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Abstract

We determine both the quantum and the private capacities of low-noise quantum channels
to leading orders in the channel’s distance to the perfect channel. It has been an open problem
for more than 20 years to determine the capacities of some of these low-noise channels such as
the depolarizing channel.

We also show that both capacities are equal to the single-letter coherent information of the
channel, again to leading orders. We thus find that, in the low noise regime, super-additivity
and degenerate codes have negligible benefit for the quantum capacity, and shielding does not
improve the private capacity beyond the quantum capacity, in stark contrast to the situation
when noisier channels are considered.

1 Introduction

Any point-to-point communication link can be modeled as a quantum channel AV from a sender to
a receiver. Of fundamental interest are the capacities of N to transmit data of various types such as
quantum, private, or classical data. Informally, the capacity of N to transmit a certain type of data
is the optimal rate at which that data can be transmitted with high fidelity given an asymptotically
large number of uses of N. Capacities of a channel quantify its value as a communication resource.

In the classical setting, the capacity of a classical channel AV to transmit classical data is given by
Shannon’s noisy coding theorem [20]. While operationally, the capacity-achieving error correcting
codes may have increasingly large block lengths, the capacity can be expressed as a single letter
formula: it is the maximum correlation between input and output that can be generated with a
single channel use, where correlation is measured by the mutual information.

In the quantum setting, the capacity of a quantum channel A to transmit quantum data, denoted
Q(N), is given by the LSD theorem [17, 21, 4]. A capacity expression is found, but it involves a
quantity optimized over an unbounded number of uses of the channel. This quantity, when opti-
mized over n channel uses, is called the n-shot coherent information. Dividing the n-shot coher-
ent information by n and taking the limit n — oo gives the capacity. For special channels called
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degradable channels, the coherent information is weakly additive, meaning that the n-shot coherent
information is n times the 1-shot coherent information [5], hence the capacity is the 1-shot coherent
information and can be evaluated in principle. In general, the coherent information can be superad-
ditive, meaning that the n-shot coherent information can be more than 7 times the 1-shot coherent
information, thus the optimization over # is necessary [6]. Consequently, there is no general algo-
rithm to compute the capacity of a given channel. Furthermore, the n-shot coherent information
can be positive for some small n while the 1-shot coherent information is zero [6]. Moreover, given
any n, there is a channel whose n-shot coherent information is zero but whose quantum capacity
is positive [3]. Thus we do not have a general method to determine if a given channel has positive
quantum capacity.

Even for the qubit depolarizing channel, which acts as D, (p) = (1 — %p) o+ %p I, our understand-

ing of the quantum capacity is limited. For p = 0 the channel is perfect, so we have Q(Dy) = 1,
while for p > 1/4, we know that Q(D,) = 0 [1]. However, for 0 < p < 1/4 the quantum capacity
of D, is unknown despite substantial effort (see e.g. [24, 8, 15]). For p ~ 0.2, communication rates
higher than the 1-shot coherent information are achievable [6, 24, 8], but even the threshold value
of p where the capacity goes to zero is unknown. For p close to zero, the best lower bound for
Q(Dy) is the one-shot coherent information. In this regime, the continuity bound developed in
[14] is insufficient to constrain the quantum capacity of D, to the leading order in p, and while
various other upper bounds exist, they all differ from the one-shot coherent information by O(p).
Recently, a numerical upper bound on the capacity of the low-noise depolarizing channel [29] was
found to be very close to the 1-shot coherent information. Meanwhile, the complementary channel
for the depolarizing channel for any p > 0 is found to always have positive capacity [15], which
renders several techniques inapplicable, including those described in [30] or a generalization of
degradability to “information degradability” [2].

In this paper, we consider the quantum capacity of “low-noise quantum channels” that are close to
the identity channel, and investigate how close the capacity is to the 1-shot coherent information.
It has been unclear whether we should expect substantial nonadditivity of coherent information
for such channels. On the one hand, all known degenerate codes that provide a boost to quantum
capacity first encode one logical qubit into a small number of physical qubits, which incurs a
significant penalty in rate. This would seem to preclude any benefit in the regime where the 1-
shot coherent information is already quite high. On the other hand, we have no effective methods
for evaluating the n-letter coherent information for large 7, and there may well exist new types of
coding strategies that incur no such penalty in the large n regime.

We prove in this paper that to linear order in the noise parameter, the quantum capacity of any
low-noise channel is its 1-shot coherent information (see Theorem 12). Consequently, degenerate
codes cannot improve the rates of these channels up to the same order. For the special cases of
the qubit depolarizing channel, the mixed Pauli channel and their qudit generalizations, we show
that the quantum capacity and the 1-shot coherent information agree to even higher order (see
Theorem 14).

Our findings extend to the private capacity P(N) of a quantum channel AV, which displays simi-
lar complexities to the quantum capacity. The private capacity is equal to the regularized private
information [4], but the private information is not additive ([23, 16, 25]). In [10], the private capac-
ity, which is never smaller than the quantum capacity, is found to be positive for some channels
that have no quantum capacity. The authors also characterize the type of noise that hurts quan-
tum transmission and that can be “shielded” from corrupting private data. In [13], channels are
found with almost no quantum capacity but maximum private capacity. Meanwhile, for degrad-



able channels, the private capacity is again equal to the 1-shot coherent information [22]. This
coincidence of P and Q for degradable channels means that our findings for the quantum capacity
can be carried over to private capacity fairly easily. In the low-noise regime the private capacity is
also equal to the 1-shot coherent information to linear order in the noise parameter, and is equal
to the quantum capacity in the same order (see Theorems 12 and 14). Consequently, shielding
provides little benefit.

Our results follow closely the approach in [29]. Consider a channel A and its complementary
channel N¢. The channel NV is degradable if there is another channel M (called a degrading map)
such that M o N' = N*. Instead of measuring how close N is to some degradable channel, [29]
considers how close M o N can be to N'© when optimizing over all channels M, a measure we
call the degradability parameter of N. Furthermore, this distance between N and M o N as
well as the best approximate degrading map M can be obtained via semidefinite programming.
Continuity results, relative to the case as if N is degradable, can then be obtained similarly to
[14]. This new bound in [29] limits the difference between the 1-shot coherent information and the
quantum capacity to O(r log 1) where 7 is the degradability parameter. Note that 77 log 7 does not
have a finite slope at 7 = 0 but it goes to zero faster than 5° for any b < 1. While this method
does not yield explicit upper bounds, once a channel of interest is fixed, it is fairly easy to evaluate
the degradability parameter (via semidefinite programming) and the resulting capacity bounds
numerically.

