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Abstract

We consider the remote vector source coding problem in which a vector Gaussian source is to be estimated from noisy linear
measurements. For this problem, we derive the performance of the compress-and-estimate (CE) coding scheme and compare
it to the optimal performance. In the CE coding scheme, the remote encoder compresses the noisy source observations so as
to minimize the local distortion measure, independent from the joint distribution between the source and the observations. In
reconstruction, the decoder estimates the original source realization from the lossy-compressed noisy observations. For the CE
coding in the Gaussian vector case, we show that, if the code rate is less than a threshold, then the CE coding scheme attains the
same performance as the optimal coding scheme. We also introduce lower and upper bounds for the performance gap above this
threshold. In addition, an example with two observations and two sources is studied to illustrate the behavior of the performance
gap.

I. INTRODUCTION

The Distortion-Rate Function (DRF) describes the minimum attainable average distortion when recovering an information
source compressed to within a target bit rate for asymptotically large blocklength. The setting in which the source sequence
is not directly available at the encoder and only noisy observations are provided is referred to as the remote or indirect source
coding setting [1, Sec. 3.5]. In general, the optimal coding scheme in the indirect source coding setting depends on the joint
statistics of the underlying source and the noisy observations. Therefore, the optimal scheme is not applicable when the encoder
is designed without knowledge of this statistics. Namely, the encoder is either unaware of the existence of the underlying source
and regards the observed process as the target for compression, or utilizes a general-purpose compression strategy that does
not adapt to the underlying source. Under these limitations, the encoder will compress its sequence of observations based on a
distortion criterion defined only with respect to this observed sequence. The decoder, having full knowledge of the joint statistics
of the underlying source and its observations, estimates the source from the output of the encoder. This compress-and-estimate
(CE) scheme was proposed and studied in [2]. In this paper we extend the results of [2] to the Gaussian vector remote source
coding problem, thus providing a better understanding of the loss of performance caused by partial system knowledge at the
remote encoders.

Previous Work: The indirect source coding problem was first considered in [3], where it was shown that the optimal trade-off
between code-rate and distortion is characterized by a single-letter expression, denoted as the indirect DRF (iDRF). Moreover,
it was proven in [1], [4] that the iDRF can be achieved by first estimating the remote source from the input to the observer, and
then encoding this estimate optimally with respect to the code-rate constraint. Therefore, the optimal indirect source coding
scheme can be referred to as the estimate-and-compress scheme. The CE scheme for the indirect source coding setting was
introduced in [5] and was motivated by the difficulty in implementing an estimation step before encoding. A single-letter
expression characterizing the minimal distortion in the CE setting with multiple encoders was derived in [2]. Moreover, it was
shown in [2] that this expression has a closed form expression in the quadratic Gaussian setting of a scalar Gaussian source
observed through multiple linear measurements corrupted by Gaussian noise. The optimal rate-allocation across the multiple
encoders was considered in [6].

Other works that consider communication with non-optimal encoding due to missing source statistics or codebook information
include the oblivious processing channel coding problem of [7], the minimax source coding of [8], and the mismatched encoding
problem of [9]. In particular, as explained in this paper, the CE scheme can be seen as a special case of the mismatched encoding
problem.

Contributions: In this work, we consider the CE scheme in the quadratic Gaussian setting with a vector Gaussian source.
Namely, we consider the minimal distortion in estimating a vector Gaussian source from an encoded version of its noisy
measurement, where the encoder employs a source code that is optimal with respect to the noisy measurements under a
quadratic distortion. For this setting, we show that the CE scheme is optimal when the code-rate is below a certain threshold
that depends on the spectrum of the observed vector. That is, when the code-rate is below this threshold, lack of underlying
source statistics causes no penalty in the distortion. Above this threshold, we derive upper and lower bounds on the distortion
difference between the CE scheme and the optimal scheme using an inequality between the arithmetic mean and the geometric
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Fig. 1: Vector Gaussian remote source coding problem with noisy linear measurement.

mean (AM-GM inequality). In addition, we consider an example with two sources and two observations to illustrate the
behavior of performance gap.

Paper Organization: The remainder of the paper is organized as follows: in Sec II we introduce the problem formulation.
The main results are presented in Sec. III. Sec. IV concludes the paper.

Throughout, for the sake of brevity, we only provide a sketch of the proofs in the body text. The complete proofs are
available in the appendices.

