t} is defined to be {T ∗t,i|1 ≤ i ≤ t},
where T ∗t,i contains the elements that present at least i times
from all these t subsets, i.e.,

T ∗t,i =
⋃

{j1,··· ,ji}⊆[1:t]

(
i⋂

k=1
Tjk

)
.

Clearly, T ∗t,t ⊆ T ∗t,t−1 ⊆ · · · ⊆ T ∗t,1. And, T ∗t,i = ∅ for i >
tmax, where tmax is the largest element of t#. So {T ∗t,i|1 ≤
i ≤ tmax} is the compact form without the empty sets.

Lemma 4. t# =
t∑
i=1

1Ti
=

t∑
i=1

1T ∗
t,i

=
tmax∑
i=1

1T ∗
t,i
.

For instance, forK = 3, K = {1, 2, 3} and {Ti|1 ≤ i ≤ 3}
with T1 = {1}, T2 = {1, 2}, T3 = {2, 3}. We have t# =
(2, 2, 1), tmax = 2, T ∗3,1 = {1, 2, 3}, T ∗3,2 = {1, 2}, T ∗3,3 = ∅.
Lemma 5. Given two lists of sets {T1i|1 ≤ i ≤ t1} and
{T2i|1 ≤ i ≤ t2}, elements of which are t1 and t2 subsets of
set K, respectively, if they share the same presence sequence
t#, then they also share the same compact form of the
element rearrangement without empty sets.

III. Conditional entropy bound
In this section, we give the conditional entropy bound,

which is a generalization of Chia-El Gamal’s lemma [11,
Lemma 1] on entropy bound for a set of conditionally
independent codewords given partial information.

Lemma 6. Let Rv,i ≥ 0 for i ∈ K, ε > 0, and
(Q,V1, · · · , VK , Z) ∼ p(q) · ∏

i∈K
p(vi|q) ·p(z|v1, · · · , vK). Let

Qn be a random sequence and each qn = (q(1), · · · , q(n))
distributed according to

n∏
t=1

p(q(t)). For i ∈ K, let

V ni (li), li ∈ [1 : 2nRv,i ], be a set of random se-
quences that are conditionally independent given Qn

and each vni = (vi(1), · · · , vi(n)) distributed accord-
ing to

n∏
t=1

p(vi(t)|q(t)), and let C be the codebook of(
Qn, V n1 (1), · · · , V nK(2nRv,K )

)
. Let Li be the random index

of V ni , for i ∈ K, with an arbitrary probability mass
function. Then, if Pr{(Qn, V n1 (L1), · · · , V nK(LK), Zn) ∈
T nε (Q,V1, · · · , VK , Z)} → 1 as n→∞ and∑

j∈J
Rv,j ≥ I(VJ ;Z|Q), ∀J ⊆ K (5)

there exists a δn(ε) → 0 as ε → 0 and n → ∞, such
that for n sufficiently large, H(L1, · · · , LK |Zn, Qn, C) ≤

n

[∑
j∈K

Rv,j − I(VK;Z|Q)
]

+ nδn(ε).

Proof: Given zn, let us define L as the set of indices
(l1, l2, · · · , lK) such that

(qn, vn1 (l1), · · · , vnK(lK), zn) ∈ T nε (Q,V1, · · · , VK , Z).

First we show that the expected size of this list, over all
randomly generated codebooks, is upper bounded by

E(|L|) ≤ 1 +
2K−1∑
i=1

2n[Ii+δ(ε)], (6)

where Ii =
∑
j∈Ji

Rv,j − I(VJi
;Z|VJ c

i
, Q). Here, {Ji|i ∈ [1 :

2K − 1]} are the 2K − 1 non-empty subsets of K, and
J ci = K\Ji for i ∈ [1 : 2K − 1]. Note that

E(|L|) = Pr{(L1, · · · , LK) ∈ L}
+

∑
(l1,··· ,lK) 6=(L1,··· ,LK)

Pr{(l1, · · · , lK) ∈ L},

where (L1, · · · , LK) are the true indices chosen by
the sources. Since Pr{(qn, vn1 (L1), · · · , vnK(LK), zn) ∈
T nε (Q,V1, · · · , VK , Z)} → 1 as n→∞, the 1st term tends
to 1 as n → ∞. As for the 2nd term, we can distinguish
(2K − 1) cases according to the values of (l1, l2, · · · , lK).
More specifically, for each Ji, i ∈ [1 : 2K − 1], we consider
the following case:
• lj 6= Lj for j ∈ Ji, and lj = Lj for j ∈ J ci .

