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Multiple-Access Channel with Independent

Sources: Error Exponent Analysis
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Abstract

In this paper, an achievable error exponent for the multiple-access channel with two independent

sources is derived. For each user, the source messages are partitioned into two classes and codebooks are

generated by drawing codewords from an input distribution depending on the class index of the source

message. The partitioning thresholds that maximize the achievable exponent are given by the solution

of a system of equations. We also derive both lower and upper bounds for the achievable exponent in

terms of Gallager’s source and channel functions. Finally, a numerical example shows that using the

proposed ensemble gives a noticeable gain in terms of exponent with respect to independent identically

distributed codebooks.
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I. INTRODUCTION

For point-to-point communication, many studies show that joint source-channel coding might

achieve a better error exponent than separate source-channel coding [1]–[4]. One strategy for

joint source-channel coding is to assign source messages to disjoint classes, and to use codewords

generated according to a distribution that depends on the class index. This random-coding

ensemble achieves the sphere-packing exponent in those cases where it is tight [4].

Recent studies [5], [6] extended the same idea to the multiple-access channel (MAC) using a

random-coding ensemble with independent message-dependent distributed codebooks. In [6], the

joint source-channel coding problem over a MAC with correlated sources was considered, where

codewords are generated by a symbol-wise conditional probability distribution that depends both

on the instantaneous source symbol and on the empirical distribution of the source sequence.

The achievable exponent derived in [6] was presented in the primal domain, i.e., as a multi-

dimensional optimization problem over distributions, which is generally difficult to analyze.

This work studies a simplified version of the problem posed in [6] in the dual domain, i.e., as

a lower dimensional problem over parameters in terms of Gallager functions. A two-user MAC

with independent sources is considered. For each user, source messages are assigned to two

classes, and codewords are independently generated according to a distribution that depends on

the class index of the source message. For this random-coding ensemble, we derive an achievable

exponent in the dual domain, and show that this exponent is greater than that achieved using

only one input distribution for each user.

II. SYSTEM MODEL

A. Definitions and Notation

We consider two independent sources characterized by probability distributions PU1 , PU2 on

alphabets U1 and U2, respectively. We use bold font to denote a sequence, such as the source

sequences u1 ∈ Un
1 and u2 ∈ Un

2 , and underlined font to represent a pair of quantities for users

1 and 2, such as
¯
γ = (γ1, γ2),

¯
u = (u1, u2),

¯
u = (u1,u2) or P

¯
U(
¯
u) = PU1,U2(u1, u2).

For user ν = 1, 2, the source message uν is mapped onto codeword xν(uν), which also has

length n and is drawn from the codebook Cν = {xν(uν) ∈ X n
ν : uν ∈ Un

ν }. Both terminals send

the codewords over a discrete memoryless multiple-access channel with transition probability

W (y|x1, x2), input alphabets X1 and X2, and output alphabet Y .
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Given the received sequence y, the decoder estimates the transmitted pair of messages
¯
u

based on the maximum a posteriori criterion, i.e.,

¯
û = argmax

¯
u∈Un

1 ×Un
2

P n

¯
U (¯

u)W n
(

y|x1(u1),x2(u2)
)

. (1)

An error occurs if
¯
û 6=

¯
u. Using the convention that scalar random variables are denoted by

capital letters, e.g., X , and capital bold font letters denote random vectors, the error probability

for a given pair of codebooks (C1, C2) is given by

ǫn(C1, C2) , P

[

(Û1, Û2) 6= (U1,U2)
]

. (2)

The pair of sources (U1, U2) is transmissible over the channel if there exists a sequence of pairs

of codebooks (C1
n, C

2
n) such that limn→∞ ǫn(C1

n, C
2
n) = 0. An exponent E(P

¯
U ,W ) is achievable

if there exists a sequence of codebooks such that

lim inf
n→∞

−
1

n
log ǫn(C1

n, C
2
n) ≥ E(P

¯
U ,W ). (3)

In order to show the existence of such sequences of codebooks, we use random-coding

arguments, i.e., we find a sequence of ensembles whose error probability averaged over the

ensemble, denoted as ǭn, tends to zero.

B. Message-Dependent Random Coding

For user ν = 1, 2, we fix a threshold 0 ≤ γν ≤ 1 to partition the source-message set Un
ν into

two classes A1
ν and A2

ν defined as

A1
ν =

{

uν ∈ Un
ν : P n

Uν
(uν) ≥ γn

ν

}

, (4)

A2
ν =

{

uν ∈ Un
ν : P n

Uν
(uν) < γn

ν

}

. (5)

For every message uν ∈ Ai
ν , we randomly generate a codeword xν(uν) according to the

probability distribution Qν,i(xν) =
∏n

ℓ=1Qν,i(xν,ℓ), where Qν,i, for i = 1, 2, is a probability

distribution that depends on the class of uν .

We use the symbol τ ∈ {{1}, {2}, {1, 2}} to denote the error event type of the error probability

(2), i.e., respectively (û1,u2) 6= (u1,u2), (u1, û2) 6= (u1,u2) and (û1, û2) 6= (u1,u2). We

denote the complement of τ as τ c among the subsets of {1, 2}. For example, τ c = {2} for
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τ = {1} and τ c = ∅ for τ = {1, 2}. In order to simplify some expressions, it will prove

convenient to adopt the following notational convention for an arbitrary variable u

uτ =



























∅ τ = ∅

u1 τ = {1}

u2 τ = {2}

¯
u τ = {1, 2}.

(6)

For types of error τ = {1} and τ = {2}, we denote WQτc,i as a point-to-point channel with

input and output alphabets given by Xτ and Xτc × Y , respectively, and transition probability

W (y|x1, x2)Qτc,i(xτc). For τ = {1, 2}, the input distribution Qτ,iτ = Q1,i1Q2,i2 is the product

distribution Q1,i1(x1)Q2,i2(x2) over the alphabet X1 × X2, and WQτc,i = W ,

C. Single User Communication

For point to point communication, using i.i.d random coding to transmit a discrete memoryless

source PU , u ∈ U over the discrete memoryless channel W with input and output alphabets X

and Y , leads to Gallager’s source and channel functions [1]

Es(ρ, PU) = log

(

∑

u

PU(u)
1

1+ρ

)1+ρ

, (7)

E0(ρ,Q,W ) = − log
∑

y

(

∑

x

Q(x)W (y|x)
1

1+ρ

)1+ρ

, (8)

where Q denotes the input distribution.