Notation: We denote [n] = {1, . . . , n} for n ∈ N, and a+ = max{a, 0}, for a ∈ R. Also, we define log+(x) as
log(max{1, x}). With IL we indicate the identity matrix of size L × L. With diag(v) we indicate the matrix with the
elements of v on the diagonal. For a square matrix C, denote by λl(C) the lth largest eigenvalue. For C positive semi-definite
and for k ∈ [rank(C)], we define functions Rk(C) and θk(C, R) as follows:

Rk(C) =


0 k = 1
1
2

∑k
l=1 log λl(C)

λk(C) 2 ≤ k ≤ rank(C)

∞ k = rank(C) + 1,

(1)

and

θk(C, R) = 2−
2R
k

(
k∏
l=1

λl(C)

) 1
k

. (2)

II. SYSTEM MODEL

We consider the indirect source coding setting in Fig. 1 in which an M -dimensional Gaussian source is observed through a
vector additive white Gaussian noise (AWGN) channel at a remote encoder. The random source sequence Xn = (Xn

1 . . . X
n
M )

is obtained through n i.i.d. draws from the jointly Gaussian distribution with zero mean and covariance matrix I. The remote
encoder obtains the noisy observation vector Y = (Y n1 . . . Y nL ) with

Yn = AXn + Zn, (3)

for some A ∈ RL×M , assumed full rank, with noise Z ∼ N (0, σ2IL) ∈ RL. The encoder produces the index m ∈
{

1 . . . 2bnRc
}

to encode its observation and the index m is noiselessly communicated to a central processing unit that produces the
reconstruction sequence X̂n(m).

Given a value R, we wish to determine the minimum average quadratic distortion between the original source sequence Xn

and its reconstruction X̂n, normalized over the source dimension M , which is:

Ed(Xn, X̂n) ,
1

M

1

n

n∑
i=1

E
[∥∥∥Xi − X̂i(m)

∥∥∥2] , (4)

where the expectation is taken with respect to all source and channel realizations.

Remark II.1. The model in (3) in which X has a general covariance matrix ΣX can be reduced to the case ΣX = I without
loss of generality. This is obtained by letting X′ = Σ

−1/2
X X and A′ = AΣ

1/2
X . Hence Yn = A′X′n+Zn, where the whitened

source vector X′ ∼ N (0, I).

In the following, we assume that the matrix A in (3) is full rank and define r = min{M,L}. We use {λl, l ∈ [L]} to
denote the eigenvalues of AAT , sorted in descending order. Note that the covariance matrix of Y, i.e. ΣY , and the conditional
covariance matrix of X|Y, i.e. ΣX|Y , are respectively obtained as

ΣY = AΣXAT + σ2I, (5a)

ΣX|Y = ΣXAT (AΣXAT + ΣW )−1AΣX . (5b)

Following (5), we have that {λl/(λl + σ2), l ∈ [r]} are the eigenvalues of ΣX|Y and {λl + σ2, l ∈ [r]} are the eigenvalues
of ΣY , both in descending order as per {λl, l ∈ [r]}.

Indirect Source Coding: The minimal distortion in the indirect source coding setting of Fig. 1 is described by the (information)
iDRF [1, p.78-81]:

DX|Y (R) = inf Ed(X, X̂), (6)



where the infimum is taken over all joint probability distributions of Y and X̂ such that the per letter mutual information
I(Y; X̂) does not exceed R.

The iDRF for the model in (3) can be rewritten as

DX|Y (R) =
1

M
trace (mmse(X|Y) (7)

+ min
X̂:I(Y,X̂)≤R

EY

[
||E[X|Y]− X̂||2

])
,

where mmse(X|Y) is the minimum mean square error (MMSE) when estimating X from Y, i.e.

E[X|Y] = AT (AAT + σ2I)−1Y, (8a)

mmse(X|Y) =

(
1

σ2
AAT + I

)−1
. (8b)

The solution of the optimization in (6) through the formulation in (7) results in the classic water-filling assignment of the
compression rate for each observation. This solution yields a simple expression for the inverse of the iDRF, which is the
rate-distortion function

RX|Y (D) =
1

M

L∑
l=1

λl
λl + σ2

+

L∑
l=1

1

2
log

1

Dl

λl
λl + σ2

, (9)

where

Dl =

{
θ λl

λl+σ2 > θ
λl

λl+σ2
λl

λl+σ2 ≤ θ,
(10)

where θ is chosen so that
∑
lDl = D. The expression in (10) shows that, in the optimal compression scheme, E[(X̂l−Xl)

2|Y] =
Dl for Dl in (10). In other words, the MMSE error in estimating each source component is controlled by the solution of the
water-filling problem so that if the ith eigenvalue is below the water level, no rate is assigned to the compression of the
estimate of the ith observation.