In this case, in total there are at most 2
n
∑

j∈Ji

Rv,j

possible (l1, · · · , lK). By the joint typicality lemma,
we can upper bound Pr{(l1, · · · , lK) ∈ L} by

2−nI(VJi
;VJc

i
,Z|Q)+nδ(ε) (a)= 2−nI(VJi

;Z|VJi
c ,Q)+nδ(ε),

where (a) is due to the fact that VJi and VJ c
i

are
conditionally independent given Q.



Therefore, in this case, there are at most 2n[Ii+δ(ε)]

number of (l1, l2, · · · , lK) falling in the list L.
Summing up all the numbers of (l1, l2, · · · , lK) falling in
the list L over all these (2K − 1) cases, we prove (6).

Furthermore, define the indicator variable E = 1 if
(L1, · · · , LK) ∈ L, and E = 0 otherwise. We have

H(L1, · · · , LK |Zn, Qn, C) ≤ H(L1, · · · , LK , E|Zn, Qn, C)
≤H(E) +H(L1, · · · , LK |Zn, Qn, E, C)

(b)
≤1 +H(L1, · · · , LK |Zn, Qn, E = 1, C)

+ Pr{E = 0}H(L1, · · · , LK |C),
where (b) follows from the fact that H(E) ≤ 1 since E is a
binary random variable; Pr{E = 1} ≤ 1 and conditioning
does not increase the entropy.
Since Pr{(qn, vn1 (L1), · · · , vnK(LK), zn) ∈ T nε (Q,V1, · · · ,

VK , Z)} → 1 as n → ∞, then Pr{E = 0} =
Pr{(L1, L2, · · · , LK) /∈ L} can be made arbitrarily small
as n→∞. Next,
H(L1, · · · , LK |Zn, Qn, E = 1, C)
(c)=H(L1, · · · , LK |Zn, Qn, E = 1, C,L, |L|)
≤H(L1, · · · , LK |E = 1,L, |L|)
=

∑
l∈supp(|L|)

Pr{|L| = l}H(L1, · · · , LK |E = 1,L, |L| = l)

(d)
≤

∑
l∈supp(|L|)

Pr{|L| = l} log2(l)

=E(log2(|L|))
(e)
≤ log2 (E(|L|))

(f)
≤nmax{0, max

i∈[1:2K−1]
Ii}+K + nδ(ε)

(g)
≤n

∑
j∈K

Rv,j − I(VK;Z|Q)

+K + nδ(ε),

where (c) follows from the fact that L and |L| are functions
of the output Zn, given C and Qn; (d) is due to the fact
that, knowing E = 1, the sent indices (L1, L2, · · · , LK)
belong to the list L and the uncertainty is upper bounded
by the log cardinality of the list; (e) is by Jensen’s in-
equality; (f) is by (6) along with an application of the log-
sum-exp inequality: log2

( ∑
x∈X

2x
)
≤ max

x∈X
x + log2 (|X |) ;

and (g) follows if the rates satisfies (5), i.e.:
∑
j∈J

Rv,j ≥
I(VJ ;Z), ∀J ⊆ K. This, along with previous remarks
yields the desired inequality (by defining δn(ε) to be the
arbitrary small term O(ε) + (K + 1)/n).

IV. Achievable rate region
In this section, we give an achievable joint secrecy rate

region of the K-transmitter DM-MAC with an external
eavesdropper. This result recovers the joint secrecy result
for K = 2 in [12, Theorem 2], which improves [6, (8)] with
channel prefixing as demonstrated in [12].

Theorem 7. An achievable joint secrecy rate region of
the K-transmitter DM-MAC with an external eavesdrop-
per is given by the union of non-negative rate pairs
(R1, R2, · · · , RK) that are defined by the followings:∑

j∈J
Rj ≤I(VJ ;Y |VJ c , Q)− I(VJ ;Z|Q), ∀J ⊆ K

where the union is over input probability distributions that
factor as p(q)

∏
i∈K

p(vi|q)p(xi|vi).

