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Abstract

Simultaneous transmission of information and power over a point-to-point flat-fading complex Additive White

Gaussian Noise (AWGN) channel is studied. In contrast with the literature that relies on an inaccurate linear model

of the energy harvester, an experimentally-validated nonlinear model is considered. A general form of the delivered

Direct Current (DC) power in terms of system baseband parameters is derived, which demonstrates the dependency

of the delivered DC power on higher order statistics of the channel input distribution. The optimization problem of

maximizing Rate-Power (R-P) region is studied. Assuming that the Channel gain is available at both the receiver

and the transmitter, and constraining to independent and identically distributed (i.i.d.) channel inputs determined

only by their first and second moment statistics, an inner bound for the general problem is obtained. Notably, as a

consequence of the harvester nonlinearity, the studied inner bound exhibits a tradeoff between the delivered power

and the rate of received information. It is shown that the tradeoff-characterizing input distribution is with mean zero

and with asymmetric power allocations to the real and imaginary dimensions.

I. INTRODUCTION

Radio-Frequency (RF) waves can be utilized for transmission of both information and power simultane-

ously. As one of the primary works in the information theory literature, Varshney studied this problem in

[1], in which he characterized the capacity-power function for a point-to-point discrete memoryless channel

(DMC). He showed the existence of tradeoff between the information rate and the delivered power for

some channels, such as, point-to-point binary channels and amplitude constraint Gaussian channels. Recent

results in the literature have also revealed that in many scenarios, there is a tradeoff between information
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rate and delivered power. Just to name a few, frequency-selective channel [2], MIMO broadcasting [3],

interference channel [4], [5], relaying [6], [7].

One of the major efforts in a Simultaneous Wireless Information and Power Transfer (SWIPT) archi-

tecture is to increase the Direct-Current (DC) power at the output of the harvester without increasing

transmit power. The harvester, known as rectenna, is composed of a rectifier1 followed by a low-pass filter.

In [8], [9], it is shown that the RF-to-DC conversion efficiency is a function of rectenna’s structure, as

well as its input waveform. Accordingly, in order to maximize rectenna’s DC power output, a systematic

waveform design is crucial to make the best use of an available RF spectrum. In [9], an analytical model

for rectenna’s output is introduced via the Taylor expansion of the diode characteristic function. As one of

the main conclusions, it is shown that the rectifier’s nonlinearity is key to design efficient wireless powered

systems.

The design of an efficient SWIPT architecture fundamentally relies on designing an efficient Wireless

Power Transfer (WPT) structure as an important building block of SWIPT. The SWIPT literature has

so far focused on the linear model of the rectifier, e.g., [2]–[7], whereas, it is expected that considering

nonlinearity effect changes the SWIPT design, signalling and architecture significantly. Indeed, in [10],

[11], the design of SWIPT waveforms is studied accounting for rectenna’s nonlinearity with a power

splitter at the receiver. It is shown that superposing deterministic multisines (for power transfer purposes)

with Orthogonal Frequency Division Multiplexing (OFDM) symbols modulated with Circularly Symmetric

Complex Gaussian (CSCG) zero-mean inputs (for information purposes) enlarges the Rate-Power (R-P)

region, compared to merely zero-mean inputs. This highlights the potential and benefits of departing from

conventional CSCG inputs in SWIPT.

Leveraging the aforementioned observations, we provide a step closer at identifying the fundamental

limits of SWIPT accounting for the nonlinearity of rectenna. In this paper, we study a flat-fading Additive

White Gaussian Noise (AWGN) channel for SWIPT. Taking the advantage of the approximation for

rectenna’s nonlinear output introduced in [9], we obtain the general form of the delivered power in terms

of system baseband parameters. Assuming that the receiver jointly extracts information and harvests power

from the received RF signal,2 it is shown that the delivered power at the receiver is dependent on the

1In the literature, the rectifier is usually considered as a diode, which is the main source of nonlinearity induced in the system.

