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Abstract

Probabilistic Amplitude Shaping (PAS) is a coded-modulation scheme in which the encoder is a concatenation of a distribution
matcher with a systematic Forward Error Correction (FEC) code. For reduced computational complexity the decoder can be chosen
as a concatenation of a mismatched FEC decoder and dematcher. This work studies the theoretic limits of PAS. The classical
joint source-channel coding (JSCC) setup is modified to include systematic FEC and the mismatched FEC decoder. At each step
error exponents and achievable rates for the corresponding setup are derived.

I. INTRODUCTION

A code can approach rates close to the channel capacity of a noisy Discrete Memoryless Channel (DMC) only if the empirical
distributions of (not too large) subblocks of the code are “close” to the Cartesian products of the capacity achieving distribution
PX∗ [1], e.g., the Additive White Gaussian Noise (AWGN) channel with uniformly distributed equidistant input signal points
has a gap of up to 1.53 dB from the channel capacity. Various methods have been proposed to close this shaping gap, see [2]
for a literature review on this topic. One such method is Probabilistic Amplitude Shaping (PAS) [2]. PAS has been applied in
various communication scenarios including [3] and [4] showing significant rate gains as compared to other coded modulation
techniques. Furthermore, in [2], the authors show that PAS provides a flexible and low complexity mechanism to adapt rates to
changing channel conditions. The method has been implemented in submarine optical fiber with record data transmission rates
[5], [6] and in a German nationwide fiber optic ring [7]. It has been proposed for Digital Subscriber Line (DSL) standards [8].

In this work we study PAS information rates and error exponents. We adapt the classical Joint Source-Channel Coding
(JSCC) setup to include salient features of PAS, i.e., the systematic encoding of a non uniform source and the mismatched
decoding. This approach differs from the one taken in [9] where the focus is solely on mismatched decoding over a codebook
larger than the set of transmitted codewords.

The paper is organized as follows. In Sec. II we review the key aspects of Gallager’s proof of the coding theorem for a
non-uniform source [10], [11]. In Sec. III we introduce PAS and discuss how one can analyze it using the JSCC framework.
In Sec. IV and Sec. V we consider two JSCC scenarios, each having one modification as compared to the setup in Sec. II.
Sec. IV deals with a systematic encoder for transmitting messages from a non uniform Discrete Memoryless Source (DMS)
over a noisy channel. Sec. V deals with a mismatched Maximum Aposteriori Probability (MAP) Forward Error Correction
(FEC) decoder. Unlike the previous works on mismatched decoding (e.g., [12], [13]) where the authors dealt with channel
mismatch and/or complexity constraints on the decoder, we look at the mismatch of source statistics and associated complexity
at the decoder. Sec. VI discusses the final setup corresponding to PAS.

II. PRELIMINARIES

Let PZ be a n-type probability distribution [14] over some finite alphabet Z for some positive integer n. The set of all
sequences zn ∈ Zn having empirical distribution PZ is known as a type set and denoted by Tn(PZ). The cardinality |Tn(PZ)|
of Tn(PZ) is bounded as [15, Th. 11.1.3]

1

(n+ 1)|Z|
2nH(PZ) ≤ |Tn(PZ)| ≤ 2nH(PZ) (1)

where H (·) denotes Shannon entropy. Let PZ̄ denote another probability distribution over Z . Then for any zn ∈ Tn(PZ), we
have [15, Th. 11.1.2]

PnZ̄ (zn) = 2−n(H(PZ)+D(PZ‖PZ̄)) (2)
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fn PY |X gn
Wn Y nXn Ŵn

Fig. 1: Classical JSCC setup

A. Classical Joint-Source Channel Coding Setup

Fig. 1 shows the classic JSCC setup. The DMC is denoted by PY |X , where X and Y are finite sets representing the input
and output alphabet of the DMC respectively. Although we study DMCs in this paper, the results extend to continuous output
alphabets in a straightforward manner. The source message Wn takes values in a finite set Wn according to the probability
distribution Qn. The JSCC encoder is denoted by fn :Wn → Xn and the JSCC decoder is denoted by gn : Yn →Wn, where
n is a positive integer denoting the number of channel uses for transmitting the message Wn. The rate of the code is

Rn =
H (Qn)

n
(3)

We focus on H (Qn) instead of log |Wn| since we allow Wn to be non-uniformly distributed. The average block error probability
Pr
[
Ŵn 6= Wn

]
is denoted by Pe,n. The optimal decoder in the sense of minimizing Pe,n for a given code/encoder is the MAP

decoder [11].

Remark 1. Wn and Qn, and there by their cardinalities, change with blocklength n. This is obvious in Sec. IV and Sec. VI
when the encoders are systematic but implicit in Sec. II-B and Sec. V where the encoders are non-systematic.