Proof: Fix p(q) and p(vi|q), p(xi|vi) for i ∈ K. Gener-
ate a random sequence qn, where p(qn) =

n∏
t=1

p(q(t)) with
each entry chosen as i.i.d. p(q). The sequence qn is given
to every node in the system.
Codebook generation: For i ∈ K, to construct code-

book Ci, randomly generate 2n[Ri+Ri,r] i.i.d. sequences
vni (mi,mi,r), with (mi,mi,r) ∈ [1 : 2nRi ] × [1 : 2nRi,r ],
each with probability p(vni |qn) =

n∏
t=1

p(vi(t)|q(t)). Every
node in the network knows these codebooks. Denote the
overall codebook as C.
Encoding: For i ∈ K, to send message mi, transmitter

i randomly and uniformly chooses mi,r ∈ [1 : 2nRi,r ] and
finds vni (mi,mi,r). Then, given the codeword vni (mi,mi,r),
it generates xni according to

n∑
t=1

p(xi(t)|vi(t)) and trans-
mits this sequence to the channel.
Decoding: The legitimate receiver, upon receiving yn,

finds vn1 (m̂1, m̂1,r), vn2 (m̂2, m̂2,r), ... , vnK(m̂K , m̂K,r) such
that (vn1 (m̂1, m̂1,r), vn2 (m̂2, m̂2,r), · · · , vnK(m̂K , m̂K,r), yn)
is jointly typical.
Analysis of the error probability of decoding: Consider

the expected value of the error probability of decoding
over the ensemble of random codes C, i.e., Pe = E [Pe(C)] .
Note that here C denotes the random variable that rep-
resents the randomly generated codebook that adhere to
the above scheme. From the decoding analysis for the
multiple access channel, see, e.g., [13], Pe can be made
approximately zero as n→∞ if∑

j∈J
[Rj +Rj,r] ≤ I(VJ ;Y |VJ c , Q), ∀J ⊆ K. (7)

Analysis of joint secrecy: For the joint secrecy as defined
in (3), we show in the following that E [RL,K(C)] ≤ τn. To
this end, we show that H(MK|Zn, Qn, C) ≥ n

∑
i∈K

Ri−nτn,
as this implies I(MK;Zn|C) ≤ I(MK;Zn, Qn|C) ≤ nτn.
H(MK|Zn, Qn, C) = H(MK, Zn|Qn, C)−H(Zn|Qn, C)
=H(MK,MK,r|Qn, C) +H(Zn|MK,MK,r, Qn, C)
−H(Zn|Qn, C)−H(MK,r|MK, Zn, Qn, C)

(a)=H(MK,MK,r|Qn, C) +H(Zn|V n1 , · · · , V nK ,MK,MK,r, Qn, C)
−H(Zn|Qn, C)−H(MK,r|MK, Zn, Qn, C)

(b)=n
∑
i∈K

[Ri +Ri,r] +H(Zn|V n1 , V n2 , · · · , V nK , Qn, C)



−H(Zn|Qn, C)−H(MK,r|MK, Zn, Qn, C)
(c)
≥n

∑
i∈K

[Ri +Ri,r]− I(V n1 , · · · , V nK ;Zn|Qn, C)

− n
[∑
i∈K

Ri,r − I(VK;Z|Q) + εn

]
(d)
≥ n

∑
i∈K

Ri − nτn,

where (a) follows from the fact that V n1 , · · · , V nK are
functions of (M1,M1,r), · · · , (MK ,MK,r), respectively,
given Qn and C; (b) follows from the fact that
H(MK,MK,r|Qn, C) = n

∑
i∈K

[Ri + Ri,r], and given Qn

and C, (MK,MK,r) → (V n1 , V n2 , · · · , V nK) → Zn forms a
Markov chain; (c) follows from Lemma 6 (with Rv,i = Ri,r
for i ∈ K) by requiring (5):∑

j∈J
Rj,r ≥ I(VJ ;Z|Q), ∀J ⊆ K. (8)

(d) is due to the fact that I(V n1 , · · · , V nK ;Zn|Qn, C) ≤
n[I(V1, · · · , VK ;Z|Q) + εn], the proof of which follows the
proof of [14, Lemma 3], and taking τn = 2εn.
Joint secrecy achievable rate region: We summarize the

requirements in order to guarantee a reliable communica-
tion under the joint secrecy constraint as follows:
• the non-negativity for rates;
• the conditions for a reliable communication, i.e., (7);
• the conditions for the joint secrecy, i.e., (8).