The primary contribution in this paper is an analytic proof of a surprising fact that, for low-noise
channels whose diamond-norm distance to being noiseless is ¢, the degradability parameter 5
grows at most as fast as O(¢!°), rendering the gap O(71log7) between the 1-shot coherent infor-
mation and the quantum or private capacity only sublinear in & (see Theorem 11). For the qubit
depolarizing channel and its various generalizations, we improve the analytic bound of 7 to O(¢?)
(see Theorem 13). Furthermore, for both results, we provide constructive approximate degrading
maps and explain why they work well.

The rest of the paper is structured as follows. In Section 2, we explain both our notations and prior
results relevant to our discussion. We present our results for a general low-noise channel in Section
3 and for the depolarizing channel in Section 4.1 (with the various generalizations in Section 4.2).
We conclude with some extensions and implications of our results in Section 5.

2 Background

In this paper we only consider finite-dimensional Hilbert spaces. For a Hilbert space H, we denote
by B(H) the set of linear operators on . We write My for operators defined on a Hilbert space
H 4 associated with a quantum system A. We denote by I, the identity operator on H 4, and by
id4 the identity map on B(#4). We denote the dimension of A by |A| = dimH 4. A (quantum)
state p4 on a quantum system A is a positive semidefinite operator with unit trace, thatis, p4 > 0
and trpy = 1.

2.1 Quantum channels
Any point-to-point communication link that transmits an input to an output state can be modeled

as a quantum channel. Mathematically, a quantum channel is a linear, completely positive, and
trace-preserving map N from B(H4) to B(Hg). We often use the shorthand N': A — B.If a
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channel N': A — B’ acts as NV followed by an isometry from B to B, then we call N equivalent
to N. This is an equivalence relation on the set of quantum channels, and for a given channel
N all analysis of interest in this paper applies to any channel in the equivalence class of N'. We
summarize two useful representations for quantum channels in the following [18, 33].

For every quantum channel N': A — B there is an isometric extension V: Ho — Hp @ H for
some auxiliary Hilbert space Hf associated with some environment system E, such that N (pa) =
tre(Voa V') [27]. The isometric extension is also called the Stinespring dilation, and this represen-
tation is sometimes called the unitary representation. Note that the isometric extension is unique
up to left multiplication by some unitary on E, and this degree of freedom does not affect most
analysis of interest. Physically, the isometric extension distributes the input to B and E jointly,
and the channel N is noisy because the information in E is no longer accessible. The comple-
mentary channel N¢: A — E of N with respect to a specific isometric extension V is defined by
N¢(pa) == trg(VpaVT). Note that all channels complementary to N are equivalent.

The second representation we use is the Choi-Jamiotkowski isomorphism. It is a bijection J from the
set of quantum channels N': A — B to the set of positive operators 745 € B(H 4 @ Hp) satisfying
trp Ta'p = L/, given by:

TN) = (ida @N)(vara),

where |yY) 474 = Y; |i) 4 ® |i) 4 is proportional to the maximally entangled state on A’A, the system
A’ is isomorphic to A, and ya4 = |7){Y|ara. The inverse of J applied to T4/ yields a channel
whose action on an operator p4 defined on a system A is given by

(77 @am)) () = trar (zam (P @ 15) ),

where T denotes transposition with respect to the basis {|i) } that defines |y). The operator J (N)
is called the Choi matrix of NV. It is uniquely determined by A and it is basis-dependent. The rank
of J(N) is called the Choi rank of N. It is the minimum dimension of the environment E for an
isometric extension of V. It is basis-independent, and independent of the choice of the isometric
extension.

2.2 The diamond norm and the continuity of the isometric extension

For an operator M € B(H) we define the trace norm ||M||1, the operator norm || M||«, and the max
norm || M ||max as follows:

IM|1 :=tr vMtM,

M = max{\/<lprM+M|lp>: 9) € H, (ply) = 1} ,

| M]|max = max ’Mi,j| .
L]

Note that the max norm is basis-dependent, unlike the trace and the operator norms.

We now discuss the distance measure we use for channels. For a linear map ®: B(H) — B(K)
between Hilbert spaces H and X, we define its diamond norm by

| Pl == max{||(idcn @P)(M)||1: M € B(C" @ H), ||M]|1 =1,n € N}, (1)



where idcr denotes the identity map on C". It suffices to take n as large as dim(#) in the above
optimization so that the maximum can be attained. When applied to the difference of two channels
N1 — N, the diamond norm has a simple operational meaning: it is twice the maximum of the
trace distance of the two output states (idc» ®N;) (M) (for i = 1,2) created by the two channels on
the best common input M, in the presence of an ancillary space C". The trace distance of two states
in turn signifies their distinguishability [9]. We summarize two characterizations of the diamond
norm, a method to upper bound it, and a continuity result for the isometric extension in the rest
of this subsection.

First, the diamond norm || N; — N3 ||, of the difference of two quantum channels N;: A — B and
N,: A — B can be computed by solving the following semidefinite program (SDP) [31]:
minimize: 2y
subject to: trp Zap < pula
Zap > T (N1) = T (N2)
Zag > 0.

(2)

Second, the diamond norm of a linear map © (which is not necessarily trace-preserving or com-
pletely positive) can be rewritten as ([32], Thm. 6):

1]l = max {[(vor ® 15) T (©)(vP2 © 16)l1 } (3)

where the maximum is over density matrices p; and p, on the input system A of the map ©.

