
The Benefit of Being Flexible in
Distributed Computation

Linqi Song, Sundara Rajan Srinivasavaradhan, Christina Fragouli
University of California, Los Angeles CA 90095, USA
Email: {songlinqi,sundar,christina.fragouli}@ucla.edu

Abstract—In wireless distributed computing, networked nodes
perform intermediate computations over data placed in their
memory and exchange these intermediate values to calculate
function values. In this paper we consider an asymmetric setting
where each node has access to a random subset of the data,
i.e., we cannot control the data placement. The paper makes a
simple point: we can realize significant benefits if we are allowed
to be “flexible”, and decide which node computes which function,
in our system. We make this argument in the case where each
function depends on only two of the data messages, as is the case
in similarity searches. We establish a percolation in the behaviour
of the system, where, depending on the amount of observed data,
by being flexible, we may need no communication at all.

I. INTRODUCTION

Wireless distributed computing divides a computation over a
set of data into tasks that are solved by a cluster of networked
nodes. One way to view such systems is as trading computa-
tion with communication cost. A single server may collect all
data and perform all computations; but it may also outsource
most of the computation and spend communication resources
to distribute data and collect the computation intermediate
values. Such exchanges may enable to operate with lower
latency or lower battery consumption; the decision on how
to operate is determined by examining the computation and
the communication cost in each case. Accordingly, recent
work in the literature has started exploring communication vs.
computation trade-off [1], where the main techniques stem
from network coding and index coding [2], [3].

Data locality or data availability is an important consid-
eration in distributed computing, where we would like the
subtasks to be assigned to distributed computing nodes that
contain as much of the data needed to compute the subtasks
as possible [4]. The goodness of data locality is defined as the
percentage of nodes that have all the data to compute their
subtasks. Previous work looked at how to assign subtasks that
minimize the uncoded communication cost between nodes [4],
[5]. However, when coding techniques are used, a naturally
interesting question is to how we could assign the subtasks
for minimal communication.

In this paper, we focus on the case of random data place-
ment, where each node has collected a random subset of
the data that it can use for processing - we cannot control
the original data placement. This is plausible in wireless,

This work was supported in part by the National Science Foundation under
grant number 1527550.

where the processing nodes are often mobile, equipped with
sensors, and can collect (potentially overlapping) data: we
may want to process these data in a time-critical fashion and
upload information to a remote server for portable scientific
computing; we may want to combine different views of the
data (say videos) for virtual reality applications; we may
want time-sensitive processing for distributed tasks, such as
distributed online recommendations [6]; or we may have a
crowdsourcing application where we want to locally process
for privacy considerations - nodes may be willing to share
function values, but not the raw data [7].

We operate under the framework of MapReduce [4]. The
first stage “Map” is intra-node data processing and local
computation, followed by the data shuffling which collects
intermediate computation results with the same “key” to the
same computing node, while the second stage “Reduce” com-
putes each function based on these local computation results
with the same “key”. As observed in [8], [9] and [10], data
shuffling is a limiting factor in the runtime performance of
many distributed computing tasks. Moreover, we may want to
calculate functions that depend on only a subset of the data,
that satisfy a certain attribute (timestamps, geographical area,
origin etc).

The asymmetry (in terms of the function-data relationship)
in our framework makes clear the following point: we can
gain significant benefits, in terms of communication, by being
“flexible”, and leveraging on the fact that in distributed com-
puting, often we not only know in advance what the functions
we want to compute are, but also decide which of the nodes
in our system computes each function. For instance, we may
eventually upload the computation outcome to a centralized
server, and thus what is important is to efficiently compute
all functions - not which node does what. In the symmetric
scenario where each function depends on all data, it makes no
difference which node computes which function; in contrast,
in asymmetric scenarios, we find a significant difference:
depending on the amount of data nodes randomly observe,
nodes may not need to communicate at all; in contrast, when
functions are allocated independently of the random data
realization, this is almost never the case. We establish a
percolation in the behaviour of the system, where, depending
on the amount of observed data, by being flexible, we may
need no communication when the probability to observe a data
message is above some threshold or we may need significant

ar
X

iv
:1

70
5.

