
On the Capacity Region for Secure Index Coding
Yuxin Liu∗, Badri N. Vellambi†, Young-Han Kim‡, and Parastoo Sadeghi∗

∗Research School of Engineering, Australian National University, {yuxin.liu, parastoo.sadeghi}@anu.edu.au
†Department of Electrical Engineering and Computer Science, University of Cincinnati, badri.vellambi@uc.edu
‡Department of Electrical and Computer Engineering, University of California, San Diego, yhk@ucsd.edu

Abstract—We study the index coding problem in the presence
of an eavesdropper, where the aim is to communicate without
allowing the eavesdropper to learn any single message aside
from the messages it may already know as side information.
We establish an outer bound on the underlying secure capacity
region of the index coding problem, which includes polyma-
troidal and security constraints, as well as the set of additional
decoding constraints for legitimate receivers. We then propose a
secure variant of the composite coding scheme, which yields an
inner bound on the secure capacity region of the index coding
problem. For the achievability of secure composite coding, a
secret key with vanishingly small rate may be needed to ensure
that each legitimate receiver who wants the same message as
the eavesdropper, knows at least two more messages than the
eavesdropper. For all securely feasible index coding problems
with four or fewer messages, our numerical results establish the
secure index coding capacity region.

I. INTRODUCTION

Index coding is a canonical problem in network infor-
mation theory with close connections to many important
problems such as network coding [1] and distributed storage
[2]. Index coding aims to find the optimal broadcast rate and
optimal coding schemes for broadcasting n unique messages
from a server to n receivers with (possibly differing) side
information at each receiver [3]. Characterizing the capacity
region of a general index coding problem remains elusive.
This paper is concerned with a class of index coding problems
where there is, in addition to n legitimate receivers, an
eavesdropper who may have side information about some
messages and wants to obtain the rest. We aim to characterize
inner and outer bounds on the secure index coding capacity
region under the restricted security requirement that there is
no leakage of information about any single message that is
unknown to the eavesdropper.

The secure variant of the index coding problem was first
studied in [4], where the conditions for a linear code to be a
valid secure index code were investigated. Later in [5], non-
linear secure index codes that use side information as secret
keys were proposed. The connection between secure network
coding and secure index coding (analogous to the relationship
between non-secure versions [1]) was developed in [6]. In
[7], the authors studied the minimum key length to achieve
perfect secrecy where the eavesdropper has no additional side
information, but it must not learn any information whatsoever
about the messages (namely, zero mutual information). The
private index coding problem with linear codes was studied in
[8] where the aim is to allow legitimate receivers to only learn
about messages they want, but nothing of other unknown
messages. Finally, [9], [10] considered the case in which the

identity of the demanded message and the side information
of each receiver should be kept private from other receivers.

In this paper, we examine the fundamental limits of using
side information as the main protection mechanism to effect
security in the index coding problem. After introducing the
system model and problem setup in Section II, Section III
presents a newly developed outer bound on the secure index
coding capacity region. Section IV presents an achievable rate
region using a secure random coding scheme for index cod-
ing. The proposed scheme is based on the existing composite
coding scheme [11], [12]. For all securely feasible index cod-
ing problems with n ≤ 4 messages, inner and outer bounds
match, yielding the corresponding secure capacity regions.
However, we note that for the achievability of the secure
composite coding scheme, a secret key with vanishingly small
rate may be needed so that each legitimate receiver who wants
the same message as the eavesdropper, knows at least two
more messages than the eavesdropper.

II. SYSTEM MODEL

Throughout the paper, we let [n] , {1, 2, . . . , n} and use
2[n] to denote the power set of [n]. The aim of the index
coding problem depicted in Figure 1 is to devise a coding
scheme to allow a server to communicate n independent and
uniformly distributed messages, Xi ∈ {0, 1}ti , i ∈ [n], to
their corresponding receivers over a noiseless broadcast link
with unit capacity in the presence of an eavesdropper e. Each
receiver has prior knowledge of the realization xAi of XAi ,
where Ai ⊆ [n]\{i}. The set Bi , [n] \ (Ai ∪ {i}) denotes
the set of interfering messages at receiver i. The eavesdropper
has access to XAe

, Ae ⊂ [n]. The encoder should be designed
to prevent the eavesdropper from learning any single message
Xj , j ∈ Ace = [n]\Ae.