We prove the following technical lemma that upper bounds the diamond norm of an arbitrary
linear map using the max norm of its Choi matrix:

Lemma 1. For a linear map ®: A — B, we have ||®|| < |A||BJ? || 7 (O)|lmax-

Proof. We start with the second characterization of the diamond norm in (3) above, and let o7 and
07 be states on A achieving the maximum in (3), such that

10]l. = [[(Vor ®18) T(0) (Vo2 @ 1) - 4)

Recall that the Schatten norms || X[, = (tr(XTX)?/ 2)1/p satisfy the Holder inequality || XY} <
1 X[ pllY |4 for p, g € [1,00] with 1 = % + % Applying this to the right-hand side of (4) with p =
2 = g gives
10][o = [I(vor ® 1) T(O) (Voo @ 1p)||; < [[v/or @ 13l | T(O) (Voo @ 1p)]|,
< Vo @ 1|, [| T (O]l [Ivo2 @ T3]l
where the second inequality uses || XY||3 = tr(XTXYYT) < tr(XTX|| Y[ 1) = ||Y||% ] X]3- We have
|\/0i @ 1|2 = (tr(0; @ 15))Y/2 = |B|'/? for i = 1,2 since the 0; are quantum states. Hence,

1©][o < [B] |7 (©)]|eo- (5)

To bound the operator norm of J = J(©) in (5), let n = |A||B| and sy > --- > s, > 0 be the
singular values of | in descending order. Recall furthermore that || X||2, = || X" X||. Then,

1712 = 17T lleo =51 < }_ st = (T T) = ) TyTij = 3 1Tl < n?1T e
k=1 ]

i, j=1 i,j=1

Hence, || T (©)]l« < |A]|B| |7 (®)|Imax, which together with (5) proves the claim. O
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Corollary 2. If © is a linear map whose Choi matrix has coefficients O(p?) for p in a neighborhood of 0,
then also ||®||, = O(p?).

We also use the following continuity result for the isometric extensions for channels [11] :

Theorem 3 ([11]). For quantum channels N7 and N,

inf [V — Valles < [IV; = Maflo <2 inf [[V1 = Vales,
where the infimum is over isometric extensions V; of N; for i = 1,2, respectively.

A simple consequence of Theorem 3 is that for two quantum channels that are close in the diamond
norm, their complementary channels can be made similarly close to one another:

Corollary 4. Let N7, N, be quantum channels with || N1 — Na||o < € for some € € [0,2]. Then for any
complementary channel Nt of N, there exists a complementary channel N of Ny such that

INT = N3 llo < 2Ve

2.3 Quantum and private capacities and approximate degradability

The coherent information of a state p4 through a channel N': A — B is defined as
Le(pa; N) = S(N(pa)) = S(N“(pa)) ,

where S(0) = —trologo denotes the von Neumann entropy of ¢, and log is base 2 throughout
this paper. Note that the coherent information is independent of the choice of the complementary
channel. The coherent information can be interpreted as follows. Let |¢) 4'4 be a purification of
pa (thatis, tra |9)(¥|aa = pa). Then, I.(oa;N) = 3 (I(A’: B) —I(A’ : E)) where (A’ : B) =
S(A") + S(B) — S(A’B) is the quantum mutual information between A’ and B, and similarly for
I(A’: E), and the mutual information is evaluated on the state id 4» QN (i) (| a4 ). The coherent
information of A/, also called the 1-shot coherent information, is the maximum over all input
states,

I(N) = max L(pa;N) .

The n-shot coherent information of AV is defined as 1" (N) = I.(N®"), and satisfies ) (N) >

i (N)+ i (N) for n,m € IN. The quantum capacity theorem [17, 21, 4] establishes that the quan-
tum capacity of V is given by the following regularized formula:

Q) = Jim 1(V) = sup L1V, ©
where the second equality follows from Fekete’s lemma [7]. In general, the regularization in (6) is
necessary, and renders the quantum capacity intractable to compute for most channels [6, 3]. How-
ever, for the class of degradable channels [5], the formula (6) reduces to a single-letter formula. A
channel N/ with complementary channel N is degradable if there is another channel M (called a
degrading map) such that M o N' = N°. For degradable channels, the coherent information is

weakly additive, Ic(n) (N) = nl.(N) [5]. As a result, the limit in (6) is unnecessary, and we have
QW) = L(N).
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Moreover, for a degradable channel AV the coherent information I.(p4; \') is concave in the input
state p4 [34], and thus I(N\') can be efficiently computed using standard optimization techniques.

Since degradable channels have nice properties that allow us to determine their quantum capacity,
we might ask if some of these properties are approximately satisfied by channels that are “almost”
degradable. Reference [29] formalized this idea by considering how close M o N can be made to
N€ when optimizing over the channel M.

Definition 5 ([29]; Approximate degradability). A quantum channel N': A — B with environment E
is called n-degradable for an 1 € [0, 2] if there exists a quantum channel M: B — E such that

INC = Mo N, <7. )

The degradability parameter dg(N') of N is defined as the minimal y such that (7) holds for some
quantum channel M : B — E, and N is degradable if dg(N') = 0.

Note that every quantum channel is 2-degradable, since |N; — MNa||s < 2 for any two quantum
channels N and N;. The SDP (2) for the diamond norm can be used to express the degradability
parameter dg(N') of Definition 5 as the solution of the following SDP [29]:

minimize: 2y

subject to: trg Z g < uly
tre Yge = 15 (8)
Zag > TNC) =T (T H(Yee) o N)
Zpg > 0,Ype > 0.

The bipartite operator Ygr above corresponds to the Choi matrix of the approximate degrading
map M: B — E.

While a degradable channel has capacity equal to the 1-shot coherent information, an 77-degradable
channel N has capacity differing from the 1-shot coherent information at most by a vanishing
function of #:

Theorem 6 ([29], Thm. 3.3 (i); Continuity bound). If N is a channel with degradability parameter
dg(N) =1, then,

L(N) < QW) < L(WNV) + glog(ﬂﬂ—l) +17log|E] +h<g> + (1 + g) h <ﬁ> )

where h(x) := — xlogx — (1—x) log(1—x) is the binary entropy function, and |E| is the Choi rank of N.

The private capacity of NV, denoted by P(N'), is the capacity of N to transmit classical data with
vanishing probability of error such that the state in the joint environment of all channel uses has
vanishing dependence on the input. The capacity expression is found to be the regularized private
information for ' in [4], but the private information is not additive ([23, 16, 25]). For degradable
channels, P(N') = I.(N), and there is a continuity result similar to Theorem 6:

Theorem 7 ([29], Thm. 3.3 (iii) and (v) combined). If N is a channel with degradability parameter
dg(N) =1, then,

I[.(N) < P(N) < I.(N) +nlog(|E|—1) + 41 log |E| +2h(g> +4 (1 + g) h <$> )

where |E| and h are as defined in Theorem 6.