08
46

4v
2

 [
cs

.I
T

]
 8

 A
ug

 2
01

7

communication when this probability is below the threshold,
even when allowed to use coded broadcast transmissions.

Each function could, in principle, depend on an arbitrary
number of data messages. We start from the simplest case
where each function depends on only two of the data mes-
sages, which is still useful in practice, such as in simi-
larity searches. As a concrete example, consider the task
of finding “common friends”, a task that is regularly com-
puted in social networks, like Facebook, where friendships
dynamically change. Consider that we have a social network,
where the friendships between users are stored as messages:
the message bA is user A’s set of friends (A, {B,C,D}),
the message bB is user B’s set of friends (B, {A,D,E}),
similarly, bC = (C, {A,E}), bD = (D, {A,B, F}), bE =
(E, {B,C, F}), bF = (F, {D,E}). These 6 messages can be
distributed among computing nodes, for example four nodes
as follows: node 1 has {bA, bC , bE}, 2 has {bB, bD, bF }, 3
has {bB, bE , bF}, and 4 has {bA, bC , bD}. Assume we want
to find the common friends of the following K = 3 pairs:
{{A,B}, {B,C}, {D,E}}. The data shuffling scheme needs
to gather the messages needed to compute these K “common
friends” to some K nodes. For example, node 4 can broadcast
bA and bC + bD; then node 1 can decode message bD using
the transmission bC + bD and its local data bC and then
compute the common friends of {D,E}; similarly, node 2
can decode message bC and compute the common friends of
{B,C}, and node 3 can decode message bA and compute the
common friends of {A,B}. Such a “common friends” type
tasks pervade a number of computing tasks today; for example,
in recommender systems [6], to evaluate the similarity between
two users, we need to find those liked videos that are common
to the two, or the products bought by both.

The paper is organized as follows. Section II introduces
our notation and problem formulation; Section III considers
the case where we can flexibly decide which node calculates
which function, while Section IV looks at the case where we
fix the allocation of functions to nodes.

II. PROBLEM FORMULATION

Throughout the paper, we will use [y] (with y a positive
integer) to denote the set {1, 2, . . . , y} and |Y | to denote the
cardinality of set Y .

We consider a distributed computing system with n comput-
ing nodes c1, c2, . . . , cn, and m data messages, b1, b2, . . . , bm
in some finite field Fq . We will interchangeably use bj and
message j ∈ [m] to refer to messages, and similarly ci or node
i to refer to nodes. We assume that each node ci, i ∈ [n], has
been allocated message bj , j ∈ [m] with allocation probability
p independently and uniformly across nodes and messages.
The allocation probability p is interpreted as the probability
that a computing node contains a message. This is motivated
by the fact that sometimes, the distributed nodes collect data
separately and randomly, such as wireless sensors collect data
within some region. Therefore, the relationship between the
m messages and the n nodes can be represented by a random

bipartite graph B(m,n, p)1. The messages allocated to node
ci are referred to as side information, and indexed by a set
Si ⊆ [m].

We assume we have K ≤ n/2 computation functions to
compute and each function takes two data messages as input,
namely, f1(b11, b12), f2(b21, b22), . . . , fK(bK1, bK2), for two
different messages bk1, bk2 ∈ {bj|j ∈ [m]}, for all k ∈ [K].
The functions and their dependency on messages is known in
advance. Since we can discard a message bj if no function
relies on it, we always assume that each message is useful to
compute some function(s), but no more than Θ(1) functions.
In distributed computation, each function fk(bk1, bk2) can be
calculated as

fk(bk1, bk2) = hk(v
k
k1, v

k
k2) = hk(l

1
k(bk1), l

2
k(bk2))

where hk is a function of vkk1, v
k
k2 and functions vkk1 = l1k(bk1),

vkk2 = l2k(bk2) are intermediate results of the distributed
computation2. Given the messages in Si, node i can calculate
the values v for all functions that take attributes in Si. We use
Vi to denote the set of these values.