That is, we have the following system of inequalities:∑
j∈J

[Rj +Rj,r] ≤I(VJ ;Y |VJ c , Q), for all J ⊆ K,∑
j∈J

Rj,r ≥I(VJ ;Z|Q), for all J ⊆ K.

To obtain the desired region of {Ri|i ∈ K}, the variables
of {Ri,r|i ∈ K} are to be eliminated. (The rate constraints
Ri ≥ 0 for i ∈ K are not included here, since they will not
be involved in the Fourier-Motzkin elimination. But they
will be included in the final derived region.)
Fourier-Motzkin Elimination: A matrix notation of the

above system of inequalities can be written as follows:[
[1J ]

[0J ]

]
︸ ︷︷ ︸

A′

·

 R1
...

RK


︸ ︷︷ ︸

x′

+

[
[1J ]

− [1J ]

]
︸ ︷︷ ︸

A′′

·

 R1,r

...
RK,r


︸ ︷︷ ︸

x′′

≤

 [
b+
J

]
−
[
b−J
]


︸ ︷︷ ︸
b

,

(9)
where
• 1J is the 1 × K indicator vector of the subset J of

the set K (which definition is given in Definition 1);
• Since J = ∅ introduces only redundant inequations,

only the non-empty choices of J need to be con-
sidered. Let {J1, · · · ,J2K−1} be the list of 2K − 1
different non-empty subsets of K. We have J ∈
{J1, · · · ,J2K−1};

• [1J ] is a (2K − 1) × K matrix, with the i-th row to
be the indicator vector 1Ji

, where 1 ≤ i ≤ 2K − 1.
Correspondingly,

–
[
b+
J
]
is a (2K − 1) × 1 matrix with the i-th row

to be b+
Ji

= I(VJi
;Y |VJ c

i
, Q),

–
[
b−J
]
is a (2K − 1) × 1 matrix with the i-th row

to be b−Ji
= I(VJi

;Z|Q);
• [0J ] is a (2K − 1)×K matrix with zero elements.

Properties of b+
J and b−J are given in Lemma 8 in Appendix

A, which play a crucial role in removing the redundant in-
quations so as to avoid the double exponential complexity
of the Fourier-Motzkin elimination.

Note that A′,A′′ are both (2K+1 − 2)×K matrices. In
particular, we have

A′′ =
[

[1J ]
− [1J ]

]
= B⊗ [1J ] , where B =

[
1
−1

]
. (10)

Here ⊗ is the Kronecker product. According to [15, Theo-
rem 1], we are looking for a G such that {wA′x′ ≤ wb|w ∈
G} is equivalent to the final system of the Fourier-Motzkin
elimination. Here, G is a base of essentially different
minimal vectors of F that is the cone of non-negative
solution w ≥ 0 of wA′′ = 0.
In fact, for our system defined by (9), we find

G = D⊗ I2K−1, where D =
[

1 1
]
. (11)

Here In is an n × n identity matrix. In the following, we
show that G (as defined in (11)) is a base of essentially
different minimal vectors of F. Note that the system
defined by {wA′x′ ≤ wb|w ∈ G} is:

GA′x′ ≤ Gb ⇔ [1J ] x′ ≤
[
b+
J − b−J

]
. (12)

Firstly, it is clear that w ∈ G is positive, i.e., w ≥ 0.
Secondly, we show that wA′′ = 0 for any w ∈ G. Note

that A′′ = B⊗[1J ] by (10). Therefore, if w ·(B⊗[1J ]) = 0,
we have w ·A′′ = 0 as well. It is easy to verify that

G·(B⊗[1J ]) = (D⊗I2K−1)·(B⊗[1J ]) (a)= (DB)⊗[1J ] = [0J ] ,

where (a) is due to the mixed-product property of the
Kronecker product: (A⊗ B)(C⊗D) = (AC)⊗ (BD).