B. Channel Capacity and Error Exponent

Definition 1 (Achievable Rate). A rate R is achievable if there exists a sequence of encoders fn and corresponding decoders
gn such that

Pe,n
n→∞−→ 0 (4)

Rn
n→∞−→ R (5)

Gallager discussed achievable rates and error exponents for transmitting a non-uniform source message for the setup in Fig.
1.

Theorem 1 ( [11, Prob. 5.16]). For the setup in Fig. 1, any channel input distribution PX and any n, there exists an encoder
fn and a corresponding MAP decoder gMAP

n s.t.

Pe,n ≤ 2−nEG (6)

where the error exponent EG is

EG = max
0≤ρ≤1

[
E0 −

ρ

n
H 1

1+ρ
(Qn)

]
(7)

where Hα (·) is the Renyi entropy of order α and E0 is the shorthand notation for

E0(ρ, PX) = − log
∑
y

{∑
x

PX(x)PY |X(y|x)
1

1+ρ

}1+ρ

. (8)

In order to determine the achievable rates we calculate the maximum R for which EG is positive. For this purpose the
interesting region to study is around ρ = 0. We compute

ρH 1
1+ρ

(Qn)
∣∣∣
ρ=0

= 0, E0(0, PX) = 0 (9)

d

dρ
ρH 1

1+ρ
(Qn)

∣∣∣∣
ρ=0

= H (Qn) = nRn (10)

dE0

dρ

∣∣∣∣
ρ=0

= I (X;Y ) (11)

where I (·; ·) denotes mutual information. We conclude that, as long as Rn < I (X;Y ), EG is positive and hence Pe,n decays
to 0 exponentially fast in n. Hence I (X;Y ) is an achievable rate for a fixed PX . Optimizing over PX we have

C = max
PX

I (X;Y ) (12)

which is the capacity of a DMC. In the following, we will follow a similar approach to derive error exponents by upper
bounding Pe,n and achievable rates by optimizing error exponents.
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B` An ∼ Qn Y nXn=(A1S1,··· ,AnSn) Ân B̂`
fsysn

Fig. 2: Communication using PAS

III. PAS AS JOINT SOURCE-CHANNEL CODING

A maximizer in (12) is a capacity achieving distribution and is denoted by PX∗ . For unique PX∗ , a sequence of codes
can achieve capacity only if the kth empirical distribution of the codebook (under certain regularity conditions) is “close”
to the product distribution P kX∗ as long as the k is not too large and the blocklength n becomes sufficiently large [1]. For
many channels of practical interest such as the AWGN channel with average input power constraint, PX∗ is non-uniform. To
approach the capacity for such channels, one needs to shape the signal so that the channel input mimics PX∗ . Various methods
have been proposed for signal shaping, including many-to-one mapping [11] and trellis shaping [16].

PAS is a coded modulation scheme which decouples the task of signal shaping from FEC [2]. This decoupling allows for
an efficient implementation of the scheme using off-the-shelf systematic FEC codes. In addition to closing the shaping gap,
PAS provides a flexible rate adaption mechanism to adapt to the changing channel conditions.

Communication using PAS is shown in Fig. 2. The focus in PAS is on channels that can be represented as X = A×S for
some finite sets A and S.

Remark 2. In the context of PAS (and for coded-modulation in general) X = A × S denotes set partitioning, i.e., X is
partitioned into |S| sets, each of size |A|. We define two RVs A and S such that S determines the partition which X belongs
to and A represents the value that X takes inside this partition. This is represented as X = AS. For example if X represents
ASK modulation, then one possible partition is where S determines the sign and A determines the amplitude.

PAS works with channel input distributions of the form PX = PAPS for for any probability distributions PA and PS over
A and S . In practice normally PS is usually considered to be uniform because linear FEC codes generate parity bits by
modulo-2 sum operations of multiple source bits which leads to more uniform marginal distributions of the parity bits but in
our work we do not impose such restrictions. For many practical channels the restriction to product distribution does not incur
any penalty. One such example is an AWGN channel with 2m-ASK input constellation. The capacity achieving distribution
in this case is symmetric around the origin and hence of the form PAPS for a uniform PS over S = {0, 1}. By using a
Boltzmann distribution (which is of the form PAPS) one can effectively close the shaping gap for a wide range of SNR values
[2], [17]. In [2], [3] and [18] the authors discuss the performance gains of using such a shaped distribution to communicate
over different channels with ASK and QAM modulations.