2We note that, leveraging the results in thermodynamics of computing, it is demonstrated that energy need not be dissipated in the decoding

process. This is due to the reason that to perform a mathematical work, energy is not required [12, Ch. 5]. In particular, decoders that are

reversible computational devices would not dissipate any energy [13] and electronic circuits that are almost thermodynamically reversible have

been built [14]. Motivated by this, we also assume that at the receiver, the decoder is able to jointly harvest power and extract information

from the received RF signal.
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first to fourth moment statistics of the channel input distribution. Considering the optimization problem

of maximizing R-P region, we obtain an achievable scheme as an inner bound for the general problem.

The scheme is based on constraining the channel inputs to independent and identically distributed (i.i.d.)

distributions that are determined by their first and second moment statistics. For the studied inner bound,

we show that there is a tradeoff between the delivered power at the receiver and the rate of the received

information. This result is highlighted in contrast to the scenario, in which a linear model is considered

for the power harvester at the receiver. It can be easily verified that under an assumption of linear model

for the power harvester, the goal of maximum rate and maximum energy are aligned in the flat-fading

channel. Additionally, we show that the maximum rate-power (for the studied inner bound) is achieved

when the channel input distributions is Gaussian with mean zero, however, with different (asymmetric)

power allocations to the real and imaginary dimensions.

Organization: In Section II, we introduce the system model. In Section III, the delivered power at the

receiver is obtained in terms of system baseband parameters accounting the approximation for nonlinearity

of rectenna. In Section IV, we introduce the problem considered in this paper, and accordingly, in Section

V, we obtain an achievable scheme as an inner bound for the general optimization problem. In Section

VI, we conclude the paper.

Notation: Throughout this paper, the standard CSCG distribution is denoted by CN (0, 1). Complex

conjugate of a complex number c is denoted by c∗. For a random process X(t), corresponding random

variable at time index n is represented by Xn. The operators E[·] and E [·] denote the expectation over

statistical randomness and the average over time, respectively. ℜ{·} and ℑ{·} are real and imaginary

operators, respectively. We use the notations sinc(t) = sin(πt)
πt

and sl = sinc(l+ 1/2) for integer l. We also

define δl as

δl =







1 l = 0

0 l 6= 0
. (1)

II. SYSTEM MODEL

Considering a point-to-point flat-fading AWGN channel, in the following, we explain the operation of

the transmitter and the receiver.

A. Transmitter

At the transmitter, the signal X(t) is produced as

X(t) =
∑

n

Xnsinc(fwt− n), (2)
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where Xn is an information-power symbol at time index n, modelled as a random variable, which

is produced in an i.i.d. fashion and X(t) is with bandwidth [−fw/2, fw/2]. Next, the signal X(t) is

upconverted to the carrier frequency fc and is sent over the channel.

B. Receiver

The filtered received RF waveform at the receiver is modelled as

Yrf(t) =
√
2ℜ
{

Y (t)ej2πfct
}

, (3)

where Y (t) is the baseband equivalent of the channel output with bandwidth [−fw/2, fw/2]. We assume

that fc > 2fw.

Power: At the receiver, the power of the RF signal Yrf(t) is delivered through the rectenna. In the fol-

lowing, we leverage the approximation for rectenna’s output introduced in [9]3. Accordingly, the delivered

power (denoted by Pdel) is modelled as4

Pdel = EE [k2Yrf(t)
2 + k4Yrf(t)

4], (4)

where k2 and k4 are constants. Note that, in the linear model for the delivered power Pdel, in (4), we have

only the second moment of the received RF signal Yrf(t). Validating through circuit simulations in [9], it

is shown that the linear model is inaccurate and inefficient from a signal design perspective.

Information: The signal Yrf(t) is downconverted producing the baseband signal Y (t) given as 5

Y (t) =
∑

i

abi(t)X(t− τi(t)) +W (t). (5)

Next, Y (t) is sampled with a sampling frequency fw producing Ym = Y (m/fw) given as

Ym = Xm

∑

i

abi(m/fw) +Wm, (6)

where in (6), we used τi(m/fw)fw ≈ 0 because the channel is flat-fading. Wm and Xm represent samples

of the additive noise W (t) and the signal X(t) at time t = m/fw, respectively.