The data shuffling phase ensures nodes collect the interme-
diate values they need by communicating with each other. We
assume that a set of nodes make T broadcast transmissions,
x1, x2, . . . , xT , where a broadcast transmission made by node
i ∈ [n] is a linear combination of the messages in Vi. We will
refer to transmissions as uncoded, if they contain only one
message (do not use coding).

We say that fk is covered by a node i if i has both messages
bk1 and bk2 and thus can calculate the values vkk1 and vkk2; we
say that fk is covered by a node i and a set of h transmissions
xt1, xt2, . . . , xth if i can compute fk given its own messages
and the partial results it decodes from the transmissions.

We aim to minimize the number of broadcast transmissions
T , such that there exist a set of K different computing
nodes i1, i2, . . . , iK that can compute functions f1, f2, . . . , fK ,
respectively. That is, we decide which function is computed
by which of the nodes so as to minimize the communication
overhead. In the random bipartite graph formulation, we ask
what is the typical behaviour of the minimum number of
transmissions T as the parameters n,m,K tend to infinity.

III. FLEXIBLE FUNCTION ASSIGNMENT

Assume we can select which node calculates which func-
tion. We start by defining a threshold property.

Definition 1. The function pth(m,n,K) is a threshold for the
random graph instance B(m,n, p) regarding an increasing
property P , if

lim
m,n,K→∞

Pr{B(m,n, p) satisfies P}

=

{
0, p/pth(m,n,K) → 0,

1, p/pth(m,n,K) → ∞.

1This is essentially a random m× n binary matrix where each element is
1 independently with probability p and 0 otherwise.

2The data shuffling phase may transmit these intermediate values vkk1, v
k
k2.

We then prove a “percolation” or “threshold” property:
when the probability p is above a threshold, we do not need
shuffling; i.e., we can find a “matching” between nodes and
functions, such that each node almost surely has the data
needed to compute its allocated function, with no commu-
nication. Theorem 1 follows from Lemmas 1 and 2.

Theorem 1. Given K ≤ n/2, K ≤
(
m
2

)
, and

√
n = K1−ǫo(1)

for some fixed ǫ > 0, the function pth(m,n,K) =
√

log(K)
n

is a threshold for the random graph instance B(m,n, p)
regarding the property that no data shuffling is needed.

A. Allocation Probability Above Threshold

We here look at the case where no communication is needed,
provided we decide which node calculates which function.

Lemma 1. If the allocation probability p satisfies p =√
log(K)

n ω(1), then data shuffling is not needed almost surely,
i.e., with probability at least 1 − (1

K)
1
2ω(1)−1 = 1 − o(1),

we can find in polynomial time an allocation of functions to
nodes, such that each function is covered.

Proof. Since each message is useful for no more than Θ(1)
functions, we can separate the functions into Θ(1) groups such
that any two functions in the same group depend on different
messages. Here we only consider 1 group case and this can be
applied to Θ(1) groups. First, we can see that the probability
that a node i has both messages bk1 and bk2 to compute the
function fk is p2. Then the probability that the function f1 is
not covered by any of the n nodes (i.e., b11 and b12 are not
cached simultaneously at any node) is:

Pr{f1 is not covered by n nodes} = (1− p2)n.

Assume we assign f1 to one node that covers it. The proba-
bility that f2 is not covered by n− 1 nodes (i.e., b21 and b22
are not cached simultaneously at a given n− 1 nodes) is:

Pr{f2 is not covered by n− 1 nodes} = (1− p2)n−1.