To compactly represent a non-secure index coding problem
we use (i|Ai), i ∈ [n], to indicate that legitimate receiver i has
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Figure 1. Problem setup for secure index coding.
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messages xAi
and wants to decode message xi. With a slight

abuse of notation, (e|Ae) denotes what the eavesdropper has,
but note that it wants to learn all other messages. A (t, r) =
((t1, . . . , tn), r) index code is defined by:
• One encoder at the server φ :

∏n
i=1{0, 1}ti → {0, 1}r

that uses all messages to generate the transmitted code-
word Y , φ(X1, . . . ,Xn) of length r bits.

• For each legitimate receiver i ∈ [n], a decoder function
ψi : {0, 1}r ×∏k∈Ai

{0, 1}tk → {0, 1}ti that takes the
received sequence Y together with the side information
at receiver i and maps them to X̂i , ψi(Y,XAi

).
A rate tuple (R1, . . . , Rn) is said to be securely achievable if
for every δ, ε > 0, there exists a (t, r) index code such that
the following three constraints are met:

Rate: Ri ≤ ti
r , i ∈ [n]; (1)

Decoding: P{(X̂1, . . . , X̂n) 6= (X1, . . . ,Xn)} ≤ ε; (2)
Security: I(Xi;Y|XAe) ≤ δ, i ∈ Ace. (3)

We define the secure capacity region C s as the closure of
the set of all securely achievable rate tuples. Note that for
a sequence of codes operating at a securely achievable rate
tuple, the decoding condition along with Fano’s inequality
ensure that at receiver i, limε→0H(Xi|Y,XAi) = 0.

Note that an index coding problem is not securely feasible
when there is there is no securely achievable rate tuple. This
happens when Ai ⊆ Ae for some i ∈ Ace. That is, when
the side information of the eavesdropper is equally strong
or stronger than that of some receiver. Otherwise, the secure
index coding problem is said to be securely feasible.

III. POLYMATROIDAL OUTER BOUND

We present the following outer bound to the secure index
coding capacity region.

Theorem 1 (Secure Outer Bound): Any securely achievable
rate tuple for the index coding problem (i|Ai), i ∈ [n], and
(e|Ae) must lie in Rs

g that consists of all rate tuples satisfying

Ri = g(Bi ∪ {i})− g(Bi), i ∈ [n], (4)

for some set function g : 2[n] → [0, 1] such that for any
J ⊆ [n] and i, k /∈ J ,

g(∅) = 0, (5)
g([n]) ≤ 1, (6)
g(J) ≤ g(J, {i}), (7)
g(J) + g(J ∪ {i, k}) ≤ g(J ∪ {i}) + g(J ∪ {k}), (8)
g(Bi ∪ {i})− g(Bi) = g({i}), (9)

and additionally for i ∈ Ace,
g(Ace \ {i}) ≥ g(Ace). (10)

�
The proof is given in Appendix A. A few remarks are in order.
First, we note that the rate constraint (4) and polymatroidal
constraints (5)-(8) appeared in [11] to form an outer bound
on the non-secure index coding capacity region1, which

1In [11], inequalities in (4) and equality in (6) were used. This is
immaterial to the non-secure capacity region outer bound. See Remark 4
at the end of this section for its impact on the secure counterpart.

is known to be tight for all index coding problems with
n ≤ 5 messages. Constraint (9) captures additional decoding
conditions for each legitimate receiver i ∈ [n], since

H(Xi|Y,XAi
) = H(Xi|Y,XAi

,XC) = 0, (11)

for any C ⊆ Bi. Due to the submodularity constraint (8), it
suffices to write the additional decoding condition for C = Bi
only. See Appendix A for more details. We note that the same
constraint appeared in a similar outer bound to the non-secure
index coding capacity region in [13]. Finally, (10) captures
the security constraint (3) with δ = 0.

An explicit outer bound to the index coding capacity region
is derived from Theorem 1 by the means of Fourier-Motzkin
elimination (FME) [14] through eliminating g(J), J ⊆ [n]
that are viewed purely as intermediate variables. Let us
consider a non-secure and a secure example.