3 General low-noise channel

Throughout this paper we focus on low-noise channels, by which we mean a channel N that has
isomorphic input and output spaces A and B and approximates the noiseless (or identity) channel
in the diamond norm, ||V —id4 ||s < ¢, where € > 0 is a small positive parameter.

3.1 Deviation of quantum capacity from 1-shot coherent information

We start from Theorem 6 in Section 2.3, which gives a “continuity bound” on the difference be-
tween the quantum capacity and the 1-shot coherent information for an arbitrary channel N with
degradability parameter dg(N) = :

QW) = LN < f(n),

where

filn) = glog(m —1) +ylog |E| +h(g) T (1 + g) I (ﬁ) ) )

satisfying lim,, o f1(17) = 0.

If NV is “almost” degradable, then 17 ~ 0. To investigate the behavior of f;(7) in this regime, we
keep the r7logy terms in f1(1) (knowing that these will dominate for small 7), and develop the
rest in a Taylor series around 0. For example, the first binary entropy term is expanded as

h(g) = % <1 + (In2)~1 — logiy) n— é(ln2)71172 +0(1?).

The second binary entropy term (including the prefactor) is expanded as

(1 + g) h <ﬁ> = % (1 +(In2)"1 - 10g17> 7+ %(lnz)*l;yz + o).

The quadratic contributions cancel out in an expansion of fi(7), and including the two linear
terms in (9) gives

1
fln) = ylogay + (1 (1n2)+ Jlog(JEl 1) +log £ )+ 00F). (0)
It follows that for small # the function f;(#) is dominated by g(77) := — 1 log 7 which has infinite
slope aty = 0:
, _ B i 7—0
8 () = —log() = =5 — +oo. (11)

Hence, without further information on 7, Theorem 6 does not give a tight approximation of the
quantum capacity relative to the 1-shot coherent information.

Instead, we consider a scenario in which the channel N (p) depends on some underlying noise
parameter p € [0,1] and = dg(N(p)) < cp” where r > 1 and c is a constant. (Note that f1(77)
increases with 7 for small 7, so, it suffices to consider 7 = cp’.) In this case, the approximation
implied by Theorem 6 becomes extremely useful — we will show that the upper bound I.(N (p)) +
fi(cp") on Q(N (p)) is now tangent to the 1-shot coherent information I.(N (p)).
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=0.

Lemma 8. Ifr > 1and c is a constant, then d%fl (cp")
p=0

Proof. From (11) and the chain rule, we obtain

d ry | r _L r—1
@g(cw—( log(cp") 1n2>crp

Hence, lim, o % g(cp”) = 0 for any r > 1. Finally,
d r d r -1 1 r—1 3r—1
apf1eP) = o8(ep) + 1+ (In2) ™ +log|E| + 5 log([E[ —1) ) erp™ +O(p” ™).

So, dipfl(cpr) o 0 as claimed. O

Figure 1 and Figure 2 plot dip g(cp") and g(cp”), respectively, for the valuesc = 1and r € {1,1.5,2}.

0 - - - - P
0 0.02 0.04 0.06 0.08 0.1

Figure 1: Plot of the derivative of g(p") with respect to p forr € {1,1.5,2},
where g(17) = —nlogn.

We also simplify (10) as

Lemma9. Let N' = N (p) be a channel defined in terms of a noise parameter p € [0,1], and dg(N') < cp”
for some r > 1 and some constant c. Then, we have

QW) = L(N)| < erp*(—plog p)
+cp <—logc +1+ (In2)"" +1log |E| + %log(ﬂﬂ—l)) +0(p”).



—_—r =
031 |—r=15
—_—r =

0.2 ¢

0.15 |

0.1

0.05 |

0

: . . . P
0 0.02 0.04 0.06 0.08 0.1

Figure 2: Plot of the function g(p") for r € {1,1.5,2}, where g(y) =
—nlogy.
For the private capacity, we have the following from Theorem 7:
[P(N) = LN)| < fa(17),

where

= meat1-1 s (5 41+ D (525)

= —3nlogn + (3 +3(In2)"! +1og(|E| — 1) +4log ]E|) 17+ 0(n?).
In a similar way as above, we can derive the following:
Lemma 10. Let N' = N (p) be a channel defined in terms of a noise parameter p € [0,1], and dg(N') <
cp” for some r > 1 and some constant c. Then,
[P(N) = L(N)] < 3erp™ ' (—plogp)
+cp'(=3logc+3+3(In2) " +1log(|E| — 1) +4log |E|) + O(p™).

Our main contribution in this paper is to note that many interesting channels A satisfying [|N —
id ||ls = O(p) have dg(N') = O(cp") for some r > 1 and a constant ¢, such that Lemma 9 and
Lemma 10 apply. In the following subsection, we prove that any channel N’ which is e-close to
the identity in the diamond norm has dg(N) < 2¢!. Furthermore, in Section 4 we improve the
exponent to r = 2 for the Pauli channels.

3.2 Degrading a low-noise channel with its complementary channel

Low-noise channels as defined at the beginning of this section are natural examples of “almost”
degradable channels, since the identity channel is trivially degradable: its degrading map is given
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by its complementary channel id“(-) = tr(-)|0)(0|g that outputs a fixed state to the environment.
This suggests that the same holds approximately for low-noise channels, i.e., a channel A that
is e-close to the identity should be approximately degraded by its complementary channel N°.
Indeed, one of the main results of this paper, Theorem 11 below, shows that a channel N with
[N —id||s < eis 2¢/2-approximately degradable with respect to its complementary channel. We
prove later (Theorem 15 in Section 4) that the dependence on € can be improved to quadratic order
for the class of Pauli channels.