Similarly, the probability that fk (for k = 3, . . . ,K) is not
covered by n− k + 1 nodes (i.e., bk1 and bk2 are not cached
simultaneously at a given n− k + 1 nodes) is:

Pr{fk is not covered by n− k + 1 nodes} = (1− p2)n−k+1.

Hence, the probability that some function among all K func-
tions cannot be computed directly is

Pr{∃k ∈ [K], fk cannot be computed directly}
≤ Pr{f1 is not covered by n nodes}+ · · ·+
Pr{fK is not covered by n−K + 1 nodes}
≤ (1− p2)n(1 + 1

1−p2 + . . .+ 1
(1−p2)K−1)

≤ K(1− p2)n−K ≤ Ke−ω(1)(1−K/n) log(K)

≤ (1
K)

n−K
n ω(1)−1 ≤ (1

K)
1
2ω(1)−1 = o(1).

To allocate functions to nodes, we can create a bipartite
graph that lists all n computing nodes on one side and all
K functions on the other side, and connect a function with

a computing node if and only if the node has both of the
messages required to compute this function. We can then in
polynomial time solve the maximum bipartite graph matching
problem (see [11] and [12], for example).

B. Allocation Probability Below Threshold

We here calculate the number of uncovered functions in the
case where p < pth(m,n,K) and provide a lower bound on
the amount of communication needed.

Lemma 2. Given
√
n = o(K1−ǫ) for some fixed ǫ > 0, if

the allocation probability satisfies p =
√

log(K)
n o(1), then the

number of uncovered functions is K1−o(1)/2 almost surely,
i.e., with probability at least 1− exp(−K2−o(1)

8n) = 1− o(1).

Moreover, if the allocation probability p ≤
√

1
n , then the

number of uncovered functions is K
2e almost surely, i.e., with

probability at least 1− exp(−K2(1−o(1))
8e2n) = 1− o(1).

Proof. We define Y C to be the maximum number of functions
that are covered by different nodes, i.e., both bk1 and bk2 for
the functions fk are in the side information set of some distinct
nodes. We also define Y = K − Y C as the minimum number
of uncovered functions. From the proof of Lemma 1, we know
that the probability that a function fk is not covered is:

Pr{fk is not covered by n nodes} = (1− p2)n. (1)

Therefore, the average number of functions that are not
covered is

EY ≥ K(1− p2)n ≥ K(1− o(1) log(K)
n)n

(a)

≥ Ke−o(1) log(K)(1− o(1) log2(K)
n) = K1−o(1),

(2)

where (a) follows from (1+x/n)n ≥ ex(1−x2/n). Next, we
show that the number Y is distributed tightly around EY . To
show this, we first use a “vertex exposure” process to form a
martingale based on the random graph B(m,n, p) [13], [14].
Specifically, we label the n computing nodes in the random
bipartite graph as 1, 2, . . . , n and denote by Zl the random
variable to indicate whether the vertex l is exposed in the
random graph, i.e., Zl = 1 if the l-th node is present in the
graph and Zl = 0 otherwise. Define Yl = E[Y |Z1, Z2, . . . , Zl]
as a sequence of random variables for l = 1, 2, . . . , n, then
{Yl} is a Doob martingale and Yn = Y . Observe that
when we add (or remove) a node, the minimum number of
uncovered functions can decrease (or increase) at most 1. In
fact, after adding some messages to node i’s side information,
if Y decreases by 2, then without counting on node i, the
number Y will decrease by at least 1. This contradicts the
fact that Y is the minimum number of uncovered functions.
We conclude that the function Y is 1-Lipschitz: if two random
graph realization B0 and B1 differ at one vertex l, namely, the
subgraph induced by vertices of B0 other than l is the same as
that induced by vertices of B1 other than l, and the function
Y satisfies |Y (B0)− Y (B1)| ≤ 1. Therefore, we can use the

Azuma’s inequality

Pr{E[Y]− Y ≥ a} ≤ exp(− a2

2n
), for a > 0 (3)

to get

Pr{Y ≤ 0.5K1−o(1)} ≤ Pr{E[Y]− Y ≥ 0.5K1−o(1)}
≤ exp(−K2−o(1)

8n).