In Fig. 2, γ and γ−1 represent the distribution matcher and dematcher respectively. The aim of γ is to invertibly transform
the source message B` to look as if it was generated by a Discrete Memoryless Source (DMS) PA. The fundamental limits of
distribution matching have been discussed in [19]. In [20] the authors proposed CCDM, a practical distribution matcher that
produces output sequences from a chosen type set. For the purpose of theoretical analysis, we will abstract the concept of a
distribution matcher by assuming that the input An to fsysn is distributed according to Qn and we adapt Qn to fit to what
one expects from the output statistics of a distribution matcher. In subsequent sections we will hence assume that the source
alphabet Wn is An in the context of JSCC. Since distribution matching is invertible, using H (Qn) in the rate expression is
the right metric because this is the entropy of the source message at the input of the distribution matcher.
fsysn transforms An = A1 · · ·An to the channel input Xn = (A1S1, · · · , AnSn) where Sn are the parity symbols generated

by the FEC code hn. For convenience we abuse the notation to define (An, Sn) = (A1S1, · · · , AnSn), hence Xn = (An, Sn).
fsysn can be thought of as a systematic channel code since An is passed from the input to the output unchanged. The focus
on such systematic codes to generate redundancy in PAS is to feed the shaped output An of the distribution matcher to the
channel unaltered in order to close the shaping gap.

Although the statistics of An do not exactly match the statistics of a DMS in general, at the decoder gMMn of a PAS system
it is normally assumed that An is generated by a DMS PA. This leads to a significant reduction in the decoding complexity. To
analyze this we use the framework of mismatched decoding where we restrict ourselves to using a mismatched MAP decoder
gMMAPn instead of the true MAP decoder gMAP

n .
Although the problem of coded modulation has been traditionally dealt in the framework of channel coding, the view of

various aspects of PAS taken in this section, namely the use of systematic FEC codes and the abstraction of the distribution
matching process as a non uniform source over An makes JSCC the suitable framework to analyze PAS. Fig. 3 presents the
JSCC setup that takes into account various aspects of PAS communication that are important for analysis. Our goal in this
work is to analyze this setup to understand the theoretical capabilities of PAS.
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fsysn

Fig. 3: JSCC setup for PAS

IV. SYSTEMATIC ENCODING: CODING THEOREM AND ERROR EXPONENT

Consider the setup in Fig. 4 where Qn = PnA , X = A× S and we will use the MAP decoder for the analysis:

ân = gMAP
n (yn) = argmax

an∈An
PnY |X(yn|fsysn (an))PnA(an) (13)

Theorem 2. For Qn = PnA and any PS , there exists a systematic encoder fsysn which when used with gMAP
n has Pe,n upper

bounded as

Pe,n ≤ 2−nES (14)

where

ES = max
0≤ρ≤1

log

−∑
y

{∑
a,s

PS(s) {PA(a)P (y|(a, s))}
1

1+ρ

}1+ρ
 (15)

Proof.
Code Construction: Denote by Hn the set of all mappings from An to Sn. We will prove the theorem for a random ensemble
of such mappings denoted by Hn such that

Pr [Hn(an) = sn] = PnS (sn) ∀an ∈ An, sn ∈ Sn (16)

i.e., the probability of choosing such a mapping Hn which maps an to sn for any an and sn is PnS (sn). Hence the parity
bits for any input an are generated randomly according to the distribution PnS in the ensemble. Based on Hn we define the
random ensemble of systematic encoders F sysn which outputs Xn = (an, Hn(an)) as the codeword for an.
Encoder: For any an ∈ An, the codeword xn is defined as follows

xi = (ai, si) (17)

where

sn = hn(an) (18)

hn represents a specific instance of the random variable Hn.
Decoder: We will use MAP decoder. For a given fsysn we have

ân = gMAP
n (yn) = argmax

an∈An
PnY |X(yn|fsysn (an))PnA(an) (19)

Analysis: Define

L(ãn, an) =
PY n|Xn(Y n|F sysn (ãn))PnA(ãn)

PY n|Xn(Y n|F sysn (an))PnA(an)
(20)

Given an is the message and Y n is received, the decoder can make an error if, for some ãn 6= an, we have

L(ãn, an) ≥ 1 (21)
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Fig. 4: JSCC using systematic encoder

Pe,n, when averaged over the random ensemble of codes and the input, can be upperbounded as follows

Pe,n =
∑

an∈An
PnA(an) Pr [gMAP

n (Y n) 6= an|An = an] (22)

=
∑
an

PnA(an)
∑

xn∈Xn
Pr [F sysn (an) = xn]

∑
yn

P (yn|xn) Pr [gMAP
n (yn) 6= an|An = an, F sysn (an) = xn] (23)

(a)
=
∑
an

PnA(an)
∑
sn∈Sn

PnS (sn)
∑
yn

P (yn|(an, sn)) Pr [gMAP
n (yn) 6= an|An = an, F sysn (an) = (an, sn)] (24)