In [4], message-dependent random coding was studied for single-user communication using

a threshold γ ∈ [0, 1] to partition the source messages into two classes. The derivation of the

achievable exponent in [4] involves the following source exponent functions [4, Lemma 1]

Es,1(ρ, PU , γ) =







Es(ρ, PU)
1

1+ρ
≥ 1

1+ργ
,

Es(ργ , PU) + E ′
s(ργ)(ρ− ργ)

1
1+ρ

< 1
1+ργ

,
(9)

and

Es,2(ρ, PU , γ) =







Es(ρ, PU)
1

1+ρ
< 1

1+ργ
,

Es(ργ , PU) + E ′
s(ργ)(ρ− ργ)

1
1+ρ

≥ 1
1+ργ

.
(10)

In (9) and (10), the parameter ργ is the solution of the implicit equation

∑

u PU(u)
1

1+ρ logPU(u)
∑

u PU(u)
1

1+ρ

= log(γ), (11)
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when minu PU(u) ≤ γ ≤ maxu PU(u) is satisfied. We observe that Es,1(ρ, ·) follows the Gallager

Es(ρ, ·) function for an interval of ρ, while it is the straight line tangent to Es(ρ, ·) beyond that

interval, and similarly for Es,2(ρ, ·).

When γ ∈ [0,minu PU(u)), we have that ργ = −1− and hence Es,1(ρ, ·) = Es(ρ, ·) and

Es,2(ρ, ·) = −∞. Otherwise, when γ ∈ (maxu PU(u), 1], we have that ργ = −1+ and hence

Es,1(ρ, ·) = −∞ and Es,2(ρ, ·) = Es(ρ, ·). In our analysis, it suffices to consider γ = 0 or γ = 1

to represent the cases where Es,1(ρ, ·) or Es,2(ρ, ·) are infinity. For such cases, we have

Es,1(ρ, PU , 0) = Es(ρ, PU), Es,2(ρ, PU , 0) = −∞, (12)

Es,1(ρ, PU , 1) = −∞, Es,2(ρ, PU , 1) = Es(ρ, PU). (13)

III. MAIN RESULTS

We now derive an achievable exponent for the MAC with independent sources using the

random-coding ensemble introduced in Sec. II-B in terms of the exponent functions defined in

(7)–(10). We also derive simpler lower and upper bounds to the achievable exponent in Sec.

III-A and III-B, respectively.

Proposition 1. For the two-user MAC with transition probability W , source probability distri-

butions P
¯
U and class distributions {Qν,1, Qν,2} with user index ν = 1, 2, an achievable exponent

E(P
¯
U ,W ) is given by

E(P
¯
U ,W ) = max

γ1,γ2∈[0,1]
min

τ∈{{1},{2},{1,2}}
min

iτ ,iτc=1,2
Fτ,iτ ,iτc(γ1, γ2), (14)

where

Fτ,iτ ,iτc(γ1, γ2) = max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )− Es,iτ (ρ, PUτ
, γτ)−Es,iτc (0, PUτc

, γτc). (15)

In (15), the functions E0(·), Es,1(·) and Es,2(·) are respectively given by (8), (9) and (10), and

we define Es,i{1,2}(ρ, P
¯
U ,
¯
γ) = Es,i1(ρ, PU1 , γ1) + Es,i2(ρ, PU2, γ2).

Proof: See Appendix A.

We remark that the optimal assignment of input distributions to source classes is considered

in (14). Since we considered two source-message classes A1
ν , A2

ν and two input distributions

Qν,1, Qν,2 for each user ν = 1, 2, there are four possible assignments.

August 6, 2021 DRAFT
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The derived achievable exponent (14) contains a maximization over γ1 and γ2, the thresholds

that determine how source messages are partitioned into classes. Rearranging the minimizations

over τ , iτ and iτc , defining fi1,i2(γ1, γ2) as

fi1,i2(γ1, γ2) = min
τ∈{{1},{2},{1,2}}

Fτ,iτ ,iτc (γ1, γ2), (16)

where Fτ,iτ ,iτc (γ1, γ2) is given in (15), the achievable exponent (14) can be written as

E(P
¯
U ,W ) = max

γ1,γ2∈[0,1]
min

i1,i2=1,2
fi1,i2(γ1, γ2). (17)

We note that regardless the values of i2, f1,i2(
¯
γ) is non-decreasing with respect to γ1 and

f2,i2(
¯
γ) is non-increasing with respect to γ1. Similarly, regardless the values of i1, fi1,1(

¯
γ) is

non-decreasing with respect to γ2 and fi1,2(
¯
γ) is non-increasing with respect to γ2. As a result,

we derive a system of equations to compute the optimal thresholds γ⋆
1 and γ⋆

2 .

Proposition 2. The optimal γ⋆
1 and γ⋆

2 maximizing (14) satisfy










min
i2=1,2

f1,i2(γ
⋆
1 , γ

⋆
2) = min

i2=1,2
f2,i2(γ

⋆
1 , γ

⋆
2),

min
i1=1,2

fi1,1(γ
⋆
1 , γ

⋆
2) = min

i1=1,2
fi1,2(γ

⋆
1 , γ

⋆
2).

(18)

When (18) has no solutions, then γ⋆
ν ∈ {0, 1}. In particular, if f1,i2(0, γ2) > f2,i2(0, γ2) then

γ⋆
1 = 0, otherwise γ⋆

1 = 1; and if fi1,1(γ1, 0) > fi1,2(γ1, 0), we have γ⋆
2 = 0, otherwise γ⋆

2 = 1.

Proof: See Appendix B.

We note that the optimal γ⋆
1 and γ⋆

2 are the points where the minimum of all non-decreasing

functions with respect to γν are equal with the minimum of all non-increasing functions with

respect to γν, for both ν = 1, 2. Even though γ⋆
1 and γ⋆

2 can be computed through equation

(18), the final expression of the achievable exponent (14) is still coupled with γ⋆
1 and γ⋆

2 . In the

sequel, we alternatively study both lower and an upper bounds that do not depend on γ1 and γ2.