Example 1: Consider the non-secure index coding prob-
lem (1|−), (2|3), (3|2) in the absence of the eavesdropper.
Invoking Theorem 1 without (10) and eliminating variables
g(J), J ⊆ [n], via FME yields

R1 +R2 ≤ 1, R1 +R3 ≤ 1, (12)

which is the explicit outer bound on the non-secure index
coding capacity region. �

Example 2: Consider the index coding problem
(1|−), (2|3), (3|2), with the eavesdropper (e|1). The
explicit outer bound on the secure capacity region derived
from Theorem 1 is

R2 = R3, R1 +R3 ≤ 1. �

In Example 2, the security requirement imposes the equal-
ity R2 = R3. Since the eavesdropper already has x1 as side
information, it is not possible to protect x2 or x3 using x1.
Therefore, the only solution to guarantee secrecy is to protect
x2 with x3 and vice versa at the same rate. This can be
achieved using a simple linear code, x1 (of length t1), x2⊕x3

(of length t2), illustrated below.
We summarize a few important observations.
1) The outer bound on the non-secure capacity region of

the index coding problem is at least as large as that on
the secure capacity region.

2) In some secure index coding problems, it is possible
for a stronger receiver (with more side information) to
have its rate bounded by that of a weaker receiver (with
less side information). Equivalently, it is possible that

∃i, j ∈ [n] such that Ai ⊂ Aj , Ri ≥ Rj .
For the problem (1|3), (2|1, 3), (3|1), (e|−), the outer
bound on the secure capacity region stipulates R2 ≤
R3, while A3 = {3} ⊂ {1, 3} = A2.

1st transmission:

2nd transmission:

x1 x2 x3

t1

t2 t2

Figure 2. A linear code achieves the capacity region for Example 2.



3) The additional decoding constraint (9) in Theorem 1 is
essential for deriving a tighter secure capacity region
outer bound for some index coding problems. For
example, if we exclude (9), the outer bound for the
index coding problem (1|3), (2|3), (3|2), (e|−) is

R1 +R2 ≤ 1, R2 = R3.

However, with (9) included, the outer bound is

R1 +R2 ≤ 1, R2 = R3, R1 ≤ R3.

4) To obtain equality relationships between the message
rates, Ri = g(Bi ∪ {i}) − g(Bi) should be used in
Theorem 1, instead of Ri ≤ g(Bi ∪ {i})− g(Bi). For
example, if the latter is used, then R2 = R3 will not be
captured in Example 2. To ensure the convex envelope
of the capacity outer bound is obtained, we then use
g([n]) ≤ 1 in Theorem 1, instead of g([n]) = 1.

IV. SECURE COMPOSITE CODING INNER BOUND

Before proposing the secure composite coding scheme, we
first recap the original composite coding scheme established
in [11]. For ease of exposition, the scheme is described for
a fixed decoding configuration, which is a tuple of subsets
of messages D = (Di, i ∈ [n]) such that for each i ∈ [n],
Di ⊆ [n]\Ai and i ∈ Di. Let r ∈ N. Let for each i ∈ [n],
ti = drRie. Denote sK = drSKe, where SK ∈ [0, 1] is the
rate of composite index for subset K. By convention, S∅ = 0.

Codebook generation: (1) For each K ⊆ [n] and xK , a
corresponding composite index WK(xK) is drawn uniformly
at random from [2sK ]. (2) For every tuple (wK ,K ∈ 2[n]),
the codeword to be transmitted, Y((wK ,K ∈ 2[n])), is
drawn uniformly at random from [2r]. The random code-
books (message-to-composite indices and composite indices-
to-codeword maps) are revealed to all parties.

Encoding: To communicate a realization x[n], the trans-
mitter sends Y((WK(xK),K ∈ 2[n])).

Decoding: Upon receiving the codeword realization y: (1)
Each legitimate receiver i finds the unique tuple of composite
indices (ŵK ,K ∈ 2[n]) such that y = Y((ŵK ,K ∈ 2[n])),
and declares an error if a unique tuple is not found. (2) As-
suming composite index tuple decoding is successful, receiver
i finds the unique message tuple x̂ such that wK = WK(x̂K),
for all K ⊆ Di ∪ Ai. An error is declared if a unique tuple
is not found.

The following result from [11] quantifies the constraints on
the message rates and composite index rates for successful
decoding (in the non-secure setting).