The first part of the theorem is proved. For the second part of
the theorem, we use similar techniques. The average number
of functions that are not covered is

EY ≥ K(1− p2)n ≥ K(1− 1
n)

n ≥ Ke−1(1 − 1
n)). (4)

Thus, we can also bound the number Y using the martingale
construction and Azuma’s inequality:

Pr{Y ≤ K
2e} ≤ Pr{E[Y]− Y ≥ K

2e (1− o(1))}
≤ exp(−K2(1−o(1))

8e2n).
(5)

Note that for the above lemma, the claim holds for
√
n =

K1−ǫo(1), for example, K = Θ(n).
Next, we show that for p < pth(m,n,K), we need a non-

trivial amount of communication in the data shuffling phase,
even if we are allowed to use coding.

Theorem 2. For allocation probability p ≤ pth(m,n,K), the
optimal number of (coded) broadcast transmissions is almost
surely lower bounded by Ω(Tun), where Tun is the minimum
number of uncoded broadcast transmissions we would need
to make, if after the random data placement realization, we
broadcast missing messages bj , j ∈ [m] so that any K out of
the n nodes can compute the K functions.

The proof outline of this theorem consists of two ma-
jor steps. First, similar to [15], we need to categorize all
Ω(Tun) × m matrices into a smaller number of “clusters”
such that matrices in each “cluster” have similar decoding
ability, i.e., all matrices in each “cluster” can satisfy a problem
instance with low probability. Second, we count all the number
of matrix “clusters” and prove that in total the probability
is low for all “clusters” to satisfy a problem instance. The
complete proof of this theorem can be found in Appendix A.
Intuitively, the reason why coding does not help, is because
the side information is limited.

C. Outage Probability

If the allocation probability is too low, it is probable that
none of the cluster nodes observes some of the data, and thus
the computation of functions that depend on this data becomes
impossible. We show that this outage probability is pout =
log(m)

n , where for p ≥ pout(1 + ǫ), the probability that some
message is missing is almost surely 0, while for p ≤ pout(1−
ǫ), this probability is almost surely 1, for any fixed ǫ > 0.

The probability that a message bj is not cached in one of
the n nodes is (1− p)n. Then, the probability that a message
bj is not missing is 1− (1− p)n. So the probability that some

message is missing is pmiss , 1 − [1 − (1 − p)n]m. Hence,
we have for p ≤ pout(1− ǫ),

pmiss ≥ 1− [1− e−np(1− np2)]m

≥ 1− [1−m−1+ǫ(1− o(1))]m

≥ 1− e−mǫ(1−o(1)) = 1− o(1);

(6)

and for p ≥ pout(1 + ǫ),

pmiss ≤ 1− [1−m(1 − p)n] ≤ me−np

≤ me−(1+ǫ) log(m) = (1
m)ǫ = o(1).

(7)

IV. BENEFIT WRT FIXED FUNCTION ASSIGNMENT

In this section, we calculate how much we have gained by
being flexible, as compared to fixing the function assignment.
We compare with the case where each function fk is assigned
to some nk = Θ(1) disjoint computing nodes, independently
of the data placement. When nk = 1 for all k, t we assign
each function to one specific node. Let C ,

∑
nk/K to be the

average number of computing nodes to compute each function.

Theorem 3. Given a random graph instance B(m,Θ(K), p),
the threshold probability satisfies pth(m,Θ(K),K) = 1 −
(log(K)

K)1/C = 1− o(1) with respect to the property that data
shuffling is not needed for fixed function assignments.

Proof. We now consider the case when p ≤ pth. It suffices
to prove that data shuffling is almost always needed for this
case. We observe that the probability that fk is covered by at
least one of its corresponding nk worker nodes is

Pr{fk is covered} = 1− (1− p2)nk .