Compress-and-Estimate Vector Source Coding: The CE setting [5] considers the remote source coding problem in which
each remote encoder compresses its noisy observation sequence so as to minimize a local distortion measure that depends only
on the distribution of its observed sequence, and is otherwise independent from the distribution of the underlying source. The
CE-DRF is the single letter expression of the distortion that can be attained by the CE coding scheme for the case of an i.i.d.
source observed through a memoryless channel. Given a local distortion measure dl and a probability distribution P ∗

Ŷ,Y
that

satisfies I(Y; Ŷ) = R and Ed(Yl, Ŷl) = D(R), where D(R) is the classic distortion-rate function with respect to compressing
Y under distortion measure dl, the CE-DRF is defined as

DCE(R) = inf D
(
X, X̂(Ŷ)

)
, (11)

where the infimum is over all estimators of X given the noisy reconstructions Ŷ. For the observation model in (3), the quadratic
distortion in (4) at the central unit and as a local distortion at the remote encoder, the CE-DRF is expressed as

DCE(R) = E
[
||X− E[X|Ŷ]||2

]
, (12)

where the joint distribution PY,Ŷ is described by the backward Gaussian channel Y = Ŷ + UZ, where U is an orthogonal
matrix that diagonalizes ΣY , and the noise Z ∼ N (0,ΣZ) with covariance matrix ΣZ = diag{σ2

Z1
, . . . , σ2

ZL
}. Here, σ2

Zl
=

min(λl + σ2, θ) = Dl.

III. MAIN RESULT

In the following, we derive conditions under which the CE-DRF in the vector quadratic Gaussian setting equals the iDRF.
In addition, we derive bounds, both upper and lower, to the performance gap between the CE-DRF and the iDRF. We also
provide a two-dimensional example and characterize the performance gap in different regions of R.

A. Conditions for Equality

We begin by deriving the conditions under which the CE-DRF and the iDRF coincide. To do so, we re-write the iDRF as
the inverse of the rate-distortion function in (9).



Proposition III.1. When R satisfies

Rk(ΣX|Y ) < R ≤ Rk+1(ΣX|Y ), (13)

for Rk(ΣX|Y ) in (1) and k ∈ [r], the iDRF in (7) is obtained as

DX|Y (R) = 1− 1

M

k∑
l=1

λl
λl + σ2

+
k

M
θk(ΣX|Y , R), (14)

for θk(ΣX|Y , R) in (2).

In Prop. III.1, we express DX|Y (R) as a piecewise function of R over the intervals
{

(Rk(ΣX|Y ), Rk+1(ΣX|Y )]
}r+1

k=1
with

∪rk=1(Rk(ΣX|Y ), Rk+1(ΣX|Y )] = R+. In each one of those intervals, the water-filling solution prescribes for k eigendirections
of ΣX|Y to be compressed at the remote encoder. In other words, k in (14) corresponds to the number of Dl > θ in (9).

We then obtain an expression of the CE-DRF.

Proposition III.2. When the rate R satisfies

Rk(ΣY ) < R ≤ Rk+1(ΣY ), (15)

the CE-DRF in (12) is obtained as

DCE(R) = 1− 1

M

k∑
l=1

λl
λl + σ2

+
θk(ΣY , R)

M

k∑
l=1

λl
(λl + σ2)2

. (16)

By comparing the expressions in Prop. III.1 and Prop. III.2 we note that, for R ≤ min{R2(ΣY ), R2(ΣX|Y )}, the expressions
in (14) and (16) are equal. This condition for equality can be generalized as in the following proposition.

Proposition III.3. Define

r0 = max
k

{
λk =

1− 2c(λ1)σ2 ±
√

1− 4c(λ1)σ2

2c(λ1)

}
, (17)

where c(λ1) = λ1/(λ1 + σ2)2. Or equivalently, r0 is defined as the integer such that λk/(λk + σ2)2 = λ1/(λ1 + σ2)2 if and
only if k ≤ r0. Then, if R ≤ min{Rr0+1(ΣY ), Rr0+1(ΣX|Y )}, the expressions in (14) and (16) are equal.

The result in Prof. III.3 generalizes a previous result in [5] where equality was shown for the case of L = M = 1. Note
that if r0 = L = M , then we have DCE(R) = DX|Y (R) for any R. The functions DX|Y (R) and DCE(R) are continuous
decreasing functions of R. We note that DCE(R) is only smooth between each pair of two rate thresholds, that is in the intervals
[Rk(ΣY ), Rk+1(ΣY )]. Each rate threshold Rk(ΣY ) determines a change in the slope of DCE(R). Despite the fundamental
difference between these two functions, in the low rate regime of Prop. III.3 the two functions actually coincide.

