
ar
X

iv
:1

70
8.

07
30

9v
1 

 [
cs

.I
T

] 
 2

4 
A

ug
 2

01
7

A Generalization of Blahut-Arimoto Algorithm to

Compute Rate-Distortion Regions of Multiterminal

Source Coding Under Logarithmic Loss
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Abstract—In this paper, we present iterative algorithms that
numerically compute the rate-distortion regions of two problems:
the two-encoder multiterminal source coding problem and the
Chief Executive Officer (CEO) problem, both under logarithmic
loss distortion measure. With the clear connection of these models
with the distributed information bottleneck method, the proposed
algorithms may find usefulness in a variety of applications, such
as clustering, pattern recognition and learning. We illustrate the
efficiency of our algorithms through some numerical examples.

I. INTRODUCTION

The logarithmic loss (log-loss) function is a widely used
penalty function that is particularly natural in settings in which
reconstructions are allowed to be ‘soft’, rather than ‘hard’ or
deterministic. That is, settings in which decoders or estimators
output not only estimate values but also assessment of the
levels of confidence in those values. More specifically, for a
length-n vector or sequence x = (x1, . . . , xn) with element xi,
i = 1, . . . , n, in some alphabet Xi, its reconstruction version
or estimate is a vector x̂ = (x̂1, . . . , x̂n) for which every
component x̂i is a probability distribution on Xi. The symbol-
wise distortion between xi and x̂i is measured as

d(xi, x̂i) = log
( 1

x̂i(xi)

)

, (1)

where x̂i(xi) represents the value of the probability distribu-
tion x̂i evaluated for the outcome xi. Using this symbol-wise
distortion, distortion between sequences is then defined as

d(n)(x, x̂) =
1

n

n
∑

i=1

d(xi, x̂i).

The logarithmic loss function (1) has many appreciable fea-
tures. First, it is used as a penalty criterion in various contexts,
including clustering and classification [1], pattern recognition,
learning and prediction [2], image processing [3] and others.
Second, it was recently shown in a remarkable paper by
Courtade and Weissman [4] to admit key properties that allow
to solve multiterminal source coding problems that are known
to be difficult otherwise, in the sense that their solutions are
still to be found for general distortion measures. Specifically,
as mentioned in [4], the log-loss distortion measure admits
a lower bound in the form of conditional entropy. Using this
key finding, Courtade and Weissman successfully establish the
single-letter characterization of the achievable rate-distortion
(RD) region of the classical two-encoder multiterminal source
coding problem [4, Theorem 6], as well as that of the Chief
Executive Officer (CEO) problem [4, Theorem 3], both under
log-loss distortion measure.
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Fig. 1. Chief Executive Officer (CEO) source coding problem.

The computation of the RD regions of the aforementioned
multiterminal source coding problems for general memoryless
sources is important per-se; and even more considering the
wide range of applications of lossy multiterminal source
coding, including emerging applications in fields such as
distributed learning and estimation [2, Chapter 9]. For ex-
ample, the information bottleneck method [1] is an efficient
data clustering algorithm, which essentially computes the RD
region of a point-to-point rate-distortion problem, in which the
distortion is measured under log-loss. Developing algorithms
that allow to compute the RD region of multiterminal source
coding problems can lead to efficient distributed algorithms
for clustering and prediction.

Nonetheless, computing the RD region of multiterminal
source-coding problems under log-loss for general memoryless
sources is a difficult task, as it involves non-trivial optimization
problems over distributions of auxiliary random variables. In
this paper, we develop computational techniques for solving
numerically the RD regions of the two-encoder multiterminal
source coding problem and the CEO problem, both under
logarithmic loss distortion measure. Our approach for the
computation of both regions consists on first reexpressing the
original RD region in terms of the union of simpler regions,
whose boundary points can be expressed parametrically. Then,
each boundary point can be computed numerically via an
appropriate iterative minimization method that we develop
here. The proposed method can be regarded as a generalization
of the well known Blahut-Arimoto (BA) algorithm [5], [6] to
the aforementioned multiterminal settings. For other gener-
alizations of this algorithm, the reader may refer to related
works on point-to-point [7], [8] and broadcast and multiple
access multiterminal settings [9], [10].