Furthermore, by definition of G in (11), each row of G
is essentially different from the others. And, they are all
minimal according to [15, Theorem 2].

Most importantly, we show in the following that any
other positive vectors c satisfying c · A′′ = 0, will pro-
duce only redundant inequations. For convenience, we
denote c = [c+ c−], with c+ = [c+

1 , · · · , c+
2K−1] and

c− = [c−1 , · · · , c−2K−1]. Then, c · A′′ = 0 is equivalent to
c+ · [1J ] = c− · [1J ] .

Recall that for 1 ≤ i ≤ 2K − 1, 1Ji
is the indicator

vector of Ji, and thus c+
i > 0 (or c−i > 0) indicates c+

i (or
c−i ) number of presences of Ji. Let
Jc+ ={J1, · · · ,J1︸ ︷︷ ︸

c+
1

, · · · ,Ji, · · · ,Ji︸ ︷︷ ︸
c+

i

, · · · ,J2K−1, · · · ,J2K−1︸ ︷︷ ︸
c+

2K−1

};

Jc− ={J1, · · · ,J1︸ ︷︷ ︸
c−1

, · · · ,Ji, · · · ,Ji︸ ︷︷ ︸
c−

i

, · · · ,J2K−1, · · · ,J2K−1︸ ︷︷ ︸
c−

2K−1

}.



Denote n+ =
2K−1∑
i=1

c+
i and n− =

2K−1∑
i=1

c−i . Simply

representing Jc+ = {J +
1 ,J +

2 , · · · ,J +
n+} and Jc− =

{J−1 ,J−2 , · · · ,J−n−}, we have

c+ · [1J ] =
n+∑
i=1

1J+
i
, c− · [1J ] =

n−∑
i=1

1J−
i

; (13)

c+ ·
[
b+
J
]

=
n+∑
i=1

b+
J+

i

, c− ·
[
b−J
]

=
n−∑
i=1

b−J−
i

. (14)

Note that c+ · [1J ] = c− · [1J ] and (13) together imply
that both Jc+ and Jc− share the same presence vector
c# = c+ · [1J ] (according to Definition 2). Denote the
largest element of c# to be cmax.
Let {J⊕i |1 ≤ i ≤ n+} and {J	i |1 ≤ i ≤ n−} be the

compact forms of the element rearrangement (definition of
which is given in Definition 3) for Jc+ and Jc− , respec-
tively. Then, according to Lemma 5, they also share the
same compact form of the element rearrangement without
empty sets, i.e., {J⊕i |1 ≤ i ≤ cmax}. That is,

J⊕i = J	i , for 1 ≤ i ≤ cmax; (15)
J⊕i = J	j = ∅, for cmax < i ≤ n+ & cmax < j ≤ n−.

Since the element arrangement does not change the pres-
ence vector, we have by Lemma 4:

c# = c+ · [1J ] =
cmax∑
i=1

1J⊕
i
. (16)

Now if we sum up the rows of (12) with respect to
{J⊕i |1 ≤ i ≤ cmax}, we obtain the following inequation:

cmax∑
i=1

1J⊕
i

x′ ≤
cmax∑
i=1

[
b+
J⊕

i

− b−J⊕
i

]
. (17)

On the other hand, if we apply c to the original system
(9), we obtain the following inequation:

cA′x′ ≤ cb ⇒ c+ [1J ] x′ ≤ c+ [b+
J
]
− c−

[
b−J
]

(a)⇒ c#x′ ≤
n+∑
i=1

b+
J+

i

−
n−∑
i=1

b−J−
i

, (18)

where (a) is due to (16) and (14).
Note that the LHS of (18) is the same as the LHS of

(17) (according to (16)). However, we can show that

RHS of (18) =
n+∑
i=1

b+
J+

i

−
n−∑
i=1

b−J−
i

(b)
≥

n+∑
i=1

b+
J⊕

i

−
n−∑
i=1

b−J	
i

(c)=
cmax∑
i=1

[
b+
J⊕

i

− b−J⊕
i

]
= RHS of (17),

where (b) is according to Lemma 8 (as given in Appendix
A) and (c) is due to (15) and b+

∅ = b−∅ = 0. That is, (18) is
redundant since it is already implied by (17), which can be
derived as a linear combinatory with positive coefficients
of inequations of (12). Since this applies to any positive

vector c that is other than the rows of G (as defined in
(11)) such that c · A′′ = 0, therefore, the final system of
(9) is equivalent to the one (12).