(b)

≤
∑
an

PnA(an)
∑
sn

PnS (sn)
∑
yn

P (yn|(an, sn)) Pr

 ∑
ãn 6=an

L(ãn, an)η


ρ

≥ 1

∣∣∣∣∣∣An = an, F sysn (an) = (an, sn)

 (25)

(c)

≤
∑
an

PnA(an)
∑
sn

PnS (sn)
∑
yn

P (yn|xn)E

 ∑
ãn 6=an

L(ãn, an)η


ρ∣∣∣∣∣∣An = an, F sysn (an) = (an, sn)

 (26)

(d)

≤
∑
an

PnA(an)
∑
sn

PnS (sn)
∑
yn

P (yn|(an, sn))

E
 ∑
ãn 6=an

L(ãn, an)η

∣∣∣∣∣∣An = an, F sysn (an) = (an, sn)


ρ (27)

(e)
=
∑
yn

{∑
an,sn

PnS (sn) {PnA(an)P (yn|(an, sn))}
1

1+ρ

}1+ρ

(28)

(f)
=

∑
y

{∑
a,s

PS(s) {PA(a)P (y|(a, s))}
1

1+ρ

}1+ρ
n (29)

= 2
−n
[
− log

∑
y

{∑
a,s

PS(s){PA(a)P (y|(a,s))}
1

1+ρ

}1+ρ]
(30)

where
• (a) follows from the definition of the ensemble Hn.
• (b) is true for any ρ ≥ 0 and η ≥ 0.
• (c) uses Markov inequality
• (d) is a result of using Jensen inequality and restricting 0 ≤ ρ ≤ 1
• (e) uses η = 1

1+ρ , adds ãn = an term in the summation inside expectation and does a rearrangement of the terms inside
the expectation.

• (f) is due to the product distributions and the DMC.
Optimizing (30) over ρ we get the final exponent ES . Using the standard argument that at least one of the codes in the random
ensemble should have Pe,n at least as good as the average Pe,n of the ensemble, we arrive at the conclusion that there exist
at least one systematic encoder which when used with MAP decoder have its Pe,n upperbounded as (30).

Unlike (7), we do not have two separate terms in ES , one related to Rn whereas the other dependent on the channel and
the channel input distribution. To evaluate the achievable rates we have

log

∑
y

{∑
a,s

PS(s) {PA(a)P (y|(a, s))}
1

1+ρ

}1+ρ
∣∣∣∣∣∣
ρ=0

= 0 (31)

d

dρ

− log
∑
y

{∑
a,s

PS(s) {PA(a)P (y|(a, s))}
1

1+ρ

}1+ρ
∣∣∣∣∣∣
ρ=0

= I (AS;Y )−H (A) (32)
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fn PY |X gMMAPn

An ∼ Qn Y nXn Ân

Fig. 5: Joint-Source Channel Coding with Mismatched MAP decoder

Hence as long as H (A) < I (AS;Y ), ES will be positive. We also know that Rn = H (A), hence we conclude that any rate
R < I (X;Y ) is achievable for PX = PAPS .

Note that H (A) < I (AS;Y ) implies H (S) > H (AS|Y ) = H (X|Y ). H (S) corresponds to the redundancy that we
introduce for reliability whereas H (X|Y ) is the uncertainty the channel introduces.

Corollary 1. For uniform PS , we have

∑
yn

{∑
an,sn

PnS (sn) {PnA(an)P (yn|(an, sn))}
1

1+ρ

}1+ρ

(33)

(a)
= 2−nρ log |S|

∑
yn

{∑
an,sn

{PnS (sn)PnA(an)P (yn|(an, sn))}
1

1+ρ

}1+ρ

(34)

(b)
= 2−nρ log |S|2

ρH 1
1+ρ

(Xn|Y n)
(35)

= 2
−nρ

(
log |S|−H 1

1+ρ
(X|Y )

)
(36)

where
• (a) we used the fact that PnS (·) = 2−n log |S|.
• (b) uses the definition of conditional Renyi entropy.

Hence in this case

ES = max
0≤ρ≤1

[
ρ(log |S| −H 1

1+ρ
(X|Y ))

]
. (37)

where the error exponent separates into two terms, one related to the rate whereas the other related to channel and the channel
input distribution.

Corollary 2. For |X | = 2m we can rename X = {0, 1}m and define S = {0, 1}p and A = {0, 1}m−p. We can then restrict
Hn to be the set of all affine mappings from An to Sn and define a uniform random ensemble Hn of such mappings as done
by Gallager [11, Sec 6.2]. This ensemble then can be used to prove Th. 2. Hence for such channels any rate R < I (X;Y ),
where PX = PAPS for uniform PS , is achievable using systematic linear codes.