Theorem 11. Let N be a low-noise quantum channel, i.e., ||N —id || < ¢ for some € € [0,2]. Then N is
2&3/2-approximately degradable:

|INC = NCoN ||, < 2632,
Proof. Let p be a quantum state achieving the maximum in the definition (1) of the diamond norm
of N¢ — N€o N, so that

N =N Nlo = [[id @N*(p) —id @(N“ o N)(p)[l1
= [|id ®N*(8) 1,

where 6 := p — id ® NV (p). This is a traceless, Hermitian operator that can be expressed as

5= Milwi)(wil,

where Y ; A; = 0 since § is traceless, and }; |A;| < e since | N —id ||, < e Furthermore, we have
tro 6 = trop — tra(id ® N (p)) = 0 due to N being trace-preserving, and hence,

trp 6= Zi Ai try ’1,[71> <¢z| =0. (12)

Using the triangle inequality for the trace distance, we bound

[N = NN = [[id ®N*(6) |1
< i d QN¢(8) —id ® id®(8)]|1 + || id @ id°(8) |1, (13)

where the complementary channel id® of the identity map is the completely depolarizing channel
id*(X) = tr(X)[0){0],

defined in terms of some pure state |0) of the environment of . For the first term in (13), we have
by another application of the triangle inequality that

lid @N°(6) —id @id*(6) |l < ), Al id @A ([} (yil) — id @ id” (i) (il [

< 283/2,

where in the second inequality we used the following bound that holds for all i and follows from
Corollary 4:

1id @N([i) (9i]) —id @1id“(Ji) (gil) [l < IV —id” [l < 2V/e.
For the second term in (13), we have
id @1d°(6) = ¥, Astra () (i]) [0) (0] = 0
by (12), and hence, || id ® id°(8)[/; = 0. This concludes the proof. O

11



Combining Theorem 11 with Lemma 9 and 10, we obtain the following main result:

Theorem 12. If | N —id || < ¢ for some € € [0,2], then
_ 1
QW) — I(N)| < =3¢ loge + ((an) '+ log|E| + Elog(|E!—1)> 2¢'° + O(e*)

IP(N) — L(N)| < —9¢"5 loge + (3 (In2)~" +4log |E| + 1og(|Ey—1)) 2¢15 1 O(&d).

Recall that ¢ log € goes to zero faster than e’ for any b < 1. Theorem 12 thus narrows the uncertainty
of both capacities to &’ for b ~ 1.5. Furthermore, since the channel A/ can already communicate
quantum data at the rate I.(N') using a non-degenerate quantum error correcting code [17, 21, 4],
Theorem 12 shows that degenerate codes only improve quantum communication rates in O(e")
for b ~ 1.5. Such a code also transmits private data, and shielding cannot improve the private
capacity by the same order.

4 Generalized Pauli channels

In this section, we apply our results from Section 3 to the generalized Pauli channels on finite di-
mension d. This class of channels includes the depolarizing channel and the XZ-channel acting on
qubits. The quantum and private capacities of these channels have remained unknown for more
than 20 years (except for very special extreme values of the noise parameters).

Our main result is that for generalized Pauli channels that are e-close to the identity channel, the
upper bound for the degradability parameter in Theorem 11 can be improved to O(e?). We show
how a complementary channel with suitably modified noise parameter can be used to achieve
such improved approximate degrading.

We start by introducing the generalized Pauli channels on finite dimension d. Define the generalized
Pauli X and Z operators on C*:

X|i) = |i+1), Z|i) = w'li),

where {|i)} is the computational basis, addition is modulo d, and w is a primitive d™ root of unity.
The generalized Pauli basis is given by G = {XkZl : 0 < k,I < d—1}, and the generalized Pauli

channel has the form
N(p) =) pulpU’,
UeG

where {py }ucc is a probability distribution. The above reduces to the Pauli channel in the special
cased =2,

Np(p) = pop + p1XpX + p2YpY + p3ZpZ, (14)

where X, Y, Z are the usual Pauli matrices in B(C?), and p = (po, p1, p2, p3) is a probability distri-
bution.

We first illustrate the main ideas on the simpler depolarizing channel, and then state the general
result for the Pauli channel which we prove in Appendix A. Generalization to higher dimensions
can be done by expressing the channel input in the basis G, and noting that the generalized Pauli
channel acts diagonally in this basis. The derivation is straightforward and left as an exercise for
the interested readers.

12



4.1 Depolarizing channel

We first consider the qubit depolarizing channel with error p:
Dy(p) = (1= p)p + E(XpX +YpY +2pZ) forp € [0,1), (15)

which corresponds to setting p1 = p2 = p3 = £ in (14). Note that |[id —D,|[, = 2p, which
can be seen as follows: The diamond norm distance in (1) is at least 2p by choosing M to be
the maximally entangled state, and at most 2p by the feasible solution Z45 = pJ(id) in (2).
Theorem 11 then implies that D, is 22°p!->-degradable when choosing the complementary channel
D;, of the depolarizing channel with error p as the degrading map. However, solving the SDP (8)
numerically shows that dg(D,) =~ O(p?), which is better than the bound promised by Theorem 11
by half an order.

Here, we derive an analytic proof of the above numerical observation. We will prove that dg(D,)
is indeed O(p?). This is achieved by choosing an approximate degrading map to be the comple-
mentary channel D¢, where s = p + ap? for a suitable choice of the parameter a > 0. To see the
intuition, suppose we want Dg o D), to be close to D;,. Then, choosing s to be slightly larger than p
transmits slightly more information to Bob in the output of DS, which compensates for the slightly
worse input to D that is corrupted by D,,.

Theorem 13. For p ~ 0, we have
de(D,) < § 6+v2) > +0(p°
8l P) =9 p (p’)-

Proof. We first show that, setting s = p + ap?, there is a value of a for which || DS o D), — Dille =
O(p?). Then, for this s, we derive two upper bounds to || DS o D), — D ||+: a rough bound with a
simpler derivation showing the idea, and an improved bound with a more complex derivation
yielding a better leading constant.

The complementary channel of D,, which we refer to as the epolarizing channel (cf. [15]), can be
chosen to be

(1—p)tr() ELEUX, o) /2By, o) /E02N(7Z, p)

p=p) (X 4 _ip ip
0) tr(p) (Z,p) (Y, p)
D) = | ' s N ’ ’ (16)
BB,y E(Zp) Str(p) — (X, p)
P (7,00 —2(Y,p) (X, p) £ tr(p)
Using (15) and (16), we further obtain D o Dy (p) =
(1) tx(p) 52 (1-4) (X0) 52 (1-%) (v0) U5 (1-%) (Zp)
052 (1-%) (x.p) 3tr(p) S zn 5% e
L2 (1-%) o) 5(1-%) o) 3te(p) -5 (1-%) )
L2 (1-%)zo) —5(1-%) ) 5(1-%) (X0 3tr(p)
(17)
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Wesets = p+ap? and ® = D, —D;oDy =D}, — D; cap? © D,, which is given by the difference
between (16) and (17).