As a conclusion, (12) establishes the resulting joint
secrecy region.

Appendix A
Properties of b+

T and b−T

Recall that b+
T = I(VT ;Y |VT c , Q) and b−T = I(VT ;Z|Q)

as defined in (9). We have the following lemma:

Lemma 8. Given {Ti|1 ≤ i ≤ t} as a list of t subsets
of K, and its compact form of the element rearrangement
{T ∗t,i|1 ≤ i ≤ t}, we have

t∑
i=1

b+
Ti
≥

t∑
i=1

b+
T ∗

t,i
and

t∑
i=1

b−Ti
≤

t∑
i=1

b−T ∗
t,i
.

To prove Lemma 8, we need the following two lemmas.

Lemma 9. Given {Ti|1 ≤ i ≤ t − 1} as a list of t − 1
subsets of K, and list {Ti|1 ≤ i ≤ t} (with one more subset
Tt included), let {T ∗t−1,i|1 ≤ i ≤ t − 1} and {T ∗t,i|1 ≤ i ≤
t} be their compact forms of the element rearrangement,
respectively. We have

T ∗t,i =


T ∗t−1,1 ∪ Tt i = 1
T ∗t−1,i

⋃(T ∗t−1,i−1
⋂ Tt) 1 < i < t

T ∗t−1,t−1 ∩ Tt i = t
.

Proof: The proof for i = 1, t is straightforward by
definitions of T ∗t,1 and T ∗t,t. For 1 < i < t, the proof is given
in steps (19)-(21) (at the top of the next page), where (19)
is by the definition of T ∗t,i; (20) is due to the distributive
laws of the sets and (21) is by the definition of T ∗t−1,i.

Lemma 10. For ∀T1, T2 ⊆ K, we have
1) b+

T1
+ b+
T2
≥ b+
T1∩T2

+ b+
T1∪T2

;
2) b−T1

+ b−T2
≤ b−T1∩T2

+ b−T1∪T2
.

Proof: We only give the proof for b+
T1

+ b+
T2
. A similar

proof applies to b−T1
+ b−T2

.

b+
T1

+ b+
T2

(a)= I(VT1 ;Y |VT1c , Q) + I(VT2 ;Y |VT2c , Q)
(b)= I(VT1∩T2 , VT1∩T c

2
;Y |VT1c , Q) + I(VT2 ;Y |VT2c , Q)

(c)= I(VT1∩T c
2

;Y |VT1c , Q) + I(VT1∩T2 ;Y |V(T1∩T2)c , Q)
+ I(VT2 ;Y |VT2c , Q)
(g)
≥ I(VT1∩T2 ;Y |V(T1∩T2)c , Q) + I(VT1∩T c

2
;Y |VT1c∩T2c , Q)

+ I(VT2 ;Y |VT1∩T2c , VT1c∩T2c , Q)
(e)= I(VT1∩T2 ;Y |V(T1∩T2)c , Q) + I(VT1∪T2 ;Y |V(T1∪T2)c , Q),

where (a) is by the definition of b+
T ; (b) is by the fact

that T1 = (T1 ∩ T2) ∪ (T1 ∩ T c2 ); (c) is by the chain
rule of the mutual information; (d) is by the facts that
T c2 = (T1 ∩ T c2 ) ∪ (T c1 ∩ T c2 ) and I(VT1∩T c

2
;Y |VT1c , Q) =

I(VT1∩T c
2

;VT1c∩T2 , Y |VT1c∩T2c , Q) ≥ I(VT1∩T c
2

;Y |VT1c∩T2c ,



T ∗t,i =
⋃

{j1,··· ,ji}⊆[1:t]

(
i⋂

k=1

Tjk

)
=

 ⋃
{j1,··· ,ji}⊆[1:t−1]