A. A Lower Bound for the Achievable Exponent

In order to find a lower bound for the achievable exponent presented in (14), we use properties

(12) and (13). Firstly, we maximize over γν ∈ {0, 1} rather than γν ∈ [0, 1], for ν = 1, 2, to

lower bound (14). Let d(γ1, γ2) be

d(γ1, γ2) = min
i1,i2

fi1,i2(γ1, γ2). (19)

DRAFT August 6, 2021
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Then,

E(P
¯
U ,W ) = max

γ1,γ2∈[0,1]
d(γ1, γ2) ≥ max

γ1,γ2∈{0,1}
d(γ1, γ2). (20)

On the other hand,

max
γ1,γ2∈{0,1}

d(γ1, γ2) = max{d(0, 0), d(0, 1), d(1, 0), d(1, 1)}. (21)

Taking into account properties (12) and (13), we note that fi1,i2(γ1, γ2), for γ1, γ2 ∈ {0, 1}, is

either infinity, or the Gallager’s source-channel exponent, i.e.,

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc)− Es(ρ, PUτ
). (22)

For example, fi1,i2(0, 1) equals equation (22) for i1 = 1 and i2 = 2, and fi1,i2(0, 1) = ∞ for

the rest of combinations of i1 and i2. Thus, d(0, 1) = minτ maxρ∈[0,1]E0(ρ,Qτ,iτ ,WQτc,iτc ) −

Es(ρ, PUτ
) for i1 = 1 and i2 = 2. Similarly, d(1, 0) = minτ maxρ∈[0,1] E0(ρ,Qτ,iτ ,WQτc,iτc ) −

Es(ρ, PUτ
) for i1 = 2 and i2 = 1, and so on. Hence, we obtain the following lower bound

E(P
¯
U ,W ) ≥ EL(P

¯
U ,W ), (23)

where

EL(P
¯
U ,W ) = max

i1∈{1,2}
max

i2∈{1,2}
min

τ∈{{1},{2},{1,2}}
F L
τ,iτ ,iτc

, (24)

with

F L
τ,iτ ,iτc

= max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )−Es(ρ, PUτ
). (25)

We note that for τ = {1} and τ = {2}, F L
τ,iτ ,iτc

in (25) is the error exponent of the point-

to-point channel WQτc,iτc for an i.i.d. random-coding ensemble with distribution Qτ,i. For τ =

{1, 2}, we have WQτc,iτc = W and Es(ρ, PUτ
) = Es(ρ, PU1)+Es(ρ, PU2), so that (25) is the error

exponent of the point-to-point channel W for an i.i.d. random-coding ensemble with distribution

Q1,i1Q2,i2 . Hence, the lower bound (24) selects the best assignment of input distributions over

all four combinations through i1 and i2.

B. An Upper Bound for the Achievable Exponent

Now, we derive an upper bound for (14) inspired by the tools used in [4] for single user

communication. Let E0(ρ,Q,W ) = maxQ∈QE0(ρ,Q,W ), where Q is a set of distributions. We

August 6, 2021 DRAFT
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denote Ē0(ρ,Q,W ) as the concave hull of E0(ρ,Q,W ), defined as the point-wise supremum

over all convex combinations of any two values of the function E0(ρ,Q,W ), i.e.,

Ē0(ρ,Q,W ) , sup
ρ1,ρ2,θ∈[0,1] :

θρ1+(1−θ)ρ2=ρ

{

θE0(ρ1,Q,W ) + (1− θ)E0(ρ2,Q,W )
}

. (26)

In [4], it is proved that joint source-channel random coding where source messages are assigned

to different classes and codewords are generated according to a distribution that depends on the

class index of source message, achieves the following exponent

max
ρ∈[0,1]

Ē0(ρ,Q,W )− Es(ρ, PU), (27)

which coincides with the sphere-packing exponent [2, Lemma 2] whenever it is tight.

For the MAC with independent sources, we use the max-min inequality [7] to upper-bound

(14) by swapping the maximization over γ1,γ2 with the minimization over τ . Then, for a given

τ , we use Lemma 2 in Appendix C to obtain the following result.

Proposition 3. The achievable exponent (14) is upper bounded as

E(P
¯
U ,W ) ≤ EU(P

¯
U ,W ), (28)

where

EU(P
¯
U ,W ) = min

τ∈{{1},{2},{1,2}}
FU
τ , (29)

where

FU
τ = max

iτc=1,2
max
ρ∈[0,1]

Ē0(ρ, {Qτ,1, Qτ,2},WQτc,iτc )−Es(ρ, PUτ
). (30)

We recall that for τ = {1, 2}, we have {Qτ,1, Qτ,2} = {Q1,1, Q2,1, Q1,2, Q2,2} and Es(ρ, PUτ
) =

Es(ρ, PU1) + Es(ρ, PU2).

Proof: See Appendix C.

From equation (29), we observe that the upper bound is the minimum of three terms depending

on τ ∈ {{1}, {2}, {1, 2}}. For τ ∈ {{1}, {2}}, we know that the message of user τ c is

decoded correctly so that user τ is virtually sent either over channel WQτc,1 or WQτc,2.

Hence, the objective function of (29) is the single-user exponent for source PUτ
and point-

to-point channel WQτc,iτc where codewords are generated according to two assigned input

distributions {Qτ,1, Qτ,2} depending on class index of source messages. As a result, we note

that the maximization over iτc = 1, 2 is equivalent to choose the best channel (either WQτc,1 or

WQτc,2) in terms of error exponent.
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C. Numerical Example

Here we provide a numerical example comparing the achievable exponent, the lower bound

and the upper bound given in (14), (24) and (29), respectively. We consider two independent

discrete memoryless sources with alphabet Uν = {1, 2} for ν = 1, 2 where PU1(1) = 0.028

and PU2(1) = 0.01155. We also consider a discrete memoryless multiple-access channel with

X1 = X2 = {1, 2, . . . , 6} and |Y| = 4. The transition probability of this channel, denoted as W ,

is given by

W =



























W1

W2

W3

W4

W5

W6



























, (31)

where

W1 =



























1− 3k1 k1 k1 k1

k1 1− 3k1 k1 k1

k1 k1 1− 3k1 k1

k1 k1 k1 1− 3k1

0.5− k2 0.5− k2 k2 k2

k2 k2 0.5− k2 0.5− k2



























, (32)

for k1 = 0.056 and k2 = 0.01. W2 and W3 are 6× 4 matrices whose rows are all the copy of 5th

and 6th row of matrix W1, respectively. Let the m-th row of matrix W1 is denoted by W1(m).

W4, W5 and W6 are respectively given by

W4 =



























W1(2)

W1(3)

W1(4)

W1(1)

W1(6)

W1(5)



























W5 =



























W1(3)

W1(4)

W1(1)

W1(2)

W1(5)

W1(6)



























W6 =



























W1(4)

W1(1)

W1(2)

W1(3)

W1(6)

W1(5)



























. (33)

We observe that W is a 36× 4 matrix where the transition probability W (y|x1, x2) is placed

at the row x1 + 6(x2 − 1) of matrix W , for (x1, x2) ∈ {1, 2, ..., 6} × {1, 2, ..., 6}. Recalling
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Table I

VALUES OF Fτ,iτ ,i
τ
c (γ

⋆
1 , γ

⋆
2 ) IN (15) WITH OPTIMAL THRESHOLDS γ⋆

1 = 0.8159 γ⋆
2 = 0.7057, FOR TYPES OF ERROR τ , AND

USER CLASSES iτ AND iτc .