Discussion: Note that both the CE and the optimal compression schemes suffer from a distortion mmse(X|Y), which follows
from the fact that Y, instead of X, is observed. Moreover, the forward channel between the observation and its reconstruction
for both transmission schemes corresponds to a vector additive Gaussian noise channel. In the optimal compression scheme, the
noise is added along the eigenvectors of the covariance matrix ΣX|Y , while in the CE scheme the noise follows the direction
of the eigenvectors of the matrix ΣY. This distinction implies that the CE scheme might allocate compression resources to
eigendirections which are not useful in estimating the underlying source X. As an example, assume that there exists λl = 0.
Recall (5a), when the lth eigenvalue of AΣXAT is zero, the lth eigenvalue of ΣY equals σ2, which solely comes from
the covariance matrix of noise σ2I, and the lth eigenvalue of ΣX|Y satisfies λl(ΣX|Y ) = λl/(λl + σ2) = 0. Hence, the
lth components in both optimal and CE settings are pure noise and contain no information of the source. For the optimal
scheme, we see that the compression rate allocated for this component is always zero. In other words, the optimal scheme
never activates a component that does not contain source information. However, we note that the CE scheme might activate
components that are pure noise when R is sufficiently large. This is due to the fact that, in the optimal scheme, the encoder
knows the joint statistics and can therefore avoid wasting rate resources on useless observations. In contrast, the encoder in
the CE setting cannot recognize a pure noise component since it lacks knowledge of the source. On the other hand, when the
rate is sufficiently small, only the largest eigendirection is actively compressed, in which case, perhaps surprisingly, the CE
performance equals the optimal performance.



B. Performance Gap

We next upper bound the performance gap between the CE and the optimal performance, defined as

G(R) = DCE(R)−DX|Y (R). (18)

for the regimes in which the equality conditions of Prop. III.3 does not hold.

Theorem III.4. The difference between the CE-DRF and the iDRF is bounded as

G(R) ≤ L

M

λ1 + σ2

4σ2
2−2

R
L . (19)

Proof: Only a sketch of the proof is presented here. As an example, assume that there exists an R for which (13) and (15)
hold for the same k. As argued above, this implies that the two schemes actively compress the same number of components.
For this value of R we have

M (1−DCE(R))

=

k∑
l=1

λl

λl + σ2
+

2−
2R
k

M

(
k∏

l=1

(λl + σ2)

) 1
k

k

(
k∑

l=1

1

k

λl

(λl + σ2)2

)

≤
k∑

l=1

λl

λl + σ2
+

2−
2R
k

M

(
k∏

l=1

(λl + σ2)

) 1
k

k

(
k∏

l=1

λl

(λl + σ2)2

)1/k

(20)

≤M(1−DX|Y (R)),

where (20) follows from the classic AM-GM inequality. Through a similar reasoning, the inequality in (19) is obtained by
exploiting a reverse AM-GM inequality in [10] to bound the largest difference between the CE and the optimal performance.

Th. III.4 shows that the difference between the CE-DRF and the optimal distortion is upper bounded by a function that
decreases exponentially with R/L. To complement the result in Th. III.4, we introduce the following lower bound to the
performance gap between the CE and the optimal performance.

Theorem III.5. For R > R2(ΣY ), the difference between CE-DRF and iDRF is lower bounded as

G(R) ≥ λL + σ2

M

( √
λ1

λ1 + σ2
−
√
λ2

λ2 + σ2

)2

2−
2R
L . (21)

Proof: We provide a sketch of proof here. Suppose k satisfies (15). We have

DCE(R)−DX|Y (R)

≥ 2−
2R
k

M

k∏
l=1

(λl + σ2)
1
k

(
k∑

l=1

λl

(λl + σ2)2
+

−k

(
k∏

l=1

λl

(λl + σ2)2

) 1
k


≥ 2−

2R
k

M

k∏
l=1

(λl + σ2)
1
k

(
max
l≤k

√
λl

(λl + σ2)
−min

l≤k

√
λl

(λl + σ2)

)2

. (22)

The first inequality follows from the fact that k satisfies (15) but not necessarily (13), and hence could be a non-optimal
choice for the setting with full knowledge. The second inequality follows from a lower bound on the difference between AM
and GM in [11, Sec. II]. Finally, (21) follows by noting the bound on R given in (15) and the fact that λl’s are in descending
order.