We model Wm as an i.i.d. and CSCG random variable with variance σ2
w, i.e., Wm ∼ CN (0, σ2

w). We

assume that both the transmitter and the receiver know the Channel gain, namely, h(t) =
∑

i a
b
i(t) at times

3According to [9], due to the presence of a diode in rectenna’s structure, its output current is an exponential function, which is approximated

by expanding its Taylor series. The approximation used here, is the fourth moment truncation of Taylor series, in which the first and third

moments are zero with respect to the time averaging.

4According to [9], rectenna’s output in (4) is in the form of current with unit Ampere. However, since power is proportional to current,

with abuse of notation, we refer to the term in (4) as power.

5We model the baseband equivalent channel impulse response as H(τ, t) =
∑

i
ab

i(t)δ(τ−τi(t))+W (t) where αb

i (t), τi(t) are the channel

coefficient and delay of path i.
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t = m/2fw for integer m, which is assumed to be fixed over all the transmissions. Throughout the paper,

since the transmitted symbols Xm and the noise Wm are i.i.d., we drop the index m for Xm, Wm. We

also define h =
∑

i a
b
i((2m)/(2fw)) and h̃ =

∑

i a
b
i((2m + 1)/(2fw)). Note that h and h̃ are assumed to

be fixed, however, we assume they are not necessarily equal. Therefore, (6) reads

Y = hX +W. (7)

Note that in (7), only even samples of the channel, i.e., h are involved.

III. DELIVERED POWER

In this section, we study the power delivered at the receiver. Note that most of the communication

processes, such as, coding/ decoding, modulation/ demodulation, etc, is done at the baseband. Therefore,

from a communication system design point of view, it is most preferable to have baseband equivalent

presentation of the system. Henceforth, in the following Proposition, we derive the delivered power Pdel

at the receiver in terms of system baseband parameters.

Proposition 1. Assuming the channel input distributions are i.i.d., the delivered power Pdel at the receiver,

can be expressed in terms of system baseband parameters as

Pdel = αQ+ α̃Q̃+ (β + β̃)P + γ, (8)

where Q̃ is given by

Q̃ =
1

3

(

Qr +Qi + 2(µrTr + µiTi)

+ 6PrPi + 6Pr(Pr − µ2
r) + 6Pi(Pi − µ2

i )
)

, (9)

where the parameters α, α̃, β, β̃ and γ are given as

α =
3k4
4fw

|h|4, (10)

α̃ =
3k4
4fw

|h̃|4, (11)

β =
1

fw

(

k2 + 6k4σ
2
w

)

|h|2, (12)

β̃ =
1

fw

(

k2 + 6k4σ
2
w

)

|h̃|2, (13)

γ =
1

fw
(k2σ

2
w + 3k4σ

4
w), (14)

and Q = E[|X|4], T = E[|X|3], P = E[|X|2], µ = E[X ]. Similarly, Qr = E[ℜ{X}4], Tr = E[ℜ{X}3],
Pr = E[ℜ{X}2], µr = E[ℜ{X}] and Qi = E[ℑ{X}4], Ti = E[ℑ{X}3], Pi = E[ℑ{X}2], µi = E[ℑ{X}].
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Proof : See Appendix A.

Remark 1. We note that obtaining a closed form expression for the delivered power Pdel at the receiver

when the channel inputs are not i.i.d. is cumbersome. This is due to the fact that the fourth moment of the

received signal Yrf(t) creates dependencies of the statistics of the present channel input on the statistics of

the channel inputs on other time indices (see e.g., eq. (54) and eq. (50) in Appendix A).

IV. PROBLEM STATEMENT

We aim at maximizing the rate of the received information, as well as the amount of power delivered at

the receiver. Accordingly, the optimization problem we consider, is the maximization of mutual information

between the channel input X and the channel output Y under a given power constraint at the transmitter

and a minimum delivered power constraint at the receiver. Hence, for the optimization problem, we have

sup
pX(x)

I (X ; Y )

s.t.







P ≤ Pa

Pdel ≥ Pd

,

(15)

where sup is taken over all input distributions pX(x) satisfying the constraints in (15). Pa is the available

power budget at the transmitter and Pd is the minimum amount of power that is to be delivered to the

receiver.

Remark 2. We note that, for the problem in (15), if the second constraint (the minimum delivered power at

the receiver) is represented via a linear model, i.e., E[|Y |2] ≥ Pd, the maximum is achieved using a CSCG

input distribution. It can also be verified easily that there is no tradeoff between the received information

rate and delivered power at the receiver.