We first show that for some a4, || D5 o Dy — Dyllo ~ O(p?), and we derive the following upper
bound on the degradability parameter dg(D,),

256
dg(Dy) < Z-p* +0(p*?). (18)
To upper bound ||®||,, we apply Lemma 1 to the map ®: A — E with |A| =2 and |E| = 4:
1@l < [AEP |7 (®)llmax < 32 [T (®) [ max- (19)

Hence, we need to evaluate ||J (®)||max, where the Choi matrix is given by J(®) = ¥} i—o |1 {jl

®(|i)(j|). Due to the block structure of the Choi matrix, ||J (P)||max = max;; [|P(|7){j|)||max- To
find this maximum, first note that for any i and j, the quantities tr(|7) (j|), [(X, [1) (j|)|, [{Y, 1) (j])|,
and |(Z,]i)(j|)| can only be 0 or 1. So, from inspection of the difference between (16) and (17),

max;; ||D(]i)(j]) [|max is either s — p = ap?, or %|s -+ %ps] = %]a - %|p2 +0O(p®), or
_ Ipl=p) (. 4p \/(p+aP2)(1—P—aP2)
c(p) = . <1 3 3 . (20)

Expanding c(p) in a Taylor series around p = 0 yields

(0 = (575~ 55 P2+ 00,
which is O(p®/2) if a = §. With this choice, max;; || D([i) (j|) lmax = ap* = Sp?* for sufficiently
small p. Altogether, || J(®)|lmax < 5p? + O(p*/?), and using this with (19) gives || T (®)[, <
262 + O(p>/2), which completes the proof of (18).

Fmally, to prove the stronger assertion of the theorem,
8
dg(Dy) < ¢ (6+V2) p+0(p?), (21)

we keep the choice a = % to enforce that all coefficients of & = Dy, — D; ap? © D, are O(p?) by

Corollary 2. However, we upper bound || ®||., with a different techmque Since @ is a Hermiticity-
preserving map, its diamond norm is maximized by a rank-1 state (see for example [33]). Fur-

thermore, since D}, and D7 ., o D), are jointly covariant under the full unitary group, the dia-
ptap

mond norm ||®||, is maximized by the (normalized) maximally entangled state —= (|00> + |11))
[12, Cor. 2.5], and hence,

[@]o = S 17(@)] = 5 | 7(Dy) ~ (D, a0 D)
It follows from (16) and (17) that %j (D) <§OO §Ol> , where
10 Ju
2
+ 0 0 Le(p)
2 .
0 -4 —%ip*Bp-3) 0
Joo = - 42

0 5ip~(8p —3) - 0
2
%c(p) 0 0 —47
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0 1e(p) se(p) 0
o — %C(P) 0 0 P (8p —3)
se(p) 0 0 —%ip*(8p —3)
0 Zp*(8p—3) #ip*(8p—3) 0
0 3e(p) —5¢(p) 0
o — %é(p) 0 0 2p2(8p —3)
—3¢(p) 0 0 —%ip*(8p —3)
0 —%p*®p—3) Zip*(8p—3) 0
A 0 0 —3¢(p)
Ju = 0 —5p° %ip*(8p —3) 0 ’
0 —%ip*(8p—3)  —3p’ 0
—3¢(p) 0 0 —5p*

with ¢(p) as defined in (20). Using the triangle inequality for the trace norm, we get

1
§H~7(<I>)||1 < Joollx + lJox |1 + J1ollx + [[J1zll1 = F(p)-

A Taylor expansion shows that F(p) = § <6 + \/E) p? + O(p?), from which the bound (21) fol-

lows.! O

In Figure 3 we compare the optimal degradability parameter dg(D,) with the quantity ||Dj —

D; t+ap? © Dyl fora = %, and the analytical upper bound %(6 + 1/2) p* obtained from Theorem 13.

Combining Theorem 13 with Lemma 9 and Lemma 10, and using the fact that
I(Dy) =1—h(p) — plog3,
we obtain the following;:

Theorem 14. For small p, the quantum and private capacity of the qubit depolarizing channel D, are given
by

16
1—h(p) — plog3 < Q(Dy) < 1-h(p) - plog3 - 5-(6+v2) p*logp +O(p)

16
1—h(p) — plog3 < P(Dy) < 1—h(p) - plog3——(6+v2) p*logp +O(p).

4.2 Pauli channels and the XZ-channel

The above discussion can be extended to all Pauli channels of the form in (14). Note that ||V}, —
id||c = 2(p1 + p2 + p3) by an argument similar to the one given for the depolarizing channel.

1See the Mathematica notebook depol-deg-bound.nb included as an ancillary  file on
https://arxiv.org/abs/1705.04335.
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0.06 | |—dg(D,)
— D5 — Do Dyl

0.05 | wheres = p + %pZ
86+ v2)p?
0.04
0.03
0.02
0.01
0+ t t t t :
0 0.02 0.04 0.06 0.08 0.1

p

Figure 3: Plot of the optimal degradability parameter dg(Dp) (blue) of
the qubit depolarizing channel D), computed using the SDP (8), together
with the degradability parameter ||D}, — DS o Dp|[o (red) obtained using
the degrading map Dg with s = p + % p?, and the analytical upper bound
8(6 + v/2)p? (green) obtained from Theorem 13.