Recall that the performance gap can be zero for small R, the lower bound (21) is valid for R > R2(ΣY ). For R ≤ R2(ΣY ),
the obvious lower bound DCE(R)−DX|Y (R) ≥ 0 could be tight.

The results in Th. III.4 and Th. III.5 show that the gap between the CE and the optimal performance decays exponentially
in the rate-per-observation, R/L. The upper and lower bounds are always monotonically decreasing but, from numerical
observations, they appear to be loose in the region for small R. Nonetheless they correctly capture the asymptotic decrease in
the gap between the performance of the two schemes.



Fig. 2: Comparison between DCE (green) and DX|Y (blue).

C. Two Observations, Two Sources Example

In this section we consider the case with two sources and two observations, i.e. M = L = 2. For brevity, we consider only
the scenario

λ1/(λ1 + σ2)2 ≤ λ2/(λ2 + σ2)2. (23)

Recall that, by the definition in (1), R1(ΣX|Y ) = R1(ΣY ) = 0, additionally

R2(ΣY ) =
1

2
log

λ1 + σ2

λ2 + σ2

≤ 1

2
log

λ1/(λ1 + σ2)

λ2/(λ2 + σ2)
= R2(ΣX|Y ). (24)

Following the assumption in (23). Given the considerations above, we derive the performance gap in three regions: (i) R ∈
(0, R2(ΣX|Y )], (ii) R ∈ (R2(ΣX|Y ), R2(ΣY )], and (iii) R ∈ (R2(ΣY ),∞).
• R ∈ (0, R2(ΣX|Y )]: This is the region of equality in Prop. III.3.
• R ∈ (R2(ΣX|Y ), R2(ΣY )]: Here we have

G(R) =
1

2

(√
λ1

λ1 + σ2
2−R −

√
λ2

λ2 + σ2

)2

. (25)

In this region, the performance gap increases with R, and the maximal gap is

max
R

G(R) =
1

2
(λ2 + σ2)

( √
λ1

(λ1 + σ2)
−

√
λ2

(λ2 + σ2)

)2

, (26)

which is achieved at R = R2(ΣY ).
• R ∈ (R2(ΣY ),∞): In this case we have

G(R) = 2−R
√

(λ1 + σ2)(λ2 + σ2)

·

1

2

2∑
l=1

λl
λl + σ2

−

(
2∏
l=1

λl
λl + σ2

) 1
2

 . (27)

We see that in this region, the performance gap decays exponentially in 2R/L = R, which corresponds to the behavior
predicted by Th. III.4 and Th. III.5.

Let us introduce a numerical evaluation for the case L = M = 2 with λ1 = 20, λ2 = 0.5 and σ2 = 1, yielding
R2(ΣX|Y ) = 0.76 < R2(ΣY ) = 1.90. In Fig. 2, we plot the CE-DRF together with the iDRF, which are monotonically
decreasing in R. The function DCE(R) is smooth on intervals [0, R2(ΣY )] and (R2(ΣY ),+∞), while the derivative is
discontinuous at the point R = R2(ΣY ).



Fig. 3: Performance gap G(R) = DCE(R)−DX|Y (R).

Fig. 3 focuses on the performance gap, G(R) in (18): when 0 < R ≤ R2(ΣX|Y ), we have DCE(R) = DX|Y (R); when
R2(ΣX|Y ) < R ≤ R2(ΣX|Y ), the performance gap is increasing. The performance gap starts to decrease at R = R2(ΣY )
so that the maximal gap is G(R) = 0.05, which is achieved at R = R2(ΣY ) = 1.90.

IV. CONCLUSION

We have derived the performance of compress-and-estimate (CE) coding for a Gaussian vector, observed at the remote
encoder through linear observations and further corrupted by additive white Gaussian noise. In the CE coding scheme, the
remote encoder compresses its observation according to a local distortion measure which depends solely on the observation
distribution and rate-per-symbol constraint. An estimator receives the encoded observations and uses them to estimate the
remote source sequence. For this setting, we showed that when the rate is smaller than a threshold, the CE setting attains
the optimal source coding performance. This threshold is obtained as a rather straightforward function of the eigenvalues of
the observation matrix. Since the operation at the remote encoder depends only on the distribution of the observation, this
result shows instances in which the optimal coding performance can be attained without the full system knowledge at the
remote encoder. In addition, we derived upper and lower bounds on the performance gap between the CE scheme and the
optimal scheme where the encoder has full knowledge of the underlying source statistics, which shows that the decay in the
performance loss is exponential in the rate-per-observation in the region where the rate-per-symbol is large. Finally, for the
case of two observations and two sources, a complete characterization of the behavior of the performance gap is derived.