Now, the probability that all functions can be computed is

Pr{∀k, fk can be computed directly}

=

K∏

k=1

Pr{fk is covered} =

K∏

k=1

(
1− (1− p2)nk

)

(a)

≤
(
1−

K∑

k=1

(1 − p2)nk

K

)K
(b)

≤ (1 − (1− p2)C)K

≤ (1− (1− pth)
C)K ≤ (1 − log(K)

K
)K ≤ 1

K

where (a) follows from Arithmetic Mean – Geometric Mean
(A.M-G.M) inequality applied to the product term, and (b)
follows, again, from A.M-G.M applied to the summation term
inside the parenthesis.

A. Uncoded transmissions

Let us consider that only one node is designated to each
function. We would like to compute the number of uncoded
transmissions needed in this case.

Theorem 4. Given a random graph instance B(m,n, p), the
threshold function satisfies pth(m,n,K) = 1 − 1

Kǫ (for any
fixed ǫ > 0) with respect to the property that Θ(K1−ǫ) un-
coded transmissions are needed for a successful computation
of all functions.

Proof. Observe that for a function fk, we may need to make 2,
1, or 0 uncoded transmissions. The probabilities are (1− p)2,
2p − p2, and p2, since a node needs to have two messages
to compute its function. Therefore the expected number of
uncoded transmissions is K(2p − p2 + 2(1 − p)2) = K(2 −
2p+ p2). Using Chernoff’s bound, we get that the probability
for the number of transmissions X taking a value less than or
equal to (1− δ)K(2− 2p+ p2) (for δ ∈ (0, 1)) is,

Pr{X ≤ (1− δ)K(2− 2p+ p2)}
≤ e−K(1−p+p2/2)δ2/2 ≤ e−Θ(K1−ǫ)

B. The Benefit of Being Flexible

We now summarize and compare our results for the flexible
and fixed function assignments and show the benefits of being
flexible in function assignment.

1) p < pout: in this regime, the distributed computing task
is not possible irrespective of function assignments.

2) pout < p =
√

log(K)
n o(1): in this regime, we may need

significant amount of communication, but there is no
significant coding gain for flexible function assignments.
The uncoded transmissions can be as large as Θ(K).

3)
√

log(K)
n ω(1) = p < 1− log(K)

K : this regime spans most
of the allocation probability region, ranging from o(1)
to 1 − o(1), and underscores the benefit of the extra
degree of freedom (in the form of flexibility in function
assignment). A fixed function assignment scheme almost
surely needs Θ(K) transmissions for constant allocation
probability, while flexibility in function assignment al-
most surely requires no communication.

V. RELATED WORK

In distributed computing, data shuffling or communication
among computing nodes form a major bottleneck for the
runtime performance. Recently, as distributed mobile com-
puting is increasingly attracting interest, coding techniques
(e.g., network coding [2], index coding [3]) can be used
to reduce the communication cost in distributed computing
[16], [17], [1], [18], [19]. Closer to ours is work that helps
improve the communication efficiency in distributed systems.
The work of [17], [18], [19] has studied the “master-workers”
distributed computing model and show that coding can help
to reduce communication cost in data shuffling, for example,
in distributed machine learning applications. The work in
[16], [1] has established that leveraging of broadcasting and
coding can improve the communication efficiency of such
systems. However, creating coding opportunities is enabled
by allocating data in specific patterns across the nodes [1]
(in fact, similar data allocations have also been used for
distributed caching [20]). In contrast, in our work we assume
random data allocation, and thus the trade-off curve in [1]
does not apply. We also do not assume predetermined message
requests, but we decide where to send intermediate function
values, which makes the problem different from conventional

index coding techniques; intermediate values are only useful
to one node, and thus to create side information, we need
to make computations. In conventional index coding prob-
lems, the messages to be transmitted to receivers and the
side information of receivers are fixed and the problem is
to design appropriate schemes to minimize the number of
broadcast transmissions. However, when using coding schemes
in distributed computing, such as in [16], [17], [19] and this
work, we not only need to design transmission schemes, but
also need to design the data placement and schedule the task
assignment.