(i1, i2)

(1,1) (2,1) (1,2) (2,2)

τ = {1} 0.2566 0.1721 0.1057 0.1103

τ = {2} 0.2597 0.1057 0.2526 0.2087

τ = {1, 2} 0.1057 0.1073 0.1127 0.1180

Table II

VALUES OF FL
τ,iτ ,i

τ
c

IN (25) FOR TYPES OF ERROR τ , AND INPUT DISTRIBUTION Q1,i1 , Q2,i2 .

Q1,1,Q2,1 Q1,2,Q2,1 Q1,1,Q2,2 Q1,2,Q2,2

τ = {1} 0.1723 0.1721 0.0251 0.0342

τ = {2} 0.2526 0.0989 0.2526 0.2019

τ = {1, 2} 0.0900 0.1073 0.0900 0.0984

that each source has two classes and that four input distributions generate codewords, there are

four possible assignments of input distributions to classes. Among all possible permutations,

we select the one that gives the highest exponent. Here, for user ν = 1, 2, we consider the set

of input distributions
{

[0 0 0 0 0.5 0.5], [0.25 0.25 0.25 0.25 0 0]
}

. For the channel given in

(31), the optimal assignment is

Qν,1 = [0 0 0 0 0.5 0.5], (34)

Qν,2 = [0.25 0.25 0.25 0.25 0 0], (35)

for both ν = 1, 2. Since we consider two input distributions for each user, the function maxρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc ) is not concave in ρ [4]. For this example, from (18), we numerically

compute the optimal γ⋆
1 and γ⋆

2 maximizing (14) leading to γ⋆
1 = 0.8159 and γ⋆

2 = 0.7057.

Tables I, II and III respectively show the objective functions Fτ,iτ ,iτc (γ1, γ2), F
L
τ,iτ ,iτc

, and FU
τ

given in (15), (25) and (30), involved in the derivation of the achievable exponent (14), lower

bound (24) and upper bound (29). The shaded elements in Tables I and III respectively are

the exponent and the upper bound. Additionally, the shaded elements in Table II are the i.i.d.
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Table III

VALUES OF FU
τ IN (30) FOR TYPES OF ERROR τ .

τ = {1} τ = {2} τ = {1, 2}

0.1734 0.2526 0.1073

exponent for different input distributions assignments. Solving equations (14), (24), (29) using

the partial optimizations in Tables I, II and III, we respectively obtain

E(P
¯
U ,W ) = 0.1057, (36)

EL(P
¯
U ,W ) = 0.0989, (37)

EU(P
¯
U ,W ) = 0.1073. (38)

We observe that the percentage difference between the achievable exponent E(P
¯
U ,W ) and the

lower bound EL(P
¯
U ,W ) is 6.875%. For a given set of two distributions for each user, the lower

bound EL(P
¯
U ,W ) corresponds to the i.i.d. random-coding error exponent when each user uses

only one input distribution. In [4], a similar comparison is made for point-to-point communication

where the exponent achieved by an ensemble with two distributions is 0.75% higher than the

one achieved by the i.i.d. ensemble. Hence, our example illustrates that using message-dependent

random coding with two class distributions may lead to higher error exponent gain in the MAC

than in point-to-point communication, compared to i.i.d. random coding.

APPENDIX A

PROOF OF PROPOSITION 1

In order to prove Proposition 1, we follow similar steps than in [4]. Firstly, we start by

bounding ǭn, the average error probability over the ensemble, for a given block length n. Applying

the random-coding union bound [8] for joint source-channel coding, we have

ǭn ≤
∑

¯
u,

¯
x,y

P n

¯
U

¯
XY (

¯
u,

¯
x,y)min

{

1,
∑

¯
û 6=

¯
u

P

[

P n

¯
U(¯

û)W n(y|
¯
X̂)

P n

¯
U (¯

u)W n(y|
¯
x)

≥ 1

]

}

, (39)

where
¯
x̂ has the same distribution as

¯
x but is independent of y. The summation over

¯
û 6=

¯
u can

be grouped into three types of error events, specifically (û1,u2) 6= (u1,u2), (u1, û2) 6= (u1,u2)
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and (û1, û2) 6= (u1,u2). These three types of error events are denoted by τ ∈ {{1}, {2}, {1, 2}},

respectively. Using the fact that min{1, a+ b} ≤ min{1, a}+min{1, b}, we further bound ǭn as

ǭn ≤
∑

τ

ǭnτ , (40)

where

ǭnτ ≤
∑

¯
u

P n

¯
U(¯

u)
∑

¯
x,y

P n

¯
XY (¯

x,y)min















1,
∑

ûτ 6=uτ

∑

x̂τ :
Pn
Uτ

(ûτ )Wn(y|x̂τ ,xτc )

Pn
Uτ

(uτ )Wn(y|x1,x2)
≥1

Qn
τ,ûτ

(x̂τ )















, (41)

and Qn
τ,ûτ

denotes the channel-input distribution corresponding to the source message ûτ .

Next, we break the summation over
¯
u in (41) into the summations over the messages belonging

to the classes A1
ν , A2

ν and then summed over all classes. Moreover, by considering the case where

codewords are generated according to distributions that depend on the class index of the sources,

the outer summation of (41), can be written as

∑

¯
u

P n

¯
U (¯

u)
∑

¯
x,y

P n

¯
XY (¯

x,y) =
∑

i1,i2=1,2

∑

u1∈A
i1
1

P n
U1
(u1)

∑

u2∈A
i2
2

P n
U2
(u2)

×
∑

¯
x,y

Qn
1,i1(x1)Q

n
2,i2(x2)W

n(y|x1,x2). (42)

Similarly, the inner summation of (41) can be grouped based on the classes of ûτ and then

sum over all classes. Applying this fact and in view of Markov’s inequality for siτ jτ
≥ 0, the

inner summation of (41) is bounded as

∑

ûτ 6=uτ

∑

x̂τ :
Pn
Uτ

(ûτ )Wn(y|x̂τ ,xτc )

Pn
Uτ

(uτ )Wn(y|x1,x2)
≥1

Qn
τ,jτ (x̂τ) ≤

∑

jτ=1,2

∑

ûτ∈A
jτ
τ

∑

x̂τ

Qn
τ,jτ (x̂τ)

(

P n
Uτ
(ûτ)W

n(y|x̂τ,xτc)

P n
Uτ
(uτ)W n(y|x1,x2)

)siτ jτ

.