Proposition 1: A rate tuple (Ri, i ∈ [n]) is achievable for
the index coding problem (i|Ai), i ∈ [n], if for each i ∈ [n]:∑

J 6⊆Ai

SJ < 1, (13)∑
i∈K

Ri <
∑

J⊆Di∪Ai:J∩K 6=∅

SJ , K ⊆ Di. (14)

Now we move on to develop the secure composite coding
scheme. Recall the security condition

I(Xi;Y|XAe
) < δ, i ∈ Ace. (15)

Using the chain rule for mutual information and the indepen-
dence between different messages we have

I(Xi;Y,XAe
) < δ, i ∈ Ace. (16)

Since the eavesdropper can generate all composite indices
{wJ : J ⊆ Ae} from XAe

, it will be useful to define T =
{K : K ⊆ [n],K 6⊆ Ae}. Then for any Q ⊆ T , PQ =⋃
J∈Q J\Ae is the set of messages from Q that are unknown

to the eavesdropper. We assume that the eavesdropper learns
the codebook and is also able to decode all the composite
indices in the first step of decoding. Condition (16) becomes:

I(Xi; {WK : K ∈ T},XAe
) < δ, i ∈ Ace. (17)

Applying Theorem 1 from [15] and Lemma 2.7 from [16],
we obtain the following random-coding based achievable
rate region. The proof will be provided in Appendix C for
the more general secure enhanced composite coding scheme
described in Proposition 2.

Theorem 2: A rate tuple (Ri, i ∈ [n]) is securely achievable
for the index coding problem (i|Ai), i ∈ [n], (e|Ae) if∑

J 6⊆Ai

SJ < 1, i ∈ [n], (18)∑
i∈K

Ri <
∑

J⊆Di∪Ai

J∩K 6=∅

SJ , K ⊆ Di, i ∈ [n], (19)

∑
K⊆PQ∪Ae

K 6⊆Ae

SK <
∑

j∈(PQ\{i})

Rj , Q ⊆ T, i ∈ Ace. (20)

Note, when Theorem 2 gives an inequality of the form
SJ < 0, we set SJ = 0. For each index coding problem
with n ≤ 5 messages, a single natural decoding configuration
D [17] was shown to be sufficient to achieve the non-
secure capacity region. We will also use the natural decoding
configuration in this paper, which will be sufficient to achieve
the secure capacity region for all index coding problems
with n ≤ 4 messages. However, more than one decoding
configuration might be necessary for larger problems. Secure
composite coding with multiple decoding configurations is
detailed below.

1) Secure Enhanced Composite Coding Scheme: Follow-
ing similar lines as [12], let ∆ be the set of all decoding
configurations, i.e, ∆ = {D : Di ⊆ [n]\Ai, i ∈ Di}.

Let r ∈ N. Let for each D ∈ ∆ and i ∈ [n], ti(D) =
drRi(D)e, where Ri(D) is the rate of message i communi-
cated via decoding configuration D. Let Xi(D) ∈ [2ti(D)] be
the part of message i communicated via decoding configura-
tion D. For each K ⊆ [n] and D ∈ ∆, let SK(D) ∈ [0, 1].
Denote sK(D) = drSK(D)e, K ⊆ [n], where SK(D) is the
rate of composite index for subset K and configuration D.
By convention, S∅(D) = 0 for each D ∈ ∆.

Codebook generation: (1) For each K ⊆ [n], D ∈ ∆, and
xK(D), a corresponding composite index WK,D(xK(D)) is
drawn uniformly at random from [2sK(D)]. (2) For every tuple
(wK,D, (K,D) ∈ 2[n] × ∆), the codeword to be transmit-
ted, Y((wK,D, (K,D) ∈ 2[n] × ∆)), is drawn uniformly



at random from [2r]. The random codebooks (message-to-
composite indices and composite indices-to-codeword maps)
are revealed to all parties.

Encoding: To communicate a realization x[n], the trans-
mitter sends Y((WK,D(xK(D)), (K,D) ∈ 2[n] ×∆)).