REFERENCES

[1] T. Berger, Rate-distortion theory: A mathematical basis for data compression. Englewood Cliffs, NJ: Prentice-Hall, 1971.
[2] A. Kipnis, S. Rini, and A. J. Goldsmith, “Compress and estimate in multiterminal source coding,” 2017, unpublished. [Online]. Available:

https://arxiv.org/abs/1602.02201
[3] R. Dobrushin and B. Tsybakov, “Information transmission with additional noise,” IRE Transactions on Information Theory, vol. 5, no. 8, pp. 293–304,

1962.
[4] H. Witsenhausen, “Indirect rate distortion problems,” Information Theory, IEEE Transactions on, vol. 26, no. 5, pp. 518–521, Sep 1980.
[5] A. Kipnis, S. Rini, and A. J. Goldsmith, “Multiterminal compress-and-estimate source coding,” in Information Theory (ISIT), IEEE International

Symposium on, 2016, pp. 540–544.
[6] R. Song, S. Rini, A. Kipnis, and A. J. Goldsmith, “Optimal rate allocation in multiterminal compress-and-estimate source coding,” in Information Theory

Workshop (ITW), IEEE, 2016, pp. 111–115.
[7] A. Sanderovich, S. Shamai, Y. Steinberg, and G. Kramer, “Communication via decentralized processing,” Information Theory, IEEE Transactions on,

vol. 54, no. 7, pp. 3008–3023, July 2008.
[8] A. Dembo and T. Weissman, “The minimax distortion redundancy in noisy source coding,” Information Theory, IEEE Transactions on, vol. 49, no. 11,

pp. 3020–3030, 2003.
[9] A. Lapidoth, “On the role of mismatch in rate distortion theory,” Information Theory, IEEE Transactions on, vol. 43, no. 1, pp. 38–47, 1997.

[10] T. L. Nguyen, “Reversing the arithmetic mean–geometric mean inequality,” Research report collection, vol. 11, no. Supp, 2008.
[11] S. Tung, “On lower and upper bounds of the difference between the arithmetic and the geometric mean,” Mathematics of Computation, vol. 29, no. 131,

pp. 834–836, 1975.

https://arxiv.org/abs/1602.02201


APPENDIX A
PROOF OF PROPOSITION III.1

The expression in (14) is substantially a convenient formulation of the inverse of (9) using the structure of the water
filling solution. In optimal coding scheme, the encoder first estimates the source X based on the observation vector Y and
produces the MMSE source estimate X|Y. Recall that ΣX = I so that the covariance matrix of the source estimate, denote
as Cov(X|Y ) = ΣX|Y , can be expanded as

ΣX|Y = ΣXAT (AΣXAT + ΣW )−1AΣX

= AT (AAT + σ2I)−1A (28)

=

(
AAT

σ2
+ I

)−1
A, (29)

from which we conclude that the eigenvalues of ΣX|Y are

λl(ΣX|Y ) =
λl

λl + σ2
, (30)

for l ∈ [M ]. In the optimal rate allocation of (9), the lth observation is compressed with rate

Rl(θ) =
1

2
log+

(
λl(ΣX|Y )

θ

)
, (31)

where θ is determined by the sum rate constraint
M∑
l=1

Rl(θ) = R. (32)

The function θk(ΣX|Y , R) in (2) represents the solution of (32) in θ when k rates in (31) are strictly positive.
Next, let kI be the index k that satisfies the inequality (13), then the normalized average quadratic distortion in terms of

the remote source X is given by

D(θ(R)) =
1

M

(
Tr(ΣX)−

M∑
l=1

(
λl(ΣX|Y )− θkI (ΣX|Y , R)

)+)

= 1− 1

M

kI∑
l=1

λl
λl + σ2

+
kI
M
θkI (ΣX|Y , R), (33)

which is the desired result.