(43)

Inserting (43) into the inner minimization of (41) and using the inequality min{1, A + B} ≤

minρ,ρ′∈[0,1]A
ρ +Bρ′ for A,B ≥ 0, ρ, ρ′ ∈ [0, 1], the inner term of (41) is derived as

min















1,
∑

ûτ 6=uτ

∑

x̂τ :
Pn
Uτ

(ûτ )Wn(y|x̂τ ,xτc )

Pn
Uτ

(uτ )Wn(y|x1,x2)
≥1

Qn
τ,jτ (x̂τ )















≤
∑

jτ=1,2

min
ρiτ jτ ∈[0,1]

Gjτ (siτ jτ
,xτc,y)

ρiτ jτ

(

P n
Uτ
(uτ)W n(y|x1,x2)

)siτ jτ ρiτ jτ
, (44)

DRAFT August 6, 2021



13

where

Giτ (s,xτc,y) =
∑

uτ∈A
iτ
τ

xτ

P n
Uτ
(uτ)

sQn
τ,iτ (xτ )W

n(y|xτ,xτc)s, (45)

and ρiτ jτ
∈ [0, 1] and siτ jτ

≥ 0. By putting back (42) and (44) into the respective outer and inner

terms of (41), the average error probability is bounded as

ǭnτ ≤
∑

jτ=1,2

∑

i1,i2=1,2

min
ρiτ jτ ∈[0,1]

∑

y,xτc

∑

uτc∈A
iτc

τc

P n
Uτc

(uτc)Q
n
τc,iτc

(xτc)

Giτ (1− siτ jτ
ρiτ jτ

,xτc ,y)Gjτ (siτ jτ
,xτc,y)

ρiτ jτ . (46)

Applying Hölder’s inequality in the form of

∑

i

Ciaibi ≤

(

∑

i

Cia
1
p

i

)p(
∑

i

Cia
1

1−p

i

)1−p

(47)

for p ∈ [0, 1], into (46), we obtain

ǭnτ ≤
∑

jτ ,iτ=1,2

min
ρiτ jτ ∈[0,1]

F n
iτ

(

1− siτ jτ
ρiτ jτ

,
1

piτ jτ

)piτ jτ

F n
jτ

(

siτ jτ
,

ρiτ jτ

1− piτ jτ

)1−piτ jτ

, (48)

where

F n
jτ (a, b) =

∑

iτc=1,2

∑

uτc∈A
iτc

τc

∑

xτc ,y

P n
Uτc

(uτc)Q
n
τc,iτc

(xτc)Gjτ (a,xτc,y)
b. (49)

Now, by setting siτ jτ
= 1

1+ρjτ
, ρiτ jτ

=
ρiτ (1+ρjτ )

1+ρiτ
and piτ jτ

= 1
1+ρiτ

, the average error probability

can be written as

ǭnτ ≤
∑

jτ ,iτ=1,2

min
ρiτ ,ρjτ∈[0,1]

F n
iτ

(

1

1 + ρiτ

, 1 + ρiτ

)
1

1+ρiτ

F n
jτ

(

1

1 + ρjτ

, 1 + ρjτ

)

ρiτ
1+ρiτ

. (50)

Since F n
iτ (·), F

n
jτ (·) ≥ 0 and 1

1+ρiτ
+ ρiτ

1+ρiτ
= 1, by using weighted arithmetic-geometric

inequality, (50) is bounded as

ǭnτ ≤
2
∑

jτ ,iτ=1

min
ρiτ ,ρjτ ∈[0,1]

1

1 + ρiτ

F n
iτ

(

1

1 + ρiτ

, 1 + ρiτ

)

+
ρiτ

1 + ρiτ

F n
jτ

(

1

1 + ρjτ

, 1 + ρjτ

)

, (51)

where by rearranging the terms of the sum, we have

ǭnτ ≤
∑

iτ=1,2

min
ρiτ ,ρjτ ∈[0,1]

F n
iτ

(

1

1 + ρiτ

, 1 + ρiτ

)

∑

jτ=1,2

(

1

1 + ρiτ

+
ρjτ

1 + ρjτ

)

. (52)

Next, we may use the following Lemma.

August 6, 2021 DRAFT



14

Lemma 1. For a given ρ ∈ [0, 1], and F n
jτ (a, b) defined in (49), the following inequality holds

−
1

n
log

(

F n
jτ

(

1

1 + ρ
, 1 + ρ

)

)

≥ min
iτc=1,2

E0(ρ,Qτ,jτ ,WQτc,iτc )

−Es,jτ (ρ, PUτ
, γτ)− Es,iτc (0, PUτc

, γτc)−
1

n
log(2), (53)

where E0(·) is given by (8) and Es,i(·) for i = 1, 2 is given by (9) and (10).

Proof: In order to prove Lemma 1, we recall that by inserting Gjτ

(

1
1+ρ

,xτc,y
)

defined in

(45) into (49), F n
jτ

(

1
1+ρ

, 1 + ρ
)

can be written as

F n
jτ

(

1

1 + ρ
, 1 + ρ

)

=
∑

iτc=1,2

∑

xτc ,y

Qn
τc,iτc

(xτc)

(

∑

xτ

Qn
τ,iτ (xτ )W

n(y|xτ,xτc)
1

1+ρ

)1+ρ

×
∑

uτc∈A
iτc

τc

P n
Uτc

(uτc)

(

∑

uτ∈A
iτ
τ

P n
Uτ
(uτ)

1
1+ρ

)1+ρ

.

(54)

Applying the identity
∑

u∈A f(u) =
∑

u f(u)1{u ∈ A} to the summation over uν ∈ Aiν
ν , ν = τ, τ c

of (54), we obtain

F n
jτ

(

1

1 + ρ
, 1 + ρ

)

=
∑

iτc=1,2

e−E0

(

ρ,Qn
τ,jτ

,WnQτ,iτc

)

∑

uτc

P n
Uτc

(uτc)1
{

uτc ∈ Aiτc
τc

}

×

(

∑

uτ

P n
Uτ
(uτ)

1
1+ρ

1

{

uτ ∈ Aiτ
τ

}

)1+ρ

, (55)

where in (55), in view of (8) we applied
∑

b fb ·
(
∑

a ga
)c

=
∑

b

(
∑

a ga · f
1/c
b

)c
into the first

summation of (54) and we expressed it in terms of E0 function.