V. MAIN RESULT

In this section, we obtain an inner bound for the problem in (15) by constraining the input distributions

to those that are determined by their first and second moment statistics6. We show that for the considered

scenario, there is a tradeoff between the rate of the transmitted information, namely I(X ; Y ) and delivered

power Pdc at the receiver and accordingly, we characterize the tradeoff.

Proposition 2. When a channel input distribution pX(x) is completely determined by its first and second

moment statistics, the supremum in (15) is achieved by a zero mean Gaussian distribution as the channel

6This assumption is justified due to the fact that in practice, most of the modulation schemes are i.i.d. and are fully characterized by the

knowledge of the first and second moment statistics only.
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input, i.e., ℜ{X} ∼ N (0, Pr), and ℑ{X} ∼ N (0, Pi), where P = Pr + Pi = Pa. Furthermore, let

Pdc,max = 3(α + α̃)Pa
2 + (β + β̃)Pa + γ and Pdc,min = 2(α + α̃)Pa

2 + (β + β̃)Pa + γ be the maximum

and minimum delivered power at the receiver, respectively. For Pd = Pdc,max, the maximum in (15) is

attained by Pi = 0, Pr = Pa or Pi = Pa, Pr = 0. For Pd = Pdc,min, the maximum in (15) is attained by

Pi = Pa/2, Pr = Pa/2. For Pdc,min < Pd < Pdc,max, the optimal power allocation that attains the maximum

rate is given by P ∗
i and P ∗

r = Pa − P ∗
i , where P ∗

i is chosen such that the following equation is satisfied

αQ+ α̃Q̃+ (β + β̃)Pa + γ = Pd. (16)

For Pd < Pdc,min, the optimal power allocation is attained by P ∗
i = P ∗

r = Pa/2 and the delivered power

is still Pdc,min.

Proof : See Appendix B.

Note that in (16), for a complex zero-mean Gaussian distributed channel input with Pr and Pi as the

variances of real and imaginary dimensions, respectively, we have

Q = Q̃ = 3(P 2
i + P 2

r ) + 2PiPr. (17)

Remark 3. From (8), it is seen that the delivered power Pdel at the receiver depends on the second moment

statistics Pr, Pi, as well as the fourth moment statistics Qr, Qi of the channel input X . This is due to the

presence of the fourth moment of the received signal Yrf in modelling the rectenna’s output. Accordingly, the

rate is minimized (corresponding to Pdc,max) when the available power at the transmitter is fully allocated

to one of the real or imaginary dimensions. This is because allocating power to one dimension, leads to a

higher fourth order moment. On the other hand, the maximum rate is achieved (corresponding to Pdc,min)

when the available power is equally distributed between the real and the imaginary dimensions. This is

elaborated in Figure 1.

Remark 4. As mentioned earlier, maximization of both the delivered power Pdel and the rate I(X ; Y ) are

aligned under the linear modelling for the delivered power. Therefore, regardless of the channel condition,

the best power allocation is always Pi = Pr = P/2. However, accounting the fourth moment of the received

signal Yrf in (4), the receiver chooses the proper power allocation such that the constraints in (15) are

satisfied (if Pd ≤ Pdc,max). We also note that since we have assumed the channel is fixed for the whole

transmission, therefore, the transmitter keeps using the same power allocation for the whole transmission.

It is also noted that at each time index the rate of the information I(X ; Y ) is affected only through

h, whereas, the delivered power Pdel is affected through both h and h̃. This is illustrated in Figure 1 by

representing three different regions by varying the channel coefficients.
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Figure 1. Delivered power Pdel and achievable information rate I(X;Y ) for the problem in (15) for i.i.d. channel inputs that are determined

by their first and second moment statistics (Pa = 1, σ2

w = 10−4, fw = 1, k2 = 0.17, k4 = 19.145). The points A, B, C, D correspond

to (Pr, Pi) = (0, 1), = (0.03, 0.97), = (0.2, 0.8), = (0.5, 0.5), respectively, where the values for Pr and Pi can be interchanged without

affecting the resulting points. The values for k2, k4 are adapted from [10].