Remark 3. We have considered the source distribution PA to be given. In practice we can design the distirbution matcher
to (ideally) mimic a DMS our choice, hence PA then becomes a design choice leading to the following maximum achievable
rate expression

R∗ = max
PA,PS

I (X;Y ) (38)

where PX = PAPS

V. SOURCE STATISTICS MISMATCH: CODING THEOREM AND ERROR EXPONENT

The setup for this section is shown in Fig. 5. The only difference to the setup in Fig. 1 is that we now use a mismatched
decoder, specifically the mismatch is between the actual source statistics Qn and PnA assumed at the decoder. In this section
we do not restrict the channel input alphabet to be of the form X = A×S since we are not focusing on systematic encoders.

Theorem 3. Consider the DMC PY |X with any finite input alphabet X and let PX be any distribution over X . Let PĀ be
some k-type distribution and PA be any distribution satisfying PA � PĀ (supp(PĀ) ⊆ supp(PA)), then, for every n = kj
where j is a positive integer and supp(Qn) ⊆ Tn(PĀ), there exists an encoder fn : An → Xn for this setup, such that when
used with the mismatched MAP decoder

ân = argmax
an∈An

PnY |X(yn|fn(an))PnA(an) (39)

has a Pe,n upper bounded by

Pe,n ≤ 2−nEM (40)



7

where

EM = max
0≤ρ≤1

[
E0 −

ρ

1 + ρ
(D (PĀ‖PA) +H (PĀ)) (41)

− ρ2

1 + ρ
H 1

1+ρ
(PA)

]
.

Proof.
Code Construction: Denote by Fn the set of all mappings from An to Xn. We will prove the theorem for a random ensemble
of such mappings denoted by Fn such that

Pr [Fn(an) = xn] = PnX(xn) ∀an, xn (42)

Note that the mappings in Fn are defined for all an ∈ An, i.e., every an is assigned a codeword, although the source message
takes values only in the set Tn(PĀ). This is necessary for the decoding rule in (39) to be well defined which searches over
codewords for all sequences an ∈ An.
Encoder: For any an ∈ Tn(PĀ)

xn = fn(an) (43)

where fn is a specific instance of Fn.
Decoder: As mentioned in the theorem, for a given fn, we will use the following decoding rule.

ân = gMMAP
n (yn) = argmax

an∈An
PnY |X(yn|fn(an))PnA(an) (44)

Analysis: Define

L(ãn, an) =
PY n|Xn(Y n|fn(ãn))PnA(ãn)

PY n|Xn(Y n|fn(an))PnA(an)
(45)

Given an is the message and Y n is received, the decoder can make an error if, for some ãn 6= an, we have

L(ãn, an) ≥ 1 (46)

Pe,n, when averaged over the random ensemble of codes and the input, can be upperbounded as follows

Pe,n =
∑

an∈Tn(PĀ)

Q(an) Pr [gMMAP
n (Y n) 6= an|An = an] (47)

=
∑

an∈Tn(PĀ)

Q(an)
∑

xn∈Xn
Pr [Fn(an) = xn]

∑
yn

P (yn|xn) Pr [gMMAP
n (yn) 6= an|An = an, Fn(an) = xn] (48)

(a)
=

∑
an∈Tn(PĀ)

Q(an)
∑
xn

PnX(xn)
∑
yn

P (yn|xn) Pr [gMMAP
n (yn) 6= an|An = an, Fn(an) = xn] (49)

(b)

≤
∑

an∈Tn(PĀ)

Q(an)
∑
xn

PnX(xn)
∑
yn

P (yn|xn)

E
 ∑
ãn 6=an

L(ãn, an)η

∣∣∣∣∣∣An = an, Fn(an) = xn


ρ (50)

(c)

≤
∑

an∈Tn(PĀ)

Q(an)PnA(an)−
ρ

1+ρ

{ ∑
ãn∈An

PnA(ãn)
1

1+ρ

}ρ∑
yn

{∑
xn

P (xn)P (yn|xn)
1

1+ρ

}1+ρ

(51)

where
• (a) follows from the definition of the ensemble Fn.
• (b) uses Markov inequality followed by Jensen equality and is true for any 0 ≤ ρ ≤ 1 and η ≥ 0.
• (c) includes ãn = an in the summation inside expectation, replaces η = 1

1+ρ and rearranges terms.
A careful look at the three terms in (51) reveal that∑

an∈Tn(PĀ)

Q(an)PnA(an)−
ρ

1+ρ
(a)
= 2

nρ
1+ρ (D(PĀ‖PA)+H(PĀ))

∑
an∈Tn(PĀ)

Q(an) = 2
nρ

1+ρ (D(PĀ‖PA)+H(PĀ)) (52)