To state our result, we consider a Pauli channel N, where the probabilities p; for i = 1,2,3 are
polynomials p;(p) = c;p +d;p? + - - - in a single parameter p € [0, 1] without constant terms, and
po =1 — p1 — p2 — p3. (Note that all Pauli channels can be modeled this way, and the polynomials
are not unique.) We now define

s(a, a2,a3) = (po, pr(p + mp®), p2(p + a2p?), p3(p + asp®)), (22)

where again p) = 1 — p1(p + a1p?) — p2(p + a2p*) — p3(p + azp?).> We then have the following
result, whose proof we give in Appendix A:

Theorem 15. Let N}, be a generalized Pauli channel with p = (po, p1(p), p2(p), p3(p)), where py =
1—pi(p) — p2(p) — p3(p), and the p;(p) are polynomials in p with p;(0) = 0 for i = 1,2,3. Denote by
¢; the coefficient of p in p;i(p) fori =1,2,3. If ¢; # O then the choices a; := 4 ) ;. c; in (22) ensure that

[INVp — N,

(a1,a2,a3

)0 Npllo = O(p?). (23)
If ¢; = 0O for some i, then any choice of a; for that i yields (23). Furthermore, we have

dg(Np) < 256 |cica + c1c3 + cacs| p* + O(p?) . (24)

Lemma 9 and Lemma 10 now yield the following:

2Note that p;(p + a;p?) denote the polynomial p; with argument p + a;p?, not the product of p; and p + a;p>.
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Corollary 16. Let ./\/p be a Pauli channel as defined in Theorem 15, and define C, := |c1c2 + c1¢3 4 coc3.
The quantum and private capacity of Ny are given by

QW)

I.(N}p) — 512 Cp p*log p + O(p?)
PN) < L

<
< I(Np) — 1536 Cp p*log p + O(p?).

Theorem 15 and Corollary 16 include the (weaker) result from Section 4.1 about the depolarizing
channel, for which we have ¢; = % fori =1,2,3, and hence a; = % and C, = %

Another interesting example in the class of generalized Pauli channels is the XZ-channel

Ny E(p) = (1= p)(1 =)o+ p(1 — q)XpX + pgYpY + (1 — p)gZpZ,

that implements independent X and Z errors by applying an X-dephasing with probability p,
and a Z-dephasing with probability g. For our discussion, we set p = g and denote the resulting
XZ-channel by C),

Co(p) = (1= p)’p+ (p— p*)XpX + p*YpY + (p — p*) ZpZ. (25)

Thus, we have ¢c; = 1,¢; = 0,¢c3 = 1,d; = —1,d>, = 1, and d3 = —1. Hence, the choices
a1 = ap = a3 = 4 ensure (23) by Theorem 15, and from (24) we obtain the analytic bound dg(C,) <
256p + O(p?). However, similar to Theorem 13, we can further improve the bound on dg(C,):

Theorem 17. For p ~ 0, we have
dg(Cp) < 16p” +32p°2 + O(p).

Proof. For the XZ-channel Cp, we have pg = (1 —p)?, p1 = ps = p— p? and po = p? by (25).
Furthermore, as in the discussion above we choose s = p + 4p?, and set g0 = (1 —s)%, q1 = g3 =
s —s?, and g = s?, such that the map ® = C, — C5 0 Cp as given in (28) has coefficients that are
O(p?) by Corollary 2. Since @ is Hermiticity-preserving, its diamond norm is maximized by a pure
state [33], and since both C; and C{ o C, are covariant with respect to the Pauli group, a 1-design,
this pure state can be chosen to be the maximally entangled state 3(|00) + |11)) [12, Cor. 2.5].
Hence,

1
[Cy, —Cs o Cplle = ([Pl = §||J(q>)|\1~
Goo Gor

G Gn
triangle inequality for the trace norm, we obtain the upper bound

Exploiting the block structure %j (@) = < > that follows from (28) together with the

1
dg(Cy) < [IC, = CioCplle = SIT (Pl < 1Goolls + [[Gualli + [Gorlls + [|Grolli, — (26)

and a Taylor expansion of the right-hand side of (26) shows that dg(C,) < 16p* + 32p%/2 +O(p?),
which proves the claim.? O

SWe refer to the Mathematica notebook XZ-deg-bound.nb included in the ancillary files of
https://arxiv.org/abs/1705.04335 for details.
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16p% + 32p>/2
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Figure 4: Plot of the optimal degradability parameter dg(C;) (blue) of the
XZ-channel C;, computed using the SDP (8), together with the degradabil-
ity parameter ||Cj; — C{ o Cpl|o (red) obtained using the degrading map C;
with s = p +4p?, and the analytical upper bound 16p? + 32p°/2

obtained from Theorem 17.

(green)

In Figure 4 we compare the optimal degradability parameter dg(C,) with the quantity ||C; — C¢ o

5/2

Cpllo and the analytical upper bound 16p* 4 32p>/? obtained from Theorem 17.

Numerics suggest that the coherent information I.(C,) is achieved by a completely mixed state
= 1/2, giving
Putting Corollary 16 and Theorem 17 together, and using the above coherent information expres-
sion, we obtain
Corollary 18. For small p, the quantum and private capacity of the XZ-channel C, = N, ;’(pz with equal
X-and Z-dephasing probability are given by

1-2h(p) < Q(Cp) < 1-2h(p) —32p*logp +O(p?)

1-2h(p) < P(Cy) < 1—2h(p)—96p*logp +O(p?).

5 Conclusion

Our results can be extended to cover generalized low-noise channels N, for which there exists an-
other channel M such that || M o N — I||, < e. For example, this includes all channels that are
close to isometric channels. For a generalized low-noise channel, we have by Theorem 11 that

I(MoN)E = (MoN) o (MoN), < 26%2 (27)
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Furthermore, up to an isometry,
(MoN)(p) = (M ® Ig,) (UnpUL,),

where Uy : A — BE; is an isometric extension of V' and M* : B — Ej, so that trg, (M o N')¢(p) =
N¢(p). Equation 27 therefore implies

IVE = trg, (Mo N) o (Mo N)||o < 26°72,

so that letting D = trg,(M o N')¢ o M we have [N — Do N, < 2¢%/? and N has degradability
parameter no bigger than 2¢3/2. We thus find that the same bounds as in Theorem 12 apply in the
case of a generalized low-noise channel NV.