VI. CONCLUSION

In this paper, we studied SWIPT over a point-to-point complex AWGN channel in the presence of a

nonlinear power harvester at the receiver. Assuming that the channel state information is available at both

the transmitter and the receiver, we studied the problem of maximizing rate of the transmitted information as

well as delivered power at the receiver. Assuming that the channel inputs are i.i.d. and are fully characterized

by the knowledge of their first and second moment statistics, we derived an inner bound for the optimal

R-P region. We showed that for the obtained inner bound, there is a trade off (due to the nonlinearity

of the power harvester at the receiver) between the rate of transmitted information and delivered power.

Accordingly, we characterized the inner bound, which demonstrates that the optimal channel input is still

a zero mean Gaussian distribution, however, with asymmetric power allocations to the real and imaginary

dimensions.

Among open problems that are left for future research, we mention here the optimal input distribution

for the problem in (15). Another interesting problem is the extension of the problem studied in this paper

to the frequency-selective AWGN channel.

A. PROOF OF PROPOSITION 1

The following series will be useful throughout the proof of the proposition 1.
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Lemma 3. Recalling that sl = sinc(l + 1/2) for integer l, we have the following series:

S0 ,
∑

l

s2l = 1, (18)

S1 ,
∑

l

∑

k:k 6=l

slsk = 0, (19)

S2 ,
∑

l

∑

k:k 6=l

∑

d:d6=l
d6=k

∑

m:m6=l
m6=d
m6=k

slsksdsm = 0, (20)

S3 ,
∑

l

∑

k:k 6=l

s2l s
2
k =

2

3
, (21)

S4 ,
∑

l

∑

k:k 6=l

∑

d:d6=l
d6=k

s2l sksd = −1

3
, (22)

S5 ,
∑

l

s4l =
1

3
, (23)

S6 ,
∑

l

∑

k:k 6=l

s3l sk =
1

2
. (24)

Proof : See Appendix C.

Considering first the term EE [Yrf(t)
2], we have

EE [Yrf(t)
2] =

1

2
EE
[

(

Y (t)ejfct + Y ∗(t)e−jfct
)2
]

(25)

= EE
[

|Y (t)|2
]

(26)

= EE
[

∑

n,m

YnY
∗
msinc(fwt− n)sinc(fwt−m)

]

(27)

=
∑

n,m

E [YnY
∗
m] E [sinc(fwt− n)sinc(fwt−m)] (28)

= lim
T→∞

1

fwT

∑

m

E
[

|Ym|2
]

(29)

= |h|2P + σ2
w, (30)

where (26) is because we have E{Y (t)2e2jfct} = 0. (27) is due to the fact that the signal Y (t) is bandlimited

to fw and we have

Y (t) =
∑

n

Ynsinc(fwt− n). (31)

In (29), we used the equation

E [sinc(fwt− n)sinc(fwt−m)] = lim
T→∞

1

fwT
δn−m. (32)
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Considering the term EE [Yrf(t)
4], we have

EE [Yrf(t)
4] =

1

4
EE
[

4|Y (t)|4

+ (Y (t)2ej2fct + Y ∗(t)2e−j2fct)2

+ 4|Y (t)|2(Y (t)2ej2fct + Y ∗(t)2e−j2fct)
]

(33)

=
3

2
EE
[

|Y (t)|4
]

. (34)

Note that, the signal |Y (t)|2 is real with bandwidth [−fw, fw]. Hence, it can be represented by its samples

taken each t = 1/2fw seconds. Therefore, we have

|Y (t)|2 =
∑

n

Y s
n sinc(2fwt− n), (35)

where Y s
n , |Y (n/2fw)|2. Accordingly, (34) reads as

3

2
EE
[

|Y (t)|4
]

=
3

2fw

∑

n

E[|Y s
n |2] (36)

= lim
T→∞

3

2Tfw

∑

k

E[|Y s
2k+1|2] +

3

2Tfw

∑

k

E[|Y s
2k|2]. (37)

Note that Y s
2k = |Y (2k/2fw)|2 = |Yk|2. Hence, E[|Y s

2k|2] in (37) reads

E[|Y s
2k|2] = E[|Yk|4] (38)