Next, we focus on the summations over uτ and uτc in (55). Let ν = τ, τ c, in view of (4)

and (5), for a given uν , we have 1

{

uν ∈ A1
ν

}

= 1

{

P n
Uν
(uν) ≥ γn

ν } and 1

{

uν ∈ Ai2
ν

}

=

1

{

P n
Uν
(uν) < γn

ν }. Considering this fact and applying 1

{

a ≤ b
}

≤
(

b
a

)λ
for λ ≥ 0 to all

indicator functions of (55), we find that

F n
jτ

(

1

1 + ρ
, 1 + ρ

)

≤ min
λτ ,λτc≥0

∑

iτc=1,2

e−E0

(

ρ,Qn
τ,jτ

,WnQτ,iτc

)

×
∑

uτc

P n
Uτc

(uτc)

(

γn
τc

P n
Uτc

(uτc)

)(−1)iτc λτc
(

∑

uτ

P n
Uτ
(uτ)

1
1+ρ

(

γn
τ

P n
Uτ
(uτ)

)
(−1)iτ λτ

1+ρ

)1+ρ

, (56)

where in (56) we tightened the bound by minimizing the objective function over λτ , λτc ≥ 0.
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Using Lemma 3 in Appendix D, the second and the third terms of (56) can be expressed in

terms of the Esi(·) function at ρ = 0 and arbitrary ρ, respectively. Doing so, we obtain that

F n
jτ

(

1

1 + ρ
, 1 + ρ

)

≤
∑

iτc=1,2

e−E0

(

ρ,Qn
τ,jτ

,WnQτ,iτc

)

× e
Es,jτ

(

ρ,Pn
Uτ

,γn
τ

)

+Es,iτc

(

0,Pn
Uτc

,γn
τc

)

. (57)

Finally, we bound each term in the summation in (57) by the maximum term, use that the sources

and the channel are memoryless, and taking logarithms, we obtain to (53).

Next, upper bounding (52) by the maximum term over iτ , further upper bounding by the worst

type of error τ , taking logarithms and using (53), after some mathematical manipulations we

find that the exponential decay of ǭn is given by

−
1

n
log(ǭn) ≥ min

τ
min
iτ ,iτc

max
ρ∈[0,1]

E0

(

ρ,Qτ,iτ ,WQτc,iτc

)

−Es,iτ

(

ρ, PUτ
, γτ
)

− Es,iτc

(

0, PUτc
, γτc

)

−
log(o(n))

n
, (58)

where o(n) is a sequence satisfying limn→∞
o(n)
n

= 0. Using the following properties

lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn (59)

lim inf
n→∞

min{an, bn} = min
{

lim inf
n→∞

an, lim inf
n→∞

bn
}

, (60)

lim inf
n→∞

max{an} ≥ max
{

lim inf
n→∞

an
}

, (61)

we further obtain that

lim inf
n→∞

−
1

n
log(ǭn) ≥ min

τ
min
iτ ,iτc

max
ρ∈[0,1]

E0

(

ρ,Qτ,iτ ,WQτc,iτc

)

−Es,iτ

(

ρ, PUτ
, γτ
)

−Es,iτc

(

0, PUτc
, γτc

)

. (62)

Finally, we optimize (62) over γν for ν = 1, 2. This concludes the proof.

APPENDIX B

PROOF OF PROPOSITION 2

Now, we focus on Fτ,iτ ,iτc (
¯
γ) given in (15). Let i1 = 1 for an arbitrary τ . Since γ1 and

γ2 are independent from each other, regardless the value of i2, the function Fτ,iτ ,iτc (
¯
γ) is of

the form maxρE(ρ) − Es,1(ρ, PU1, γ1). Then, using Lemma 4, we have that Fτ,iτ ,iτc(
¯
γ) is non-

decreasing with respect to γ1. Similarly, when i1 = 2, we have that Fτ,iτ ,iτc(
¯
γ) is of the form

maxρE(ρ)−Es,2(ρ, PU1 , γ1) so that it is non-increasing with respect to γ1. The same reasoning
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applies for i2. That is, Fτ,iτ ,iτc(
¯
γ) is non-decreasing with respect to γ2 for i2 = 1, and non-

increasing with respect to γ2 for i2 = 2, always regardless of the value of i1.

Using the fact that the minimum of monotonic functions is monotonic, we conclude that

fi1,i2(
¯
γ) given in (16) is non-decreasing with respect to γ1 when i1 = 1, and non-increasing with

respect to γ1 when i1 = 2. Similarly, fi1,i2(
¯
γ) is non-decreasing (non-increasing) with respect to

γ2 when i2 = 1 (i2 = 2).

Writing equation (17) as

max
γ1

max
γ2

min
i2

min
i1

fi1,i2(γ1, γ2), (63)

we note that, for a fixed γ1, the optimization problem maxγ2 mini2 mini1 fi1,i2(γ1, γ2) satisfies

Lemma 5 with γ = γ2, i = i2, and ki(γ) = mini1 fi1,i(γ1, γ). Therefore, the optimal γ⋆
2 satisfies

min
i1=1,2

fi1,1(γ1, γ
⋆
2) = min

i1=1,2
fi1,2(γ1, γ

⋆
2), (64)

whenever (64) has solution. Otherwise, we have γ⋆
2 = 0 when fi1,1(γ1, 0) > fi1,2(γ1, 0), or γ⋆

2 = 1

when fi1,1(γ1, 0) ≤ fi1,2(γ1, 0).

Setting γ2 = γ⋆
2 , the optimization problem maxγ1 mini1 mini2 fi1,i2(γ1, γ

⋆
2) satisfies Lemma 5

with γ = γ1, i = i1, and ki(γ) = mini2 fi,i2(γ, γ
⋆
2). Hence, γ⋆

1 maximizing (17) satisfies

min
i2=1,2

f1,i2(γ
⋆
1 , γ

⋆
2) = min

i2=1,2
f2,i2(γ

⋆
1 , γ

⋆
2), (65)

and in the case (65) does not have solution, γ⋆
1 = 0 when f1,i2(0, γ2) > f2,i2(0, γ2), or γ⋆

1 = 1

otherwise. Combining (64) and (65) we obtain (18).

APPENDIX C

PROOF OF THE UPPER BOUND FOR THE ACHIEVABLE EXPONENT

In view of the max-min inequality [7], after upper bounding (14) by swapping the maximiza-

tion over γ1,γ2 with the minimization over τ , the upper bound given by (29), follows immediately

from the following Lemma.

Lemma 2. For a given τ = {{1}, {2}, {1, 2}}, we have

max
γ1,γ2∈[0,1]

min
iτ ,iτc=1,2

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc)− Es,iτ (ρ, PUτ
, γτ )−Es,iτc (0, PUτc

, γτc)

≤ max
iτc=1,2

max
ρ∈[0,1]

Ē0(ρ, {Qτ,1, Qτ,2},WQτc,iτc )− Es(ρ, PUτ
),

(66)

where equality holds for τ = {{1}, {2}}.
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Proof: Firstly, we consider τ = {{1}, {2}}. In this case, by focusing on the optimization

problem given on the left hand side of (66), we may note that since Es,iτc(0, PUτc
, γτc) does

not depend on ρ, the maximization over ρ of the left hand side of (66) is done independently

from Es,iτc(0, PUτc
, γτc). Additionally, in view of (12) and (13), we may note that by moving γτc

along the [0, 1] interval, Es,1(0, PUτc
, γτc) decreases from zero to −∞, while Es,2(0, PUτc

, γτc)

increases from −∞ to zero. Hence, the minimum over iτ and iτc of

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )− Es,iτ (ρ, PUτ
, γτ)− Es,iτc (0, PUτc

, γτc), (67)

is attained at γτc = 0 for iτc = 1, or γτc = 1 for iτc = 2, both leading to Es,iτc (0, PUτc
, γτc) = 0.