We conclude with some implications of our results. The quantum and private capacities of a quan-
tum channel are intractable to calculate in general. This is because nonadditivity effects require us
to regularize the coherent information and private information to obtain the quantum and pri-
vate capacity, respectively. We have shown that for low-noise channels, for which IV —id | <&,
such nonadditivity effects are negligible. In particular, we find that both the private and quantum
capacities of these channels are given by the one-shot coherent information I.(N'), up to correc-
tions of order ¢!° log e. Furthermore, for the qubit depolarizing channel D), we obtain even tighter
bounds for both the quantum and private capacities:

16
1—h(p) — plog3 < Q(Dy) < 1—h(p) —plog3—5-(6+v2) p*logp +O(p)

16
1—h(p) —plog3 < P(Dy) < 1—h(p) - plog3——-(6+v2) p*logp+O(p?),

and similar results hold for all generalized Pauli channels in dimension d. Our key new finding
is that channels within ¢ of perfect are also exceptionally close to degradable, with degradability
parameter of O(e!”) in general and O(p?) for generalized Pauli channels.

The nonadditivty of coherent information for a general channel implies that degenerate codes
are sometimes needed to achieve the quantum capacity [6, 24, 8, 26, 25, 3], but little is known
about these codes despite 20 years of research. Having shown that the coherent information is
essentially the quantum capacity for low-noise channels, we have also arrived at a refreshing
result that using random block codes on the typical subspace of the optimal input (for the 1-shot
coherent information) essentially achieves the capacity.

Likewise, our findings have implications in quantum cryptography. In quantum key distribution,
quantum states are transmitted through well-characterized noisy quantum channels that are sub-
ject to further adversarial attacks. Parameter estimation is used to determine the effective chan-
nel (see for example [19]) and the optimal key rate of one-way quantum key distribution is the
private capacity of the effective channel. These effective channels typically have low noise (e.g.,
1 — 2% in [28]), and our results imply near-optimality of the simple classical error correction and
privacy amplification procedures that approach the one-shot coherent information of the effec-
tive channel. In particular, for the XZ-channel with bit-flip probability p, the optimal key rate is
1—2h(p) +O(p*log p).
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A Proof of Theorem 15

In this appendix we prove Theorem 15, which states that for any generalized Pauli channel

Np(p) = pop + p1XpX + p2YpY + p3ZpZ,

for which the coefficients p;(p) = c;p + d;p*> + - - - are polynomials with zero constant term in a
parameter p, there is a choice of a1, a3, a3 such that
2
Hng - Nsc(al,az,aS) o NPHO = O(P )

Here, we define s(ay,a2,a3) :== (p}, p1(p + a1p?), p2(p + a2p?), p3(p + asp?)), with p} chosen such
that s(ay, a2, a3) is a probability distribution.

An isometric extension of the Pauli channel is given by
Vp = \/%]l@) |0>E—|-\/EX® |1>E—|-\/EY® |2>E+\/%Z® ’3>E1

where {|0), |1)E, |2)E, |3) £} is an orthonormal basis for the environment E. For an arbitrary linear
operator p, it is straightforward to find that (see e.g. [15])

po tr(p) VPori(X,p)  Pop2(Y,p)  /Pop3(Z,p)
) p1tr(p) —iy/P1p2(Z,p)  iyP1p3(Y,p)

VPop1(X, p
N(p) = trg(Vpp V) = . .
VPop2(Y,p)  iy/P1p2(Z,p) patr(p) —iy/P2p3(X, p)
VPops(Z,0) —iypips(Y,0) iy/P2p3(X,p) p3 tr(p)
Writing q = (g0, 41,2, 93), the action of the map ® := N — N o N}, on a linear operator p is
(Po — q0) tr(p) t1(X, p) t2(Y, p) t3(Z, )
t1(X, p) (1 —q)te(p)  —ius(Z,p) iua (Y, p)
d(p) = , , (28)
t2(Y, p) iuz(Z,p) (P2 —q2)tr(p)  —iur(X,p)
t3(Z, p) —iun(Y, p) i (X, p) (ps — q3) tr(p)

with the following coefficients:

b = \/Pop1 — /4001 (po + p1 — p2 — p3)
tr = \/Pop2 — /9092 (po — p1 + p2 — p3)
ts = \/Pops — \/9093 (po — p1 — p2 + pa)
ur = \/p2ps — /9293 (po + p1 — p2 — pa)
uz = \/p1ps — /193 (po — p1 + p2 — pa)
uz = \/P1p2 — /f1q2 (po — p1 — p2 + p3)

20



Similar to the case for the depolarizing channel, || 7 (®)||max is the maximum among |p; — g;| for
i=0,1,2,3and t;,u; fori = 1,2,3.

We choose q;(p) = pi(p +a;p?) fori = 1,2,3,and qo = 1 — g1 — g2 — g3. It follows that p; — q; =
O(p?) for i = 0,1,2,3. Similarly, expanding the u; in a Taylor series around p = 0 shows that
u; = O(p?) for any choices of a;. Hence, it remains to check the coefficients t;, which we again
expand in a Taylor series around p = 0:

3

t = \/T_l(al —4(cp + C3))p3/2 + O(pS/z)
C

th = \/T_z(az —4(c1 + C3))p3/2 + O(pS/z)
c

t3 = \/7_3(513 —4(c1 + cz));93/2 + O(pS/z).

We see that if ¢; = 0, then the coefficient of p3/ 2 in t; vanishes for any choice of g;. If on the other
hand ¢; # 0, then the coefficient of p*>/2 in t; vanishes upon choosing a; = 4 Yi4i Cj

In summary, for the above choices of a1, a4, a3, the max norm || 7 (P) | max is the maximum of |p; —
gi| fori =0,1,2,3 and u; fori = 1,2,3. Recall that

pi(p) = cip +dip> + O(p°)
qi(p) = pi(p + aip®) = cip + (aici + d;)p* + O(p°).
Hence, since p ~ 0,
mle|Pz‘ —qil = |po — qo|

=Y (pi—ai)|
= ‘Zaici‘ p2 + O(p3)
= 8]c1cz+c1C3+CZC3]p2+O(p3), (29)

where we substituted a; = 4}, ¢; in the last line. Expanding u; for p ~ 0 gives

Uy = —4C1\/C2C3P2 + O(pS)
Uy = —4co\/crc3p* + O(p?) (30)
uz = —dez/crcap® +O(p?).

From (29) and (30), we infer
|7 (@) llmax = [po — ol = 8lc1¢2 + c1c5 + cac3|p” + O(p),

so that by Lemma 1 we have ||®||, < 256|c1c2 + c1¢3 + cac3|p? + O(p?), which concludes the proof
of Theorem 15.
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