II. THE CEO PROBLEM

Consider the discrete memoryless two-encoder CEO setup
shown in Figure 1. In this setup, X is a discrete memoryless
remote source with elements in some alphabet X , and Y1

and Y2 are correlated memoryless observations or sources
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with elements in sets Y1 and Y2, respectively. The joint
probability mass function (pmf) of the triple (X,Y1, Y2) is
PX,Y1,Y2

, which is assumed here to satisfy the Markov chain
Y1 −
−X −
− Y2. The source Y1 is observed at Encoder 1 and
the source Y2 is observed at Encoder 2. The encoders are con-
nected to a decoder through error-free bit-pipes of capacities
R1 and R2, respectively. The decoder wants to reproduce an

estimate X̂ of the remote source X to within some prescribed
fidelity level D where the distortion is evaluated using the

measure (1). That is, E[d(X, X̂)] ≤ D with d(·) given by (1).
First, we recall the following theorem from [4, Theorem 3]

which characterizes the RD region of the CEO problem under
log-loss measure. We define ic , i (mod 2) + 1.

Theorem 1. [4, Theorem 3] The tuple (R1, R2, D)∈RDCEO

is achievable for the CEO problem under log-loss iff

Ri ≥ I(Ui;Yi|Uic , Q), for i = 1, 2, (2)

R1 +R2 ≥ I(U1, U2;Y1, Y2|Q), (3)

D ≥ H(X |U1, U2, Q), (4)

for some pmf p(x)p(y1|x)p(y2|x)p(u1|y1, q)p(u2|y2, q)p(q),
where |U1| ≤ |Y1|, |U2| ≤ |Y2|, and |Q| ≤ 4.

In this section, we develop a BA-type algorithm that allows
to compute the convex regionRDCEO for general memoryless
sources. The outline of the proposed method is as follows.
First, we rewrite the RD region RDCEO in terms of the union
of two simpler regions in Proposition 1. The tuples lying
on the boundary of each region are parametrically given in
Theorem 2. Then, the boundary points of each simpler region
are computed numerically via an alternating minimization
method derived in Section II-B and detailed in Algorithm 1.
Finally, the original RD region is obtained as the convex hull
of the union of the tuples obtained for the two simple regions.

Due to the space limitations, some proofs are omitted or
only outlined. The detailed proofs are relegated to the full
version of this work [11].

A. Equivalent Parametrization of RDCEO

Define the two regions RD1
CEO and RD2

CEO for i=1, 2 as

RDi
CEO = {(R1, R2, D) : D ≥ Di

CEO(R1, R2)},

with

Di
CEO(R1, R2) , min H(X |U1, U2) (5)

s.t. Ri ≥ I(Yi;Ui|Uic) and Ric ≥ I(Yic ;Uic),

and the minimization is over set of joint measures
PU1,U2,X,Y1,Y2

that satisfy U1 −
− Y1 −
−X −
− Y2 −
− U2.
As stated in the following proposition, the region RDCEO

of Theorem 1 coincides with the convex hull of the union of
the two regions RD1

CEO and RD2
CEO.

Proposition 1. The region RDCEO is given by

RDCEO = conv(RD1
CEO ∪RD

2
CEO). (6)

Proof. The outline of the proof is as follows. Let
PU1,U2,X,Y1,Y2

and PQ be such that (R1, R2, D) ∈ RDCEO.
The polytope defined by the rate constraints (2)-(3), denoted
by V , forms a contra-polymatroid with 2! extreme points
(vertices) [4], [12]. Given a permutation π on {1, 2}, the tuple

R̃π(1) = I(Yπ(1);Uπ(1)), R̃π(2) = I(Yπ(2);Uπ(2)|Uπ(1)),

defines an extreme point of V for each permutation. As
shown in [4], for every extreme point (R̃1, R̃2) of V , the

point (R̃1, R̃2, D) is achieved by time-sharing two successive
Wyner-Ziv (SWZ) strategies. The set of achievable tuples with
such SWZ scheme is characterized by the convex hull of

RD
π(1)
CEO. Convexifying the union of both regions as in (6),

we obtain the original RD region RCEO.