REFERENCES

[1] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Fundamental tradeoff
between computation and communication in distributed computing,” in
IEEE International Symposium on Information Theory (ISIT), 2016.

[2] S.-Y. Li, R. W. Yeung, and N. Cai, “Linear network coding,” Information
Theory, IEEE Transactions on, vol. 49, no. 2, pp. 371–381, 2003.

[3] Z. Bar-Yossef, Y. Birk, T. Jayram, and T. Kol, “Index coding with side
information,” IEEE Transactions on Information Theory, vol. 57, no. 3,
pp. 1479–1494, 2011.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[5] Z. Guo, G. Fox, and M. Zhou, “Investigation of data locality in
mapreduce,” in Cluster, Cloud and Grid Computing (CCGrid), 2012
12th IEEE/ACM International Symposium on. IEEE, 2012, pp. 419–
426.

[6] F. Ricci, L. Rokach, and B. Shapira, Introduction to recommender
systems handbook. Springer, 2011.

[7] E. Toch, “Crowdsourcing privacy preferences in context-aware applica-
tions,” Personal and ubiquitous computing, vol. 18, no. 1, pp. 129–141,
2014.

[8] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,” in ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4, 2011, pp.
98–109.

[9] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar,
“Tarazu: Optimizing mapreduce on heterogeneous clusters,” SIGARCH
Comput. Archit. News, vol. 40, no. 1, pp. 61–74, Mar. 2012.

[10] Y. Guo, J. Rao, and X. Zhou, “iShuffle: Improving hadoop performance
with shuffle-on-write,” in 10th International Conference on Autonomic
Computing (ICAC 13), 2013.

[11] R. Diestel, Graph theory; 2nd ed. Heidelberg: Springer, 2000.
[12] M. Mucha and P. Sankowski, “Maximum matchings via gaussian elim-

ination,” in Proceedings. 45th Annual IEEE Symposium on Foundations
of Computer Science, 2004, pp. 248–255.

[13] B. Bollobás, Random graphs. Cambridge Studies in Advanced Math-
ematics 73, 2001.

[14] N. Alon and J. H. Spencer, The probabilistic method. John Wiley &
Sons, 2004.

[15] A. Golovnev, O. Regev, and O. Weinstein, “The minrank of random
graphs,” arXiv preprint arXiv:1607.04842, 2016.

[16] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,”
in 2015 53rd Annual Allerton Conference on Communication, Control,
and Computing (Allerton), 2015, pp. 964–971.

[17] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” arXiv preprint
arXiv:1512.02673, 2015.

[18] M. Attia and R. Tandon, “Information theoretic limits of data shuffling
for distributed learning,” arXiv preprint arXiv:1609.05181, 2016.

[19] L. Song, C. Fragouli, and T. Zhao, “A pliable index coding approach to
data shuffling,” in 2017 IEEE International Symposium on Information
Theory (ISIT), 2017, pp. 2558–2562.

[20] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, 2014.

APPENDIX A
PROOF OF THEOREM 2

In the low probability regime p ≤ pth(m,n,K), we saw
from Lemma 2 that some functions cannot be calculated
directly after the random data placement. Therefore, we need
to make transmissions in order to complete the computation
tasks. For uncoded transmissions, we have two broadcast
transmission scenarios: one is to make uncoded broadcast
transmissions of the raw data messages bj , j ∈ [m], and
the other is to make uncoded broadcast transmissions of
the intermediate data messages vkk1, vkk2, k ∈ [K]3. Let us
denote by Tun and T ′

un the minimum number of transmissions
needed for the above two scenarios so that K nodes have all
the data needed to compute the K functions without further
communication. It is not hard to see that T ′