As a result, it is sufficient to consider maxγτc∈{0,1} instead of maxγτc∈[0,1]. This implies that the

left hand side of (66) can be written as

max

{

max
γτ∈[0,1]

min
iτ

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )− Es,iτ (ρ, PUτ
, γτ)

∣

∣

∣

∣

iτc=1,γτc=0

,

max
γτ∈[0,1]

min
iτ

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc)−Es,iτ (ρ, PUτ
, γτ )

∣

∣

∣

∣

iτc=2,γτc=1

}

, (68)

or equivalently

max
iτc=1,2

max
γτ∈[0,1]

min
iτ=1,2

max
ρ∈[0,1]

E0(ρ,Qτ,iτ ,WQτc,iτc )−Es,iτ (ρ, PUτ
, γτ ). (69)

Equation (69) can be interpreted as an achievable exponent for a point-to-point channel with

transition-probability WQτc,iτc , a pair of distributions {Qτ,1, Qτ,2} and a partition of the source

message set into two classes. This problem is well-studied in [4]. In fact, iτc in (69) is just a

parameter selecting either WQτc,1 or WQτc,2. From [4, Theorem 2], equation (69) is equal to

max
iτc=1,2

max
ρ∈[0,1]

Ē0(ρ, {Qτ,1, Qτ,2},WQτc,iτc )− Es(ρ, PUτ
), (70)

which leads (66) for type τ ∈ {{1}, {2}}.

For τ = {1, 2}, in view of the min-max inequality [7], we upper bound the left hand side of

(66) by swapping the maximization over γ2 with the minimization over i1 as

max
γ1∈[0,1]

min
{

T1(γ1), T2(γ1)
}

, (71)

where

T1(γ1) = max
γ2∈[0,1]

min
i2=1,2

max
ρ∈[0,1]

E0(ρ,Q1,1Q2,i2 ,W )−Es,1(ρ, PU1, γ1)− Es,i2(ρ, PU2, γ2), (72)
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and

T2(γ1) = max
γ2∈[0,1]

min
i2=1,2

max
ρ∈[0,1]

E0(ρ,Q1,2Q2,i2 ,W )−Es,2(ρ, PU1, γ1)− Es,i2(ρ, PU2, γ2). (73)

We note that Es,1(ρ, PU1, γ1) in (72) does not change with i2 and γ2. Thus, the optimization

problem (72) can be seen as a refined achievable exponent for a point-to-point channel with

a new E0 function as E0(ρ,Q1,1Q2,i2 ,W ) − Es,1(ρ, PU1, γ1) having two input distributions

{Q1,1Q2,1, Q1,1Q2,2}, and a partition of a source message into two classes. Equation (72) can be

written in terms of the concave hull of maxi2∈{1,2}E0(ρ,Q1,1Q2,i2 ,W )−Es,1(ρ, PU1, γ1). Since

Es,1(ρ, PU1, γ1) is a convex function with respect to ρ, using Lemma 6 we upper bound the

concave hull of max
i2∈{1,2}

E0(ρ,Q1,1Q2,i2 ,W )−Es,1(ρ, PU1, γ1) by Ē0(ρ, {Q1,1Q2,1, Q1,1Q2,2},W )−

Es,1(ρ, PU1, γ1). Therefore, from applying [4, Theorem 2], T1(γ1) is upper bounded as

T1(γ1) ≤ max
ρ∈[0,1]

Ē0(ρ, {Q1,1Q2,1, Q1,1Q2,2},W )−Es,1(ρ, PU1 , γ1)− Es(ρ, PU2). (74)

Similarly,

T2(γ1) ≤ max
ρ∈[0,1]

Ē0(ρ, {Q1,2Q2,1, Q1,2Q2,2},W )−Es,2(ρ, PU1 , γ1)− Es(ρ, PU2). (75)

Inserting the right hand sides of (74) and (75) into (71), we obtain

max
γ1∈[0,1]

min
{

T1(γ1), T2(γ1)
}

≤ max
γ1

min
i1∈{1,2}

max
ρ∈[0,1]

Ē0(ρ, {Q1,i1Q2,1, Q1,i1Q2,2},W )

−Es,i1(ρ, PU1, γ1)− Es(ρ, PU2). (76)

Again, the right hand side of (76) can be written in terms of the concave hull of the function

Ē0(ρ, {Q1,i1Q2,1, Q1,i1Q2,2},W )−Es(ρ, PU2). Since Es(ρ, PU2) is convex in ρ, we apply Lemma

6 again to upper bound the concave hull of Ē0(ρ, {Q1,i1Q2,1, Q1,i1Q2,2},W ) − Es(ρ, PU2) by

Ē0(ρ, {Q1,1, Q1,2, Q2,1, Q2,2},W ) − Es(ρ, PU2). Finally using [4, Theorem 2], we obtain that

(71) is upper bounded by

max
ρ

Ē0(ρ, {Q1,1, Q1,2, Q2,1, Q2,2},W )−Es(ρ, PU1)−Es(ρ, PU2). (77)

APPENDIX D

In this appendix, we provide a number of general equations and lemmas that will be used

through the paper. Throughout this Appendix, we consider a discrete memoryless source char-

acterized by a probability distribution PU .
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Lemma 3. Let i = 1, 2, for a given source probability distribution PU and some γ ∈ [0, 1].

Then, we have that

min
λ≥0

(

∑

u

P n
U
(u)

1
1+ρ

(

γn

P n
U(u)

)
(−1)iλ
1+ρ

)1+ρ

= eEs,i(ρ,Pn
U ,γn), (78)

where Es,i(ρ, PU , γ) for i = 1, 2 is given by (9) and (10).