The main advantage of Proposition 1 it that it reduces the
computation of region RDCEO to the computation of the two
regions RDi

CEO, i = 1, 2, whose boundary can be efficiently
parameterized, leading to an efficient computational method.
In what follows, we concentrate on RD1

CEO. The computation
of RD2

CEO follows similarly, and is omitted for brevity. Next
theorem provides a parameterization of the boundary tuples of
the region RD1

CEO in terms, each of them, of an optimization

problem over the pmfs P , {PU1|Y1
, PU2|Y2

}.

Theorem 2. For each s , [s1, s2], s1 > 0, s2 > 0, define a
rate-distortion tuple (R1,s, R2,s, Ds) parametrically given by

Ds = −s1R1,s − s2R2,s +min
P

Fs(P), (7)

R1,s = I(Y1;U
∗
1 |U

∗
2 ), R2,s = I(Y2;U

∗
2 ), (8)

where Fs(P) is given in (9); P∗ are the conditional pmfs
yielding the minimum in (7) and U∗

1 , U
∗
2 are the auxiliary

variables induced by P∗. Then, we have:

1) Each value of s leads to a tuple (R1,s, R2,s, Ds) on the
distortion-rate curve Ds = D1

CEO(R1,s, R2,s).
2) For every point on the distortion-rate curve, there is an

s for which (7) and (8) hold.

Proof. Suppose that P∗ yields the minimum in (7). For this P
we have I(Y1;U1|U2) = R1,s and I(Y2;U2) = R2,s. Then,

Ds = −s1R1,s − s2R2,s + Fs(P
∗)

= −s1R1,s − s2R2,s + [H(X |U∗
1 , U

∗
2 ) + s1R1,s + s2R2,s]

= H(X |U∗
1 , U

∗
2 ) ≥ D1

CEO(R1,s, R2,s). (10)

Conversely, if P∗ is the solution to the minimization in (5),
then I(Y1;U

∗
1 |U

∗
2 ) ≤ R1 and I(Y2;U

∗
2 ) ≤ R2 and for any s,

D1
CEO(R1, R2) =H(X |U∗

1 , U
∗
2 )

Fs(P) ,H(X|U1, U2) + s1I(Y1;U1|U2) + s2I(Y2;U2) = H(X|U1, U2) + s1[I(U1;Y1)− I(U1;U2)] + s2I(U2;Y2)

=−
∑

u1u2x
p(u1, u2, x) log p(x|u1, u2)− s1

∑
u1u2

p(u1, u2) log p(u1, u2)− s2
∑

u2

p(u2) log p(u2)

+ s1
∑

u1y1

p(u1|y1)p(y1) log p(u1|y1) + s2
∑

u2y2

p(u2|y2)p(y2) log p(u2|y2) + s1
∑

u2

p(u2) log p(u2), (9)

Fs(P,Q) ,−
∑

u1u2x
p(u1, u2, x) log q(x|u1, u2)− s1

∑
u1u2

p(u1, u2) log q(u1, u2)− s2
∑

u2

p(u2) log q(u2)

+ s1
∑

u1y1

p(u1|y1)p(y1) log p(u1|y1) + s2
∑

u2y2

p(u2|y2)p(y2) log p(u2|y2) + s1
∑

u2

p(u2) log p(u2). (11)



≥H(X |U∗
1 , U

∗
2 ) + s1(I(Y1;U

∗
1 |U

∗
2 )−R1)

+ s2(I(Y2;U
∗
2 )−R2)

=Ds + s1(R1,s −R1) + s2(R2,s −R2).