= E[((hX +W )(h∗X∗ +W ∗))2] (39)

= E[|h|4|X|4 + |W |4 + 2|h|2|X|2|W |2

+W 2h∗2X∗2 +W ∗2h2X2 + 2|h|2|X|2|W |2

+ 2(|h|2|X|2Wh∗X∗ + |h|2|X|2W ∗hX

+ |W |2Wh∗X∗ + |W |2W ∗hX)] (40)

= |h|4E[|X|4] + 2σ4
w

+ 2σ2
w|h|2E[|X|2] + 2σ2

w|h|2E[|X|2] (41)

= |h|4Q + 4σ2
w|h|2P + 2σ4

w. (42)

To calculate the term E[|Y s
2k+1|2] in (37), we note that the channel’s baseband equivalent signal Y (t)

can be written as

Y (t) =
∑

n

Xn

∑

i

abi(t)sinc(fwt− n) +W (t), (43)
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where we have neglected the term fwτi, since the channel is flat and we have fwτi ≈ 0. Substituting

t = (2k + 1)/fw we have

Ỹk , Y

(

2k + 1

2fw

)

(44)

=
∑

n

Xn

∑

i

abi

(

2k + 1

2fw

)

sk−n +W

(

2k + 1

2fw

)

(45)

=
∑

n

Xnsk−n

∑

i

abi

(

2k + 1

2fw

)

+W

(

2k + 1

2fw

)

(46)

= h̃X̃ + W̃. (47)

where X̃ ,
∑

n Xnsk−n and W̃ , W ((2k + 1)/2fw). Similarly to (42), we have

E[|Y s
2k+1|2] = E[|Ỹk|4] (48)

= |h̃|4Q̃ + 4σ2
w|h̃|2P̃ + 2σ4

w, (49)

where Q̃ = E[|X̃|4], P̃ = E[|X̃|2]. For P̃ , we have

P̃ = E

[

∑

n,m

XnX
∗
msk−nsk−m

]

(50)

=
∑

n,m:n=m

E[|Xn|2]s2k−n

+
∑

n,m:n 6=m

E[Xn]E[X
∗
m]sk−nsk−m (51)

= S0P + S1|µ|2 (52)

= P, (53)

where in (51) we used the assumption that Xn is i.i.d. with respect to different values of n. For Q̃, we

have

Q̃ = E

[

∑

l,k,d,m

XlX
∗X∗

dX
∗
msn−lsn−ksn−dsn−m

]

. (54)

Accounting for the different cases for the possible values of l, k, d,m, we have

• If all the indices l, k, d,m are with different values, we have

Q̃ = |µ|4S2. (55)

• If (l = k, d 6= k, d = m) or (l = d, k 6= d, k = m), we have

Q̃ = P 2S3. (56)
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• If (l = m, k 6= m, k = d), we have

Q̃ = |P̄ |2S3. (57)

• If (l = k, d 6= m, d 6= k, m 6= k) or (l = d, k 6= m, k 6= d, m 6= d) or (k = m, l 6= d, l 6= m, d 6=
m) or (d = m, l 6= k, l 6= m, k 6= m), we have

Q̃ = P |µ|2S4. (58)

• If (l = m, k 6= d, k 6= m, d 6= m), we have

Q̃ = P̄ µ∗2S4. (59)

• If (k = d, l 6= m, l 6= d, m 6= d), we have

Q̃ = P̄ ∗µ2S4. (60)

• If l = k = d = m, we have

Q̃ = QS5. (61)

• If l = k = d 6= m or k = d = m 6= l, we have

Q̃ = T̄ ∗µS6. (62)

• If l = d = m 6= k or l = k = m 6= d, we have

Q̃ = T̄ µ∗S6. (63)

In the above expressions we define P̄ = E[X2], T̄ = E[|X|2X ]. Hence, (54) reads

Q̃ = |µ|4S2 + (2P 2 + |P̄ |2)S3

+ (4P |µ|2 + P̄ µ∗2 + P̄ ∗µ2)S4

+QS5 + 2(T̄ µ∗ + T̄ ∗µ)S6 (64)

=
1

3

[

Q + 4P (P − |µ|2)