APPENDIX B
PROOF OF PROPOSITION III.2

Unlike in the optimal scheme, in the compress-and-estimate scheme the encoder compresses its observations according to
the distribution PY and a local distortion measure. Upon reconstruction, the decoder obtains the lossy-compressed observation
Ŷ minimizes the quadratic distortion between Ŷ and Y as in (4) for the given rate constraint. The joint distribution PY,Ŷ
which minimizes the quadratic distortion is easily expressed through the backward channel formulation as

Y = Ŷ + UZ, (34)

where U is an orthogonal matrix that diagonalizes ΣY , Z ∼ N (0,ΣZ) with ΣZ = diag([σ2
Z1
, . . . , σ2

ZL
]) and for σ2

Zl
=

min(λl + σ2, θ) = Dl. In other words, the term Dl is the variance of the additive noise corrupting the lth observation while
θ is chosen so that the sum rate constraint

M∑
l=1

Rl(θ) = R, (35)

is met with equality, in which case

Rl(θ) =
1

2
log+

(
λl
θ

)
. (36)

As in App. A, the function θk(ΣY , R) in (2) represents the solution of (35) in θ when k rates in (36) are strictly positive.
The joint distribution between X and Ŷ can be expressed as

Ŷ = PX + η, (37)



where P = JUTA, and η = JUTW + J1/2D1/2N with J defined as

J = diag([1− 2−2R1 , . . . , 1− 2−2RL ]), (38)

while D defined as

D = diag([D1, . . . , DL]), (39)

and N ∼ N (0, I). The covariance matrix of the noise vector η is, instead, obtained as Ση = σ2J2 + JD.
The CE-DRF is the normalized minimum mean square error of estimating X from Ŷ, accordingly, can be expanded as

DCE =
1

M
Tr(I−PT (PPT + Ση)†P). (40)

Let kCE be the index k that satisfies (15): for L ≥ M , we have for k ≤ kCE , Dl = θ, and 1 − 2−2Rl = 0; for k > kCE ,
Dl = λl + σ2, and 1− 2−2Rl = 1− θ/(λ+ σ2). Hence, for kCE ∈ [M ], we have

DCE =
1

M
Tr(I)− 1

M
Tr
(
PPT

(
PPT + Ση

)†)
= 1− 1

M
Tr
(
JUTAATUJ(JUTAATUJ + σ2J2 + JD)†

)
. (41)

Recall that U is the orthogonal matrix that diagonalizes AAT , we have UTAATU = Λ , diag([λ1, . . . , λr, 0 . . . , 0]), and
hence

DCE = 1− 1

M
Tr
(
J2Λ(J2Λ + σ2J2 + JD)†

)
= 1− 1

M

M∑
l=1

λl(1− 2−2Rl)

(λl + σ2)(1− 2−2Rl) + min(λl + σ2, θk(ΣY , R))
. (42)

Recall that, from the definition of kCE , we have λl +σ2 > θk(ΣY , R) for l ∈ [kCE ], and λl +σ2 ≤ θk(ΣY , R) for l > kCE .
Hence,

DCE = 1− 1

M

(
kCE∑
l=1

λl
λl + σ2

− θk(ΣY , R)

kCE∑
l=1

λl
(λl + σ2)2

)
. (43)

When L < M , for kCE ∈ [L], we have

DCE = 1− 1

M

L∑
l=1

λl(1− 2−2Rl)

(λl + σ2)(1− 2−2Rl) +Dl

= 1− 1

M

(
kCE∑
l=1

λl
λl + σ2

− θk(ΣY , R)

kCE∑
l=1

λl
(λl + σ2)2

)
, (44)

which is the desired result.



APPENDIX C
PROOF OF PROPOSITION III.3

The relationship between the functions DCE(R) and DX|Y (R) is better understood by explicitly showing that DCE(R) ≥
DX|Y (R). Fix R and let kI and kCE be the indices that satisfy (13) and (15), respectively. Next, if kI = kCE = k, we have

DCE(R) = 1− 1

M

k∑
l=1

λl
λl + σ2

+
2−

2R
k

M

(
k∏
l=1

(λl + σ2)

) 1
k k∑
l=1

λl
(λl + σ2)2

= 1− 1

M

k∑
l=1

λl
λl + σ2

+
2−

2R
k

M

(
k∏
l=1

(λl + σ2)

) 1
k

k

(
k∑
l=1

1

k

λl
(λl + σ2)2

)

≥ 1− 1

M

k∑
l=1

λl
λl + σ2

+
2−

2R
k

M

(
k∏
l=1

(λl + σ2)

) 1
k

k

(
k∏
l=1

λl
(λl + σ2)2

)1/k

(45a)

≥ 1− 1

M

k∑
l=1

λl
λl + σ2

+
2−

2R
k

M
k

(
k∏
l=1

λl
(λl + σ2)

)1/k

(45b)

= DX|Y (R), (45c)

where (45a) follows from the AM-GM inequality so that equality is achieved only when λl/(λl+σ2)2 are equal for all l ∈ [k].
For the case kI 6= kCE , note that kI is the optimal number of active components for the optimal scheme, so that