Given s, and hence (R1,s, R2,s, Ds), letting (R1, R2) =
(R1,s, R2,s) yields D1

CEO(R1,s, R2,s) ≥ Ds, which proves,
together with (10), statement 1) and 2).

B. An iterative algorithm to compute RD1
CEO

In this section, we derive an algorithm to solve (7) for
a given parameter value s. To that end, we express the
optimization in (7) as a minimization of a function Fs(P,Q),
given in (11), over P and some auxiliary pmfs Q, defined as
Q , {QX|U1,U2

, QU1,U2
, QU2

}. We have the following result.

Proposition 2. For each s , [s1, s2], s1 > 0, s2 > 0, the
rate-distortion tuple (Ds, R1,s, R2,s) is given by

Ds = −s1R1,s − s2R2,s +min
P

min
Q

Fs(P,Q), (12)

where R1,s and R2,s are given in (8) and P∗ are the
conditional pmfs yielding the minimum in (7).

Proof. Follows from Theorem 2 and Lemma 2 below.

Motivated by the BA algorithm [5], we propose an alternate
optimization procedure over the set of pmfs P and Q as shown
in Algorithm 1. The steps in the algorithm are derived from
the following lemmas.

Lemma 1. Fs(P,Q) is convex in P and convex in Q.

Proof. Follows from the log-sum inequality.

Lemma 2. For fixed P, there exists a unique Q that achieves
the minimum minQ Fs(P,Q) = Fs(P), given by

QX|U1,U2
= PX|U1,U2

, QU1,U2
= PU1,U2

, QU2
= PU2

. (13)

Proof. The proof follows from the relation

Fs(P,Q)− Fs(P)

=
∑

u1u2

p(u1, u2)DKL(p(x|u1, u2)||q(x|u1, u2))

+s1DKL(p(u1, u2)||q(u1, u2))+s2DKL(p(u2)||q(u2)) ≥ 0,

where equality holds if and only if (13) is satisfied.

Lemma 3. For fixed Q, there exists a unique P that achieves
the minimum minP Fs(P,Q), where PUi|Yi

is given by

p(ui|yi) =
exp[ρi(ui, yi)]

∑

ui
exp[ρi(ui, yi)]

, for i = 1, 2, (14)

where ρi(ui, yi), i = 1, 2, are defined in (15) given below.

Algorithm 1 BA-type algorithm to compute RD1
CEO

1: input: PX,Y1,Y2
, parameters s.

2: output: P ∗
U1|Y1

, P ∗
U2|Y2

; (Ds, R1,s, R2,s).

3: initialization Set n = 0. Choose P(0) randomly.

Calculate Q(0) by applying steps 6 and 8.
4: repeat

5: n← n+ 1.

6: Update P(n) by using (14).
7: Update the following pmfs using P(n).

p
(n)(ui|x) =

∑
yi

p
(n)(ui|yi)p(yi|x), i = 1, 2,

p
(n)(ui) =

∑
yi

p(yi)p
(n)(ui|yi), i = 1, 2,

p
(n)(u1, u2, x) = p(x)p(n)(u1|x)p

(n)(u2|x),

p
(n)(u1, u2) =

∑
x
p
(n)(u1, u2, x).

8: Update Q(n) by using (13).

9: until convergence.