+ 2(|P̄ |2 −ℜ{P̄ µ∗2}) + 2ℜ{T̄ µ∗}
]

. (65)

Expanding the terms |P̄ |2 − ℜ{P̄ µ∗2} and ℜ{T̄ µ∗} in (65), we have

|P̄ |2 −ℜ{P̄ µ∗2} = (Pr − Pi)(Pr − Pi − (µ2
r − µ2

i )), (66)

ℜ{T̄ µ∗} = µr(Tr + µrPi) + µi(Ti + µiPr). (67)
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Noting that Q = Qi + Qr + 2PrPi and substituting in (65) along with (66) and (67), after some

manipulations Q̃ reads

Q̃ =
1

3

(

Qr +Qi + 2(µrTr + µiTi)

+ 6(PrPi + Pr(Pr − µ2
r) + Pi(Pi − µi)

)

. (68)

Substituting (68), (53) in (49) and substituting the result along with (42) in (37), and adding with (30)

yields the result of the Proposition.

B. PROOF OF PROPOSITION 1

Note that constraining the input distributions pX(x) to those that are determined by their first and second

moment statistics, the supremum in (15) is attained in general by a non-zero mean Gaussian distribution

for each dimension, i.e., ℜ{X} ∼ (µr, σ
2
r) and ℑ{X} ∼ (µi, σ

2
i ), where σ2

r , Pr − µ2
r and σ2

i , Pi − µ2
i .

Therefore, the optimization problem in (15) reads

max
µr ,µi,Pr,Pi

fw
2

(

log(1 + aσ2
r ) + log(1 + aσ2

i )
)

s.t.



















Pr + Pi ≤ Pa

αQ+ α̃Q̃ + (β + β̃)P + γ ≥ Pd

σ2
r ≥ 0, σ2

i ≥ 0

,

(69)

where a , 2|h|2/fwσ2
w. Writing the K.K.T. conditions for the optimization problem in (69), we have

λ1(Pr + Pi − Pa) = 0, λ1 ≥ 0 (70)

λ2(αQ+ α̃Q̃+ (β + β̃)P + γ − Pd) = 0, λ2 ≥ 0, (71)

ζrσ
2
r = 0, ζiσ

2
i = 0, ζr, ζi ≥ 0 (72)

ζr =
−c1a

1 + aσ2
r

+ λ1

− λ2(2(α + α̃)(3Pr + Pi) + β + β̃), (73)

ζi =
−c1a

1 + aσ2
i

+ λ1

− λ2((α + α̃)(3Pi + Pr) + β + β̃), (74)

2c1aµr

1 + aσ2
r

+ 8λ2(α + α̃)µ3
r + 2ζrµr = 0, (75)

2c1aµi

1 + aσ2
i

+ 8λ2(α + α̃)µ3
i + 2ζiµi = 0, (76)
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where c1 , (fw log e)/2 and in (73) to (76) we used the following

∂Q

∂Pr

=
∂Q̃

∂Pr

= 6Pl + 2Pi, (77)

∂Q

∂Pi

=
∂Q̃

∂Pi

= 6Pi + 2Pl, (78)

∂Q

∂µr

=
∂Q̃

∂µr

= −8µ3
r , (79)

∂Q

∂µi

=
∂Q̃

∂µi

= −8µ3
i . (80)

It can be easily verified from (70), (73) and (74) that when λ2 = 0, the maximum is achieved when

µr = µi = 0 and Pr = Pi =
Pa

2
, yielding Pdc,min = 2(α + α̃)Pa

2 + (β + β̃)Pa + γ. For positive values

of λ2 from (73) it is verified that λ1 > 0, which from (70) results that Pr + Pi = Pa. The condition

Pr + Pi = Pa reduces the number of variables Pi, Pr to one. Accordingly, since the mutual information

I(X ; Y ) is concave w.r.t. Pi ∈ [0, Pa] attaining its maximum at Pi = Pa/2 and the delivered power Pdel is

convex w.r.t. Pi ∈ [0, Pa] attaining its maximum at Pi = 0 or Pi = Pa the Proposition is proved.