{ ∑
ãn∈An

PnA(ãn)
1

1+ρ

}ρ
= 2

nρ2

1+ρH 1
1+ρ

(PA)
(53)

∑
yn

{∑
xn

P (xn)P (yn|xn)
1

1+ρ

}1+ρ

= 2−nE0 (54)
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where (a) follows from (2). Hence

Pe,n ≤ 2
−n
(
E0− ρ

1+ρ (D(PĀ‖PA)+H(PĀ))− ρ2

1+ρH 1
1+ρ

(PA)

)
(55)

Finally we can optimize over ρ to obtain 2−nEM . Using the standard argument that at least one of the codes in the random
ensemble should have Pe,n at least as good as the average Pe,n of the ensemble, we arrive at the conclusion that there exist
at least one such encoder which when used with the mismatched MAP decoder have its Pe,n upperbounded as (55).

A few remarks about the theorem and the setup are in order.
• In the theorem, the support of Qn has been restricted to Tn(PĀ) which can be justified by looking at the operation of

practical matchers such as CCDM [21].
• Looking at (39), the mismatch is because the decoder assumes that the input is generated by a DMS PA instead of the

actual source distribution Qn. Hence not only does the decoder use the wrong statistics, but it also searches over all
sequences in An instead of only Tn(PĀ) to look for the most probable input sequence. Note that this setup is different
from what is studied under the name mismatched decoding in the literature (e.g., [12], [22]), where the mismatch between
the actual channel statistics and the channel statistics assumed at the decoder are discussed. The motivation to analyze a
mismatched decoder (in this section and in Sec. VI) that assumes An (the output of the distribution matcher in a PAS
system) to be generated by a DMS PA instead of the true distribution Qn comes from practical systems to reduce the
decoding complexity. If the decoder would consider the true distribution then it will have to not only deal with the FEC
constraints introduced in Sn but also with the constraints introduced by the matcher on An, hence coupling the FEC
decoding and dematching process which leads to increased computational complexity.

• We need PA � PĀ because of our choice of the decoder ,i.e., the mismatched MAP decoder. PnY |X(yn|fn(an))PnA(an)
will be 0 for all an ∈ Tn(PĀ) if this condition is not satisfied.

To calculate the achievable rates, note that all 3 terms in the R.H.S of (41) are 0 for ρ = 0 and

d
dρ

ρ
1+ρ (D(PĀ‖PA)+H(PĀ))|

ρ=0
= D (PĀ‖PA) +H (PĀ) (56)

d

dρ

ρ2

1 + ρ
H 1

1+ρ
(PA)

∣∣∣∣
ρ=0

= 0 (57)

d

dρ
E0

∣∣∣∣
ρ=0

= I (X;Y ) (58)

Hence as long as

H (PĀ) < I (X;Y )−D (PĀ‖PA) (59)

EM will be positive. Since we have supp(Qn) ⊆ Tn(PĀ) hence Rn ≤ 1
n log |Tn(PĀ)|. Combining this with (1) we get

Rn ≤ H (PĀ) . (60)

By utilizing most of the type set Tn(PĀ), i.e., | supp(Qn)|
|Tn(PĀ)| → 1 and having Qn “close” to uniform, the lower bound in (1) leads

to the result that any rate below I (X;Y ) −D (PĀ‖PA) can be achieved. D (PĀ‖PA) is the penalty one pays for assuming
the wrong input DMS PA at the decoder.

Corollary 3. For PA = PĀ, any R < I (X;Y ) is achievable. Note that even for PA = PĀ, it is still a mismatched setup since
the encoder input has some arbitrary distribution Q focused on Tn(PĀ) while the decoder assumes a DMS PĀ.

Remark 4. For the scenario in Corollary 2 we can restrict Fn to be the set of all affine mappings from An to Xn and define
a uniform random ensemble Fn of such mappings as done by Gallager [11, Sec 6.2]. This ensemble then can be used to prove
Th. 3 for uniform PX . Hence any rate R < I (X;Y )−D (PĀ‖PA) for uniform PX is achievable using linear codes.

VI. PROBABILISTIC AMPLITUDE SHAPING: ACHIEVABLE RATES AND ERROR EXPONENT

Having looked at systematic encoding and mismatched decoding individually in Sec. IV and Sec. V, we now combine the
two.