Proof. We have that Fs(P,Q) is convex in P from Lemma 1.
For a given Q and s, in order to minimize Fs(P,Q) over the
convex set of pmfs P, let us define the Lagrangian as

L(P,λ) ,Fs(P,Q) +
∑

y1

λ1(y1)[1−
∑

u1

p(u1|y1)]

+
∑

y2

λ2(y2)[1−
∑

u2

p(u2|y2)],

where λ1(y1) ≥ 0 and λ2(y2) ≥ 0 are the Lagrange multipli-
ers corresponding the constrains

∑

ui
p(ui|yi) = 1, yi ∈ Yi,

i = 1, 2, of the pmfs PU1|Y1
and PU2|Y2

, respectively. Due to
the convexity of Fs(P,Q), the KKT conditions are necessary
and sufficient for optimality. From the KKT conditions

∂L(P,λ)

∂p(u1|y1)
= 0,

∂L(P,λ)

∂p(u2|y2)
= 0,

we obtain (16) at the bottom of the page. Then, we proceeded
by rearranging (16) as follows

p(ui|yi) = eλ̃i(yi)eρi(ui,yi), i = 1, 2, (17)

where ρi(ui, yi), i = 1, 2, are given by (15) below, and we

define λ̃1(y1) , λ1/[s1p(y1)] − 1 and λ̃2(y2) , [λ2(y2) −
(s1+s2)p(y2)]/s2p(y2). Note that λ̃i(yi) contain all terms in-
dependent of ui for i = 1, 2. Finally, the Lagrange multipliers
λi(yi) satisfying the KKT conditions are obtained by finding

λ̃i(yi) such that
∑

ui
p(ui|yi) = 1, i = 1, 2. Substituting in

(17), p(ui|yi) can be found as in (14).

ρ1(u1, y1) ,
1

s1

∑

u2x

p(x|y1)p(u2|x) log q(x|u1, u2) +
∑

u2x

p(x|y1)p(u2|x) log q(u1, u2),

ρ2(u2, y2) ,
1

s2

∑

u1x

p(x|y2)p(u1|x) log q(x|u1, u2) +
s1
s2

∑

u1x

p(x|y2)p(u1|x) log q(u1, u2) + log q(u2)−
s1
s2

log p(u2).
(15)

log p(u2|y2) =
1

s2

∑

u1x

p(x|y2)p(u1|x) log q(x|u1, u2) +
s1

s2

∑

u1x

p(x|y2)p(u1|x) log q(u1, u2) + log q(u2)−
s1

s2
log p(u2) +

λ2(y2)

s2p(y2)
−

s1 + s2

s2
,

log p(u1|y1) =
1

s1

∑
u2x

p(x|y1)p(u2|x) log q(x|u1, u2) +
∑

u2x
p(x|y1)p(u2|x) log q(u1, u2) +

λ1(y1)

s1p(y1)
− 1. (16)



At each iteration of Algorithm 1, Fs(P
(n),Q(n)) decreases

until eventually it converges. However, since Fs(P,Q) is
convex in each argument but not necessarily jointly convex,
Algorithm 1 does not necessarily converge to the global
optimal. In particular, next proposition shows that Algorithm 1
converges to a stationary point of the the minimization in (7).

Proposition 3. The sequence {P(n),Q(n)}, n ≥ 0 in Algo-
rithm 1 converges to a stationary solution of the minimization
problem in (12) for n→∞.

Proof. The convergence of the algorithm follows since due to
Lemma (2) and Lemma (3), at the n-th iteration we have

Fs(P
(n−1),Q(n−1)) ≥ Fs(P

(n),Q(n−1)) ≥ Fs(P
(n),Q(n)),

which implies converge since the sequence is lower bounded.
The convergence to a stationary point follows by noting
that the proposed method is a maximization-minimization
algorithm in which Fs(P,Q) is a surrogate function [13].

III. MULTITERMINAL SOURCE CODING PROBLEM

In this section, we derive a BA-type algorithm to compute
the RD region of the classical two-encoder multiterminal
source coding setup, following a similar approach to that in
Section II. In this setup, we consider two correlated memo-
ryless sources Y1 and Y2 with elements in sets Y1 and Y2
and distributed according the joint pmf PY1,Y2

. The sources
Y1 and Y2 are observed at Encoder 1 and 2, each connected
to a decoder through an error-free bit-pipe of capacity R1

and R2, respectively. The decoder wants to reproduce an

estimate Ŷ1 and Ŷ2 of the sources Y1 and Y2 to within some
prescribed fidelity levels D1 and D2, respectively; where the
distortions are evaluated using the log-loss measure (1), i.e.,

E[d(Y1, Ŷ1)] ≤ D1 and E[d(Y2, Ŷ2)] ≤ D2.
The RD region of the two encoder multiterminal source

coding problem under log-loss measure is characterized in the
following theorem from [4, Theorem 6].