C. PROOF OF PROPOSITION 3

To prove the series, we will use the following special cases of Riemann’s zeta function and alternating

series [15, Sec. 9.5]
∞
∑

l=1

1

l2
=

π2

6
, (81)

∞
∑

l=1

1

l4
=

π4

90
, (82)

∞
∑

l=0

(−1)l

(2l + 1)3
=

π3

32
, (83)

∞
∑

l=0

(−1)l

(2l + 1)
=

π

4
. (84)

We have

T0 =
∑

l

sl (85)

=
1

π

∑

l

(−1)l
(

1
2
+ l
) (86)

=
2

π

[ −1
∑

l=−∞

(−1)l

(2l + 1)
+

∞
∑

0

(−1)l

(2l + 1)

]

(87)

=
2

π

(

π

4
+

π

4

)

= 1, (88)
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S0 =
∑

l

s2l (89)

=
∑

l

(−1)2l

π2
(

1
2
+ l
)2 (90)

=
4

π2

∑

l

1

(2l + 1)2
(91)

=
4

π2

[ −1
∑

l=−∞

1

(2l + 1)2
+

∞
∑

0

1

(2l + 1)2

]

(92)

=
4

π2

(

π2

8
+

π2

8

)

= 1, (93)

T1 =
∑

l

s3l (94)

=
∑

l

(−1)3l

π3
(

1
2
+ l
)3 (95)

=
8

π3

[ −1
∑

l=−∞

1

(2l + 1)3
+

∞
∑

0

1

(2l + 1)3

]

(96)

=
8

π3

(

π3

32
+

π3

32

)

=
1

2
, (97)

S5 =
∑

l

s4l (98)

=
∑

l

(−1)4l

π4
(

1
2
+ l
)4 (99)

=
16

π4

∑

l

1

(2l + 1)4
(100)

=
16

π4

[ −1
∑

l=−∞

1

(2l + 1)4
+

∞
∑

0

1

(2l + 1)4

]

(101)

=
16

π4

(

π4

96
+

π4

96

)

=
1

3
, (102)

S1 =
∑

l

∑

k,k 6=l

slsk (103)

=
∑

l

sl

(

∑

k

sk − sl

)

(104)

=

(

∑

l

sl

)2

−
∑

l

s2l (105)

= 1− 1 = 0, (106)
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S3 =
∑

l

∑

k,k 6=l

s2l s
2
k (107)

=
∑

l

s2l

(

∑

k

s2k − s2l

)

(108)

=

(

∑

l

s2l

)2

−
∑

l

s4l (109)

= 1− 1

3
=

2

3
, (110)

S6 =
∑

l

∑

k,k 6=l

s3l sk (111)

=
∑

l

s3l

(

∑

k

sk − sl

)

(112)

=
1

2
− 1

3
=

1

6
, (113)

S4 =
∑

l

∑

k,k 6=l

∑

d,d6=l
d6=k

s2l sksd (114)

=
∑

l

∑

k,k 6=l

s2l sk

(

∑

d

sd − sl − sk

)

(115)

=
∑

l

s2l

(

(1− sl)
∑

k,k 6=l

sk −
∑

k,k 6=l

s2k

)

(116)

=
∑

l

s2l

(

(1− sl)
2 − (1− s2l )

)

(117)

=
∑

l

2s2l (s
2
l − sl) (118)

= 2

(

1

3
− 1

2

)

= −1

3
, (119)

S2 =
∑

l

∑

k,k 6=l

∑

d,d6=l
d6=k

∑

m,m6=d
m6=l
m6=k

slsksdsm (120)

=
∑

l

∑

k,k 6=l

∑

d,d6=l
d6=k

slsksd(1− sd − sl − sk) (121)

=
∑

l

∑

k,k 6=l

slsk

(

(1− sl − sk)
∑

d,d6=l
d6=k

sd −
∑

d,d6=l
d6=k

s2d

)

(122)

=
∑

l

∑

k,k 6=l

slsk

(

(1− sl − sk)
2 − (1− s2l − s2k)

)

(123)
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=
∑

l

sl

(

2sl(sl − 1)(1− sl) +
∑

k,k 6=l

2sk(s
2
k + slsk − sk)

)

(124)

=
∑

l

sl(−6s3l + 6s2l − 1)) (125)

= −6

3
+

6

3
− 1 = 0. (126)
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