Definition 2 (Permuter). Let PZ be an m-type distribution. A type-PZ permuter is a function φPZ : Zn → Zn such that

φPZ (zn) = zn ∀zn ∈ Zn \ Tn(PZ) (61)
φPZ (zn) = φ′PZ (zn) ∀zn ∈ Tn(PZ) (62)

where φ′P is a permutation function from Tn(PZ) to Tn(PZ).
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Theorem 4. Let PĀ be some k-type distribution. For every n = kj for positive integers j and supp(Qn) ⊆ Tn(PĀ), there
exists an encoder fsysn (φPĀ(·)), where fsysn is a systematic encoder and φPĀ is a type-PĀ permuter, such that when used with
the following mismatched MAP decoder

ân = gMMAP
n (yn) = argmax

an∈An
PnY |X

(
yn|fsysn (φPĀ(an))

)
PnA(an) (63)

has a Pe,n upper bounded as

Pe,n ≤ 2−nESM (64)

where

ESM = max
0≤ρ≤1

− log
∑
y

{∑
a,s

PS(s) {PA(a)P (y|(a, s))}
1

1+ρ

}1+ρ

− α(n)−D (PĀ‖PA)

 (65)

where PX = PAPS .

α(n) = |A| log(n+ 1)

n

n→∞−→ 0 (66)

Proof.
Code Construction: Define Hn and F sysn as in Sec. IV. Besides denote by γ the set all possible type-PĀ permuters. Let Φ
be a uniform random variable over γ.

Encoder: For any an ∈ Tn(PĀ)

xi = (āi, si) (67)

where

sn = hn(an) ān = φ(an) (68)

hn represents any specific instance of the random variable Hn and φ represents an instance of Φ
Decoder: As mentioned in the theorem, for a given fsysn , we will analyze the following decoding rule.

ân = gMMAP
n (yn) = argmax

an∈An
PnY |X

(
yn|fsysn (φPĀ(an))

)
PnA(an) (69)

The discussion about mismatched decoding in Sec. V is also applicable here.
Analysis: We know that

Pe,n =
∑

an∈Tn(PĀ)

Q(an) Pr [gMMAP
n (Y n) 6= an|An = an] (70)

(71)

Define

L(ãn, an) =
PnY |X

(
yn|fsysn (φPĀ(ãn))

)
PnA(ãn)

PnY |X
(
yn|fsysn (φPĀ(an))

)
PnA(an)

(72)

Given an ∈ Tn(PĀ) is the message and Y n is received, the decoder can make an error if, for some ãn 6= an, we have

L(ãn, an) ≥ 1 (73)
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When averaging over the random ensemble we get,

Pr [gMM
n (Y n) 6= an|An = an]

(a)

≤ E



∑

ãn∈An
ãn 6=an

L(ãn, an)s


ρ∣∣∣∣∣∣∣∣A

n = an

 (74)

=
∑

ān∈Tn(PĀ)

Pr [ān = Φ(an)]
∑

xn∈Xn
Pr [F sysn (ān) = xn]

∑
yn

PnY |X(yn|xn)E



∑

ãn∈An
ãn 6=an

L(ãn, an)η


ρ∣∣∣∣∣∣∣∣

An=an

Φ(an)=ān

F sysn (ān)=xn

 (75)

(b)
=

∑
ān∈Tn(PĀ)

1

|Tn(PĀ)|
∑
sn∈Sn

PnS (sn)
∑
yn

PnY |X(yn|(ān, sn))E



∑

ãn∈An
ãn 6=an

L(ãn, an)η


ρ∣∣∣∣∣∣∣∣

An=an

Φ(an)=ān

F sysn (ān)=(ān,sn)

 (76)

(c)

≤
∑

ān∈Tn(PĀ)

1

|Tn(PĀ)|
∑
sn∈Sn

PnS (sn)
∑
yn

PnY |X(yn|(ān, sn))

E

∑

ãn∈An
ãn 6=an

L(ãn, an)η

∣∣∣∣∣∣∣∣
An=an

Φ(an)=ān

F sysn (ān)=(ān,sn)



ρ

(77)

(d)
=
∑
yn

 ∑
ān∈Tn(PĀ)

1

|Tn(PĀ)|
PnA(an)−

ρ
1+ρ

∑
sn

PnS (sn)P (yn|(ān, sn))
1

1+ρ

× (78)


∑

˜̃an∈An
˜̃an 6=ān

∑
s̄n

PnS (s̃n)
(
P (yn|(˜̃an, s̃n))PnA(˜̃an)

) 1
1+ρ


ρ

(e)
=
∑
yn

2n(D(PĀ‖PA)+H(PĀ))

|Tn(PĀ)|
∑

ān∈Tn(PĀ)

∑
sn

PnS (sn) (PnA(ān)P (yn|(ān, sn)))
1

1+ρ

× (79)


∑

˜̃an∈An
˜̃an 6=ān

∑
s̃n

PnS (s̃n)
(
PnA(˜̃an)P (yn|(˜̃an, s̃n))

) 1
1+ρ


ρ

(f)