Decoding: Upon receiving the codeword realization y:
(1) Each legitimate receiver i finds the unique tuple of
composite indices (ŵK,D, (K,D) ∈ 2[n] × ∆) such that
y = Y((ŵK,D, (K,D) ∈ 2[n]×∆)), and declares an error if
a unique tuple is not found. (2) Assuming composite index
tuple decoding is successful, for each D ∈ ∆, receiver i
finds the unique message tuple x̂Di

(D) such that wK,D =
WK,D(x̂K), for all K ⊆ Di ∪ Ai. An error is declared if a
unique tuple is not found.

Proposition 2: A rate tuple (Ri, i ∈ [n]) is securely achiev-
able for the index coding problem (i|Ai), i ∈ [n], (e|Ae) if

Ri =
∑
D∈∆

Ri(D), i ∈ [n], (21)∑
D∈∆

∑
J 6⊆Ai

SJ(D) < 1, i ∈ [n], (22)∑
i∈K

Ri(D) <
∑

J⊆Di∪Ai

J∩K 6=∅

SJ(D), K ⊆ Di, i ∈ [n], (23)

∑
K⊆PQ∪Ae

K 6⊆Ae

SK(D) <
∑

j∈(PQ\{i})

Rj(D), Q ⊆ T, i ∈ Ace.

(24)

Note that in Proposition 2, if we set SK(D), K ∈ 2[n] and
Rj(D), j ∈ [n] to zero for all, but one particular D, we will
recover Theorem 2.

A. Secure Composite Coding with a Secret Key

Theorem 2 and Proposition 2 may generate conflicting
constraints for some index coding problems as shown below.

Example 3: Consider the same setting as in Example 1. Set
D1 = {1}, D2 = {1, 2}, and D3 = {1, 3}. The set of active
inequalities generated by Theorem 2 is

S1 + S2 + S12 + S3 + S13 + S23 + S123 < 1,

R1 < S1,

R2 < S2 + S12 + S23 + S123,

R3 < S3 + S13 + S23 + S123,

R1 +R2 < S1 + S2 + S12 + S13 + S23 + S123,

R1 +R3 < S1 + S12 + S3 + S13 + S23 + S123,

S2 + S12 + S13 + S23 + S123 < R2,

S12 + S3 + S13 + S23 + S123 < R3,

S2 = 0, S3 = 0, S12 = 0, S13 = 0.

Clearly, there are conflicting constraints for R2 and R3. �
For n = 3 messages, there are the total of 20 securely

feasible index coding problems. Of these, only the prob-
lem (1|2, 3), (2|1, 3), (3|1, 2), (e|−) does not have conflicting
inequalities. For n = 4 messages, 43 out of 833 securely
feasible index coding problems have no conflicting inequali-
ties. For all such non-conflicting cases, the secure composite

coding inner bound matches the secure polymatroidal outer
bound, thereby establishing the corresponding secure capacity
region. In each of these problems, each receiver who wants
the same message as the eavesdropper, knows at least two
more messages as side information than the eavesdropper.
I.e., ∀ i ∈ Ace, |Ai\Ae| ≥ 2.

We now show a resolution can be obtained for the con-
flicting cases by using a secret key of arbitrarily small rate
shared between the server and legitimate receivers.

Assume there is an independent secret key M at rate ζM ,
shared between the transmitter and all the legitimate receivers.
For each K ⊆ [n], xK(D) ∪M is mapped into a composite
index WK,M,D,(xK(D) ∪M) drawn uniformly at random
from [2sK,M (D)]. The second step of codebook generation,
encoding and decoding are the same as before.

Theorem 3: A rate tuple (Ri, i ∈ [n]) is securely achievable
for the index coding problem (i|Ai), i ∈ [n], (e|Ae) if

Ri =
∑
D∈∆

Ri(D), i ∈ [n], (25)∑
D∈∆

∑
J 6⊆Ai

SJ,M (D) < 1, i ∈ [n], (26)∑
i∈K

Ri(D) <
∑

J⊆Di∪Ai

J∩K 6=∅

SJ,M (D),K ⊆ Di, i ∈ [n], (27)

∑
K⊆PQ∪Ae

K 6⊆Ae

SK,M (D) <
∑

j∈(PQ\{i})

Rj(D) + ζM , (28)

Q ⊆ T, i ∈ Ace.
For the secure index coding problem described in Example

3, the secure achievable rate region with a secret key becomes

R3 − ζM < R2 < R3 + ζM ,

R1 +R2 < 1, R1 +R3 < 1.

which matches the polymatroidal outer bound as ζM → 0.
We now summarize our key observations.
1) For cases where there are at least two more messages

at each receiver i, i ∈ Ace to protect their desired
message (i.e., ∀ i ∈ Ace, |Ai\Ae| ≥ 2), the proposed
secure composite coding achieves capacity without the
need for a shared secret key. For n = 3, there is 1
such problem out of 20 securely feasible problems. For
n = 4, there are 43 such problems out of 833 securely
feasible problems.