DX|Y (R) ≤ 1− 1

M

kCE∑
l=1

λl
λl + σ2

+
kCE · 2−

2R
kCE

M

(
kCE∏
l=1

λl
λl + σ2

) 1
kCE

≤ 1− 1

M

kCE∑
l=1

λl
λl + σ2

+
2
− 2R

kCE

M

(
kCE∏
l=1

(λl + σ2)

) 1
kCE kCE∑

l=1

λl
(λl + σ2)2

(46a)

= DCE(R). (46b)

From (45) and (46) we realize that DCE(R) and DX|Y (R) are identical when λl

(λl+σ2)2 = λ1

(λ1+σ2)2 for all l ∈ [k]. Note that
the equation

λk
(λk + σ2)2

=
λ1

(λ1 + σ2)2
(47)

has two solutions in λk as in the RHS of (17). Hence, for r0 defined as in (17) we have that, if R ≤ min{RIr0+1, R
CE
r0+1},

then DX|Y (R) = DCE(R).
Finally, note that if r0 = L = M , and λl

(λl+σ2)2 = λ1

(λ1+σ2)2 for all l, then that RIk = RCEk for all k and thus DX|Y (R) =

DCE(R) for all values of R.

APPENDIX D
PROOF OF THEOREM III.4.

The proof relies on the following lemma from [10].

Lemma D.1. [10, Prop. 5] Given a natural number n greater than 1, the smallest real number k such that for all non-negative
numbers a1, a2, . . . , an we have the inequality

1

n

n∑
i=1

ai ≤

(
n∏
i=1

ai

) 1
n

+ kmax
i 6=j
|ai − aj |, (48)

is (n− 1)/n.

Let kCE be the index k that satisfies (15). Accordingly, the difference between the LHS and RHS of (46) can be bounded



as

DCE(R)−DX|Y (R) (49)

=
2
− 2R

kCE

M

(
kCE∏
l=1

(λl + σ2)

) 1
kCE

kCE

 1

kCE

kCE∑
l=1

λl
(λl + σ2)2

−

(
kCE∏
l=1

λl
(λl + σ2)2

) 1
kCE


≤ 2

− 2R
kCE

M
kCE

kCE − 1

kCE
(λ1 + σ2)

1

4σ2

≤ 2
− 2R

kCE

M
kCE

λ1 + σ2

4σ2

≤ 2−
2R
L

M
L
λ1 + σ2

4σ2
.

APPENDIX E
PROOF OF THEOREM III.5.

Let us consider again the difference between optimal and CE performance in (49) and write:

DCE(R)−DX|Y (R)

≥ 2
− 2R

kCE

M

(
kCE∏
l=1

(λl + σ2)

) 1
kCE

·

kCE∑
l=1

λl
(λl + σ2)2

− kCE

(
kCE∏
l=1

λl
(λl + σ2)2

) 1
kCE


≥ 2

− 2R
kCE

M

(
kCE∏
l=1

(λl + σ2)

) 1
kCE

·

(
max
l≤kCE

√
λl

(λl + σ2)2
− min
l≤kCE

√
λl

(λl + σ2)2

)2

≥ λkCE+1 + σ2

M

(
max
l≤kCE

√
λl

λl + σ2
− min
l≤kCE

√
λl

λl + σ2

)2

≥ λkCE+1 + σ2

M

(
(λkCE

+ σ2)kCE∏kCE

l=1 (λl + σ2)

) 1
L

·
(

max
l≤kCE

√
λl

λl + σ2
− min
l≤kCE

√
λl

λl + σ2

)2

≥ λL + σ2

M
2−

2R
L

(
max
l≤kCE

√
λl

λl + σ2
− min
l≤kCE

√
λl

λl + σ2

)2

. (50)

The first inequality follows from the fact that kCE satisfies (15) but not necessarily (13), and hence could be a non-optimal
choice for the setting with full knowledge. The second inequality follows from a lower bound on the difference between AM
and GM in [11, Sec. II]. The third inequality follows from the definition of kCE as prescribed in (15).

For R ≤ R2(ΣY ), we have the obvious and trivial lower bound

DCE(R)−DX|Y (R) ≥ 0. (51)

For R > R2(ΣY ), we have (
max
l≤k

√
λl

λl + σ2
−min

l≤k

√
λl

λl + σ2

)2

≥
( √

λ1
λ1 + σ2

−
√
λ2

λ2 + σ2

)2

, (52)

hence

DCE(R)−DX|Y (R) ≥ λL + σ2

M

( √
λ1

λ1 + σ2
−
√
λ2

λ2 + σ2

)2

2−
2R
L . (53)
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