Proof: In order to prove (78), we may note that since the objective function in (78) is

convex with respect to λ, the optimal λ⋆ satisfies

∂

∂λ

(

∑

u

P n
U
(u)

1
1+ρ

( γn

P n
U (u)

)
(−1)iλ
1+ρ

)1+ρ
∣

∣

∣

∣

∣

∣

λ⋆≥0

= 0. (79)

This leads to

∑

u P
n
U
(u)

1−(−1)iλ⋆

1+ρ log(P n
U
(u))

∑

u P
n
U
(u)

1−(−1)iλ⋆

1+ρ

= log(γn). (80)

It is convenient to define ργ through the implicit equation

1− (−1)iλ⋆

1 + ρ
=

1

1 + ργ
. (81)

When the solution to (80) is strictly negative, i.e., when

(−1)i
(

1

1 + ρ
−

1

1 + ργ

)

< 0, (82)

we have λ⋆ = 0, and hence (78) simplifies to

(

∑

u

P n
U
(u)

1
1+ρ

(

γn

P n
U (u)

)
(−1)iλ
1+ρ

)1+ρ∣
∣

∣

∣

∣

λ=0

=

(

∑

u

P n
U
(u)

1
1+ρ

)1+ρ

= eEs(ρ,Pn
U (u)). (83)

Otherwise, when the solution to (80) is non-negative, i.e., when

(−1)i
(

1

1 + ρ
−

1

1 + ργ

)

≥ 0 (84)

and using (81), the left hand side of (78) satisfies

min
λ≥0

(

∑

u

P n
U
(u)

1
1+ρ

(

γn

P n
U(u)

)
(−1)iλ
1+ρ

)1+ρ

=

(

∑

u

P n
U
(u)

1
1+ργ

)1+ρ

γ
n

ργ−ρ

1+ρ = e(1+ρ) log
(

Pn
U
(u)

1
1+ργ

)

γ
n

ργ−ρ

1+ργ , (85)
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where we used a(1+ρ) = e(1+ρ) log(a). Using (81) into (80), we may express γn in terms of the

Es(·) function and its derivative E ′
s(·) as

γn = eEs(ργ ,Pn
U (u))−(1+ργ )E′

s(ργ ,P
n
U (u)), (86)

Inserting the right hand side of (86) into (85), we obtain

min
λ≥0

(

∑

u

P n
U
(u)

1
1+ρ

(

γn

P n
U(u)

)
(−1)iλ
1+ρ

)1+ρ

= eEs(ργ ,Pn
U (u))−(ρ−ργ )E′

s(ργ ,P
n
U (u)). (87)

Finally, combining (83) and (87) respectively for (82) and (84), and using the definitions (9)

and (10), we conclude the proof.

Lemma 4. Let E(ρ) be a function of ρ. The function f1(γ) = maxρ∈[0,1]E(ρ)−Es,1(ρ, PU , γ) is

non-decreasing with respect to γ and f2(γ) = maxρ∈[0,1] E(ρ)−Es,2(ρ, PU , γ) is non-increasing

with respect to γ.

Proof: Let γ, γ′ ∈ [0, 1] where γ ≤ γ′, or equivalently 1
1+ργ

≤ 1
1+ργ′

, where ργ is de-

fined in (11). Considering (9) we conclude that for all values of ρ we have Es,1(ρ, PU , γ) ≥

Es,1(ρ, PU , γ
′). Thus, the maximum of E(ρ) − Es,1(ρ, PU , γ) is not greater than the maximum

of E(ρ)− Es,1(ρ, PU , γ
′) meaning that f1(γ) ≤ f1(γ

′) or that f1(γ) is non-decreasing in γ.

Similarly, if γ ≤ γ′, by considering (10) we conclude that for all values of ρ we have

Es,2(ρ, PU , γ) ≤ Es,2(ρ, PU , γ
′). Using the same reasoning, we have f2(γ) ≥ f2(γ

′), or equiva-

lently that f2(γ) is non-increasing in γ.

Lemma 5. Let k1(γ) and k2(γ) be respectively continuous non-decreasing and non-increasing

functions with respect to γ ∈ [0, 1]. The optimal γ⋆ maximizing mini=1,2 ki(γ) satisfies the

following equation

k1(γ
⋆) = k2(γ

⋆). (88)

When (88) does not have any solution, we have γ⋆ = 0 if k1(0) > k2(0), and γ⋆ = 1 otherwise.

Proof: The relative behavior of a non-decreasing function with a non-increasing function

can be categorized in three cases.

1) We focus on the first case where k1(0) < k2(0) and k1(1) > k2(1), i.e., there exists a γ⋆

such that k1(γ
⋆) = k2(γ

⋆). In this case, the function mini ki(γ) is non-decreasing from
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[0, γ⋆), and non-increasing from (γ⋆, 1]. Thus, the maximum over γ of mini ki(γ) occurs

at γ = γ⋆.

2) If k1(0) < k2(0) and k1(1) < k2(1), k1(γ) and k2(γ) do not cross in γ ∈ [0, 1]. Hence, we

have mini ki(γ) = k1(γ) and obviously since it is an non-decreasing function the maximum

over γ occurs at γ = γ⋆ = 1.

3) When k1(0) ≥ k2(0), we have mini ki(γ) = k2(γ) and hence γ⋆ = 0.

Lemma 6. Let L0s(ρ) = L0(ρ) − Ls(ρ) where L0(ρ) is a continuous function and Ls(ρ) is a

convex function of ρ. Then,

L̄0s(ρ) ≤ L̄0(ρ)− Ls(ρ), (89)

where L̄0s and L̄0 denote the concave hull of L0s(ρ) and L0(ρ), respectively.

Proof: From the definition of concave hull in (26), the left hand side of (89) is given by

L̄0s(ρ) = sup
ρ1,ρ2,θ∈[0,1] :

θρ1+(1−θ)ρ2=ρ

{

θL0s(ρ1) + (1− θ)L0s(ρ2)
}

. (90)

Using the definition of L0s(ρ), the right hand side of (90) is simplified as

θL0s(ρ1) + (1− θ)L0s(ρ2) = θL0(ρ1) + (1− θ)L0(ρ2)− θLs(ρ1)− (1− θ)Ls(ρ2). (91)

Since Ls(ρ) is a convex function of ρ, and so θLs(ρ1) + (1− θ)Ls(ρ2) ≥ Ls(θρ1 + (1− θ)ρ2),

we further obtain that

θL0s(ρ1) + (1− θ)L0s(ρ2) ≤ θL0(ρ1) + (1− θ)L0(ρ2)− Ls(ρ), (92)

where we used that θρ1 + (1− θ)ρ2 = ρ. Taking supremum from both sides of (92), in view of

[9, Sec. 2.9], we obtain that

sup
ρ1,ρ2,θ∈[0,1] :

θρ1+(1−θ)ρ2=ρ

{

θL0s(ρ1) + (1− θ)L0s(ρ2)
}

≤ sup
ρ1,ρ2,θ∈[0,1] :

θρ1+(1−θ)ρ2=ρ

{

θL0(ρ1) + (1− θ)L0(ρ2)
}

− Ls(ρ),

(93)

concluding the proof.
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