Theorem 3. [4, Theorem 6] The tuple (R1, R2, D1, D2) ∈
RDBT is achievable for the two encoder multiterminal source
coding problem under log-loss iff

Ri ≥ I(Ui;Yi|Uic , Q), for i = 1, 2,

R1 +R2 ≥ I(U1, U2;Y1, Y2|Q),

Di ≥ H(Yi|U1, U2, Q), for i = 1, 2.

for some pmf p(y1, y2)p(u1|y1, q)p(u2|y2, q)p(q), where
|U1| ≤ |Y1|, |U2| ≤ |Y2|, and |Q| ≤ 5.

Similarly to Section II, first we write RDBT in terms of
the union of two simpler regions, and then, we propose an

algorithm to compute its boundary rate-distortion pairs. To
that end, define the two RD regions RDi

BT, i = 1, 2, as

RDi
BT , {(R1, R2, D2, D2) :

αD1 + ᾱD2 ≥ Di
BT,α(R1, R2), ∀α ∈ [0, 1]},

where ᾱ , 1− α, and

Di
BT,α(R1, R2) , min αH(Y1|U1, U2) + ᾱH(Y2|U1, U2)

s.t. Ri ≥ I(Yi;Ui|Uic) and Ric ≥ I(Yic ;Uic),

where the optimization is over the set of joint pmfs
PU1,U2,Y1,Y2

that satisfy U1 −
− Y1 −
− Y2 −
− U2.

Proposition 4. RDBT = conv(RD1
BT ∪RD

2
BT).

Now, similarly to Proposition 2, we provide a parametriza-
tion of RD1

BT, which allows to compute each tuple on the
boundary of the region as a double minimization over the
conditional pmfs P = {PU1|Y1

, PU2|Y2
} and some auxiliary

pmfs Q , {QY1|U1,U2
, QY2|U1,U2

, QU1,U2
, QU2

}, of an auxil-
iary function Fβ(P,Q) defined in (18). We have the following
result similar to Theorem 2, justified with Lemma 4 below.

Theorem 4. Each tuple on the boundary of RD1
BT can be

obtained from some β , [s1, s2, α], s1 > 0, s2 > 0, α ∈ [0, 1]
parametrically as (R1,β, R2,β, D1,β, D2,β) where

αD1,β + ᾱD2,β = −s1R1,β − s2R2,β +min
P

min
Q

Fβ(P,Q),

D1,β = H(Y1|U
∗
1 , U

∗
2 ), D2,β = H(Y2|U

∗
1 , U

∗
2 ),

R1,β = I(Y1;U
∗
1 |U

∗
2 ), R2,β = I(Y2;U

∗
2 ),

where P∗, Q∗ are the pmfs yielding the minimization above.

We have the following lemmas.

Lemma 4. For fixed P, there exists a unique Q that achieves
the minimum minQ Fβ(P,Q) = Fβ(P,Q∗), given by

QY1|U1,U2
= PY1|U1,U2

, QY2|U1,U2
= PY2|U1,U2

,

QU1,U2
= PU1,U2

, QU2
= PU2

.
(19)

Lemma 5. For fixed Q, there exists a unique P that achieves
the minimum minP Fβ(P,Q), where PUi|Yi

is given by

p(ui|yi) =
exp[µi(ui, yi)]

∑

ui
exp[µi(ui, yi)]

, for i = 1, 2, (20)

where µi(ui, yi), i = 1, 2, are defined in (21).