un ≥ Tun since
a single raw data messages can be used to generate several
intermediate data messages. We are going to use Tun as a
benchmark to compare the savings of broadcast transmissions
using coding.
Tun can be calculated using a bipartite graph matching

problem: we list the n nodes and the K functions on both
sides and connect a node to the functions it can compute.
We then interpret Tun as the minimum number of uncoded
broadcast transmissions nodes need to make such that there
is a matching that covers all K functions. Clearly, if after
the random data placement, we are only allowed to exchange
intermediate function values, Tun would form a lower bound
on the number of uncoded transmissions needed T ′

un, since
broadcasting raw data could be useful to several nodes, while
intermediate values are only useful to a single node. We are
now going to show that, even if we are allowed to make coded
broadcast transmissions, we would not achieve significant
transmission savings (in order of magnitude).

We first note that, we have at least Tun nodes missing at
least Tun different data. The number of coded transmissions
we make need to satisfy at least these nodes. Using a similar
approach as in index coding [3], we can define a matrix
G ∈ FTun×Tun

q that “fits” our data shuffling problem as
follows:
• the columns are indexed by Tun missing messages - we
assume without loss of generality these to be the first Tun,
j = 1 . . . Tun out of the m messages;
• the rows are indexed by some Tun computing nodes,
i1, i2, . . . , iTun , with node ij missing data j for some function
calculation, i.e., j /∈ Sij ;
• the (i, j) entry of G, gi,j = 1 for i = j, gi,j = 0 for
j ∈ [m]\Si, and gi,j can be arbitrary element in Fq for j ∈ Si;
• node ij can use row ij to decode the message j it needs.

Similarly to [3], let G denote the set of all matrices that
fit our problem, the minimum number of coded broadcast
transmissions equals the minimum rank of any matrix in G,
denoted as minrank(G).

3The first scenario to transmit the raw data messages can be seen as a
special case of transmitting the intermediate data messages.

To derive a lower bound on minrank(G), we use a similar
technique as in [15]. Let the rank of G be k. For a principal
submatrix M of G, we denote the weight (number of nonzero
elements) of M by w′, the minimum weight of a column basis
of M by w′

C , and the minimum weight of a row basis of M
by w′

R. Let the rank of M be k′. We define a coding structure
M to be a n′×n′ principal submatrix of G with the following
properties [15]:
• the weight and the rank of M satisfy 4k′w′ ≥ n′2, k′/n′ ≤
k/Tun, w′

C ≤ 2w′k′/n′, and w′
R ≤ 2w′k′/n′;

In [15], it is shown that every matrix G contains such
a coding structure M and the number of such principal
submatrices is at most (n′q)12w

′k/Tun .
The probability that a matrix G containing M is a fitting

matrix is pw
′−n′

, since we need that side information covers
all off-diagonal non-zero elements of M . The number of ways
we choose an ordered set of n′ computing nodes for submatrix
M is n(n− 1)(n− 2) . . . (n− n′ + 1) ≤ nn′

. The number of
ways of choosing M among all possible submatrices of G is(
Tun

n′
)
. By setting k = Θ(Tun), we can calculate

Pr{minrank(G) ≤ k}
≤ ∑

k′,n′,w′
nn′(Tun

n′
)
(n′q)12w

′k/Tunpw
′−n′

≤ ∑
k′,n′,w′

2n
′ log(n)+n′ log(Tun)+12w′k/Tun log(n′q)+(w′−n′) log(p)

≤ n42(2.25n
′+12w′k/Tun) log(nq)−w′/4 log(n)

≤ n4214.25w
′k/Tun log(nq)−w′/4 log(n) = 2−Ω(w′ log(n)),

where the first three inequalities follow from the properties

of M and p ≤
√

log(K)
n , and the last equality follows from

k = Θ(Tun) and w′ ≥ C for some large enough fixed constant
C according to the properties of M .