≤ 2n(D(PĀ‖PA)+H(PĀ))

|Tn(PĀ)|
∑
yn

{ ∑
ān∈An

∑
sn

PnS (sn) (PnA(ān)P (yn|(ān, sn)))
1

1+ρ

}
× (80) ∑

˜̃an∈An

∑
s̃n

PnS (s̃n)
(
PnA(˜̃an)P (yn|(˜̃an, s̃n))

) 1
1+ρ


ρ

=
2n(D(PĀ‖PA)+H(PĀ))

|Tn(PĀ)|
∑
yn

{ ∑
ān∈An

∑
sn

PnS (sn) (PnA(ān)P (yn|(ān, sn)))
1

1+ρ

}1+ρ

(81)

(g)
=

2n(D(PĀ‖PA)+H(PĀ))

|Tn(PĀ)|

∑
y

{∑
a,s

PS(s) {PA(a)P (y|(a, s))}
1

1+ρ

}1+ρ
n (82)

(h)
= 2

−n
(
− log

∑
y

{∑
a,s

PS(s){PA(a)P (y|(a,s))}
1

1+ρ

}1+ρ

−α(n)−D(PĀ‖PA)

)
(83)

• (a) uses Markov inequality and is true for any ρ > 0 and η > 0.
• (b) follows from the definitions of Φ and F sysn .
• (c) follows from Jensen inequality and is true for 0 ≤ ρ ≤ 1.
• (d) follows from rearrangement of the terms inside the expectation, the replacement η = 1

1+ρ and the fact that PnA(an) =
PnA(φ(an)) for all an ∈ An.

• In (e) use the fact that PnA(an) = PnA(φ(an)) for all an ∈ An and replace various probability values.
• In (f) we extend the summations to An.
• (g) follows from product distributions and DMC.
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• (h) follows by defining α(n) = |A| log(n+1)
n and using (1).

Hence

Pe,n ≤ 2
−n
(
− log

∑
y

{∑
a,s

PS(s){PA(a)P (y|(a,s))}
1

1+ρ

}1+ρ

−α(n)−D(PĀ‖PA)

)
(84)

Optimizing over ρ we get ESM . Unfortunately ESM is not useful in establishing achievable rate bounds in the same way as
we did for the setups in Sec. IV and Sec. V. This is because of the D(PĀ‖PA)

ρ term.
In Th. 4 we introduced a permutation function φPĀ which is not the part of a standard PAS system. This function was

introduced so that the random coding argument leads to meaningful error exponents; we do not claim that using such a
permutation function would bring any gain in a practical system. Furthermore, for a uniform distribution over supp(Qn) (as
is the case usually for PAS since the input to the distribution matcher, i.e., the source message is uniformly distributed and
the distribution matcher is a one-to-one mapping) and for symmetric channels one can show that the φPĀ is not needed.

Corollary 4. In a standard PAS system we have PA = PĀ. In this case D(PĀ‖PA)
ρ = 0, hence we can use ESM to derive the

achievable rates. Using calculations analogous to the ones in Sec. IV we conclude that ESM > 0 as long as I (AS;Y ) >
H (PĀ). Similarly following the same arguments as in Sec. V we have Rn ≤ H (PĀ). For “close” to uniform distribution
over supp(Qn) with | supp(Qn)|

|Tn(PĀ)| → 1, any rate R < I (X;Y ) is achievable, where PX = PĀPS .

Remark 5. Following the same lines as in Remark 3 we argue that PĀ is a design choice. In the case when PA = PĀ this
leads to the following maximum achievable rate expression.

R∗ = max
PA∈P̄A,PS

I (X;Y ) (85)

for PX = PAPS and P̄A being the set of all distributions of finite type over A .

Remark 6. In practice the procedure to choose PĀ is as follows: for a given channel PY |X , calculate the PA∗PS which
maximizes I (X;Y ). Then for the chosen blocklength n for communication, search for the ”closest” approximation (for
example in terms of divergence [14])of PA∗ among the set of all type-n probability distributions. This approximation is then
used as PĀ

Remark 7. For the scenario in Corollary 2 we can restrict Hn to be the set of all affine mappings from An to Sn and define
a uniform random ensemble Hn of such mappings as done by Gallager [11, Sec 6.2]. This ensemble then can be used to prove
Th. 4.

VII. FUTURE WORK

In the future we will analyze PAS for a more general class of distribution matchers. Future work will also focus on improving
proof technique in Sec. VI such that one can also establish error exponent and achievable rates for PA 6= PĀ.
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[3] T. Fehenberger, A. Alvarado, G. Böcherer, and N. Hanik, “On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel,”

J. Lightw. Technol., vol. 34, no. 21, pp. 5063–5073, Nov 2016.
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