An immediate iterative optimization method follows from
the two lemmas above as detailed in Algorithm 2. Similarly
to Algorithm 1, Algorithm 2 converges to a stationary point.

Proposition 5. The sequence {P(n),Q(n)}, n ≥ 0 in Algo-
rithm 2 converges to a stationary point of the minimization
problem in Theorem 4 for n→∞.

Fβ(P,Q) , s1
∑

u1y1

p(u1|y1)p(y1) log p(u1|y1) + s2
∑

u2y2

p(u2|y2)p(y2) log p(u2|y2) + s1
∑

u2

p(u2) log p(u2)− s2
∑

u2

p(u2) log q(u2)

− α
∑

u1u2y1

p(u1, u2, y1) log q(y1|u1, u2)− ᾱ
∑

u1u2y2

p(u1, u2, y2) log q(y2|u1, u2)− s1
∑

u1u2

p(u1, u2) log q(u1, u2). (18)

µ2(u2, y2) ,
α

s2

∑

u1y1

p(y1|y2)p(u1|y1) log q(y1|u1, u2) +
ᾱ

s2

∑

u1

p(u1|y2) log q(y2|u1, u2) +
s1

s2

∑

u1

p(u1|y2) log q(u1, u2) + log q(u2) −
s1

s2
log p(u2),

µ1(u1, y1) ,
α

s1

∑

u2

p(u2|y1) log q(y1|u1, u2) +
ᾱ

s1

∑

u2y2

p(y2|y1)p(u2|y2) log q(y2|u1, u2) +
∑

u2

p(u2|y1) log q(u1, u2). (21)



Algorithm 2 BA-type algorithm to compute RD1
BT

1: input: pmf PY1,Y2
, parameter β.

2: output: P ∗
U1|Y1

, P ∗
U2|Y2

; (R1,β, R2,β, D1,β, D2,β).

3: initialization Set n = 0. Choose P(0) randomly.

Calculate Q(0) by applying steps 6 and 8.
4: repeat

5: n← n+ 1.

6: Update P(n) by using (20).
7: Update the following pmfs.

p
(n)(ui) =

∑
yi

p(yi)p
(n)(ui|yi), i = 1, 2,

p
(n)(u1, u2, yi) = p(yi)p

(n)(u1|yi)p
(n)(u2|yi), i = 1, 2,

p
(n)(u1, u2) =

∑
y1y2

p(y1, y2)p
(n)(u1|y1)p

(n)(u2|y2).

8: Update Q(n) by using (19).

9: until convergence.
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Fig. 2. The regions RD1
CEO and RD2

CEO of the CEO setup for crossover
probability α1 = α2 = 0.25 and the tuples (R,R,D) ∈ RDCEO.

IV. NUMERICAL RESULTS

In this section, we focus on the computation of the RD
region for a binary CEO setup in which X is a Bernoulli
random variable distributed as X ∼ Bern(0.5); the channel
between the source and Encoder i is modeled as a binary
symmetric channel (BSC) with a crossover probability αi for
i = 1, 2, i.e., Yi = X ⊕ Zi, where Zi ∼ Bern(αi).

Figure 2 shows the rate-distortion tuples of regionsRD1
CEO

and RD2
CEO computed with Algorithm 1 for a symmetric

setup in which α1 = α2 = 0.25 and different values of s. The
region RDCEO can be obtained by computing the convex hull
of these points. Additionally, the tuples of RDCEO achievable
for R1 = R2, i.e., (R,R,D) are shown.

Figure 3 shows the rate-distortion tuples computed for
R1 = R2 = R and crossover probabilities α1 = α2 = α =
{0.01, 0.1, 0.25}. The results coincide with the rate-distortion
pairs computed in [4, Fig. 3] for the same setup by exhaustive
search over the conditional pmfs P.

Figure 4, illustrates the rate-distortion tuples of the regions
RD1

CEO and RD2
CEO for a CEO setup with asymmetric

crossover probabilities α1 = 0.25 and α2 = 0.1.
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