(
i⋂

k=1

Tjk

)⋃
 ⋃
{j1,··· ,ji−1}⊆[1:t−1]

((
i−1⋂
k=1

Tjk

)⋂
Tt

) (19)

=

 ⋃
{j1,··· ,ji}⊆[1:t−1]

(
i⋂

k=1

Tjk

)⋃

 ⋃
{j1,··· ,ji−1}⊆[1:t−1]

(
i−1⋂
k=1

Tjk

)⋂ Tt

 (20)

=T ∗t−1,i

⋃(
T ∗t−1,i−1

⋂
Tt

)
, (21)

Q), which holds since VT1∩T c
2
, VT1c∩T2 and VT1c∩T2c are

independent given Q; and (e) is due to the facts that
T1 ∪ T2 = T2 ∪ (T1 ∩ T c2 ) and T1

c ∩ T2
c = (T1 ∪ T2)c.

Now we give the proof of Lemma 8 as follows.
First, we show that the statement

t∑
i=1

b+
Ti
≥

t∑
i=1

b+
T ∗

t,i
is

true by induction.
• For t = 1, we have by definition T ∗1,1 = T1. Thus,
b+
T1

= b+
T ∗1,1

and the statement is true for t = 1.
• For t = 2, the statement is true by Lemma 10.
• Assume that the statement is true for some natural

number t − 1. That is, for any {Ti|1 ≤ i ≤ t − 1} as
a list of t − 1 subsets of K, and its compact form of
element rearrangement {T ∗t−1,i|1 ≤ i ≤ t−1}, we have
t−1∑
i=1

b+
Ti
≥
t−1∑
i=1

b+
T ∗

t−1,i
.

• Now we show that the statement is also true for t.
t∑
i=1

b+
Ti

=
t−1∑
i=1

b+
Ti

+ b+
Tt

(a)
≥

t−1∑
i=1

b+
T ∗

t−1,i
+ b+
Tt

=
t−1∑
i=2

b+
T ∗

t−1,i
+
(
b+
T ∗

t−1,1
+ b+
Tt

)
(b1)
≥

t−1∑
i=2

b+
T ∗

t−1,i
+
(
b+
T ∗

t−1,1∩Tt
+ b+
T ∗

t−1,1∪Tt

)
(c1)=

t−1∑
i=3

b+
T ∗

t−1,i
+
(
b+
T ∗

t−1,2
+ b+
T ∗

t−1,1∩Tt

)
+ b+
T ∗t,1

(b2)
≥

t−1∑
i=3

b+
T ∗

t−1,i
+
(
b+
T ∗

t−1,2∩Tt
+ b+
T ∗

t−1,2∪(T ∗t−1,1∩Tt)

)
+ b+
T ∗t,1

(c2)=
t−1∑
i=4

b+
T ∗

t−1,i
+
(
b+
T ∗

t−1,3
+ b+
T ∗

t−1,2∩Tt

)
+

2∑
i=1

b+
T ∗

t,i

...
(bt−1)
≥ b+

T ∗
t−1,t−1∩Tt

+ b+
T ∗

t−1,t−1∪(T ∗t−1,t−2∩Tt) +
t−2∑
i=1

b+
T ∗

t,i

(ct−1)=
t∑
i=1

b+
T ∗

t,i
,

where (a) is due to the fact that the statement is true
for t−1; and for 1 ≤ j ≤ t−1, step (bj) is by applying

Lemma 10 and the fact that T ∗t−1,j∩
(
T ∗t−1,j−1 ∩ Tt

)
=

T ∗t−1,j ∩ Tt for 2 ≤ j ≤ t − 1 (since T ∗t−1,j ⊆ T ∗t−1,j−1
by definition); step (cj) is by applying Lemma 9. In
particular, (c1) is by the fact that T ∗t,1 = T ∗t−1,1

⋃ Tt;
step (ct−1) is by the fact that T ∗t,t = T ∗t−1,t−1

⋂ Tt; and
other intermediate steps are by the fact that T ∗t−1,j ∪(
T ∗t−1,j−1 ∩ Tt

)
= T ∗t,j for 1 < j < t.

A similar proof can be applied to show that the state-
ment for

t∑
i=1

b−Ti
is also true. This concludes our proof.
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