2) For remaining cases, conflicting inequalities can be
resolved by means of a secret key of vanishingly
small rate. The secret key acts as the second mes-
sage unknown to the eavesdropper to ensure ∀ i ∈
Ace, |Ai\Ae| ≥ 2.

3) Appendix B lists the secure capacity region for all 20
securely feasible index coding problems with n = 3
messages.

V. EQUIVALENCE BETWEEN TWO CAPACITY REGION
OUTER BOUNDS

First, let us specialize Theorem 1 to the non-secure index
coding.



Corollary 4 (Non-secure Outer Bound): Any achievable
rate tuple for the index coding problem (i|Ai), i ∈ [n] must
lie in Rg that consists of all rate tuples satisfying

Ri ≤ g(Bi ∪ {i})− g(Bi), i ∈ [n], (29)

for some set function g : 2[n] → [0, 1] such that for any
J ⊆ [n] and i, k /∈ J ,

g(∅) = 0, (30)
g([n]) = 1, (31)
g(J) ≤ g(J, {i}), (32)
g(J) + g(J ∪ {i, k}) ≤ g(J ∪ {i}) + g(J ∪ {k}), (33)
g(Bi ∪ {i})− g(Bi) = g({i}). (34)

�
We have used inequalities in (29) and equality in (31).2

Let X0 = Y denote a random variable over {0, 1}r repre-
senting the output of the index code. Denote N = {0} ∪ [n]
and define the entropic set function h : 2{0}∪[n] → R≥0 as

h(J) = H(XJ). (35)

The following is the outer bound on the non-secure capacity
region of the index coding that captures all Shannon-type
inequalities of the entropy function.

Theorem 5: Any achievable rate tuple for the index coding
problem (i|Ai), i ∈ [n] must lie in Rh consisting of all rate
tuples (Ri, i ∈ [n]) that satisfy

Ri ≤
h({i})
h({0}) , i ∈ [n], (36)

for some set function h : 2{0}∪[n] → R≥0 such that

h(∅) = 0, (37)

h([n]) =
∑
i∈[n]

h({i}), (38)

h(N \ {i}) = h(N) = 1, i ∈ [n], (39)
h({i} ∪Ai ∪ {0}) = h(Ai ∪ {0}), i ∈ [n], (40)
h(J) ≤ h(J ∪ {i}), J ⊆ N, i ∈ N\J, (41)
h(J) + h(J ∪ {i, k}) ≤ h(J ∪ {i}) + h(J ∪ {k}), (42)

J ⊆ N, i, k 6∈ J, i 6= k.

We now state the main result of this section.
Theorem 6: Rh = Rg.
The proof of Theorem 6 is shown in detail in Appendix D,

and the outline is presented here.
• To prove Rg ⊆ Rh, we first take a set function g which

satisfies (29) to (34). We then define h : 2{0}∪[n] → R≥0

as follows. For J ⊆ [n], i ∈ [n],

h(∅) = 0, (43)

h({i}) =
g({i})∑n
i=1 g({i}) , (44)

h(J) =
∑
i∈J

h({i}), (45)

2This is technically needed in the proof of Theorem 6, but it is immaterial
to the outer bound itself.

h(J ∪ {0}) = h(J) +
g(J)∑n

i=1 g({i}) , (46)

where for notational convenience, we use J to denote
Jc = [n] \ J . We then prove (36)-(42) using the
constraints of Corollary 4.

• To prove Rh ⊆ Rg, we take a set function h that satisfies
(36) to (42) and define

g(J) =
h(J ∪ {0})− h(J)

h({0}) , J ⊆ [n]. (47)

We then prove (29) to (34) using the constraints of
Theorem 5.
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APPENDIX A
PROOF OF THEOREM 1

For the sake of simplicity, we assume perfect decoding, i.e.,
H(Xi|Y,XAi

) = 0. This allows us to ignore infinitesimal



terms that will appear if we use the actual decoding constraint
in conjunction with Fano’s inequality. We also assume δ = 0.

We start with (1) and use message independence and the
decoding constraint as follows.

Ri ≤
ti
r

=
1

r
H(Xi) (48)

=
1

r

(
H(Xi|XAi

)−H(Xi|Y,XAi
)
)

(49)

=
1

r
I(Xi;Y|XAi

) (50)

=
1

r
H(Y|XAi

)− 1

r
H(Y|Xi,XAi

) (51)

= g(Bi ∪ {i})− g(Bi), (52)

where the set function g is defined as

g(J) =
1

r
H(Y|XJc), J ⊆ [n]. (53)

The first four constraints follow from the definition of the set
function g and basic properties of the entropy function.

• To prove (9), recall that

H(Xi|Y,XAi) = H(Xi|Y,XAi ,XCi) = 0, (54)

for all Ci ⊆ Bi, as conditioning cannot increase entropy.
Now let Ci = Bi, i ∈ [n] and write

H(Xi) = H(Xi|XAi ,XBi)−H(Xi|Y,XAi ,XBi)

= I(Xi;Y|XAi ,XBi)

= H(Y|XAi ,XBi)−H(Y|Xi,XAi ,XBi)

= H(Y|XAi ,XBi) = rg({i}), (55)

where the last equality follows from H(Y|X[n]) = 0
and the definition of g. Comparing (52) and (55) proves

g({i}) = g(Bi ∪ {i})− g(Bi).

Due to the submodularity of g

g({i}) ≥ g(Ci ∪ {i})− g(Ci) ≥ g(Bi ∪ {i})− g(Bi),

for all Ci ⊂ Bi. Hence, adding g({i}) = g(Bi ∪ {i})−
g(Bi) to the constraints will suffice.

• To prove (10), rewrite (3) as

I(Xi;Y|XAe
) = 0 (56)

⇒ H(Y|XAe
) = H(Y|Xi,XAe

) (57)
⇒ g(Ace) = g([n]\({i} ∪Ae)). (58)

Hence, noting the monotonicity condition (7), when J =
[n]\({i} ∪Ae), (10) holds.

APPENDIX B
SECURE CAPACITY REGION OF THE INDEX CODING

PROBLEMS WITH n = 3 MESSAGES

Table I summarizes the results. Aside from the problems
shown in Table I, all other problems are securely infeasible.

Table I
SECURE CAPACITY REGION OUTER BOUNDS FOR ALL SECURELY

FEASIBLE INDEX CODING PROBLEMS WITH n = 3 MESSAGES

Receiver and
Eavesdropper
Information

Outer
Bounds

Receiver and
Eavesdropper
Information

Outer
Bounds

(1|−)
(2|3)
(3|2)
(e|1)

R2 = R3

R1 +R3 ≤ 1

(1|2, 3)
(2|1)
(3|−)
(e|3)

R2 +R3 ≤ 1
R1 = R2

(1|3)
(2|3)
(3|2)
(e|−)

R1 +R2 ≤ 1
R2 = R3

R1 ≤ R3

(1|3)
(2|3)
(3|2)
(e|1)

R1 +R2 ≤ 1
R2 = R3

(1|3)
(2|1)
(3|2)
(e|−)

R1 +R2 ≤ 1
R1 = R2 = R3

(1|2, 3)
(2|1, 3)
(3|−)
(e|3)

R1 = R2

R2 +R3 ≤ 1

(1|3)
(2|3)

(3|1, 2)
(e|−)

R1 +R2 ≤ 1
R1 ≤ R3

R2 ≤ R3

R3 ≤ R1 +R2

(1|3)
(2|3)

(3|1, 2)
(e|1)

R2 = R3

R1 +R3 ≤ 1

(1|3)
(2|3)

(3|1, 2)
(e|2)

R1 = R3

R2 +R3 ≤ 1

(1|3)
(2|1)

(3|1, 2)
(e|−)

R1 = R3

R2 +R3 ≤ 1
R2 ≤ R1

(1|3)
(2|1)

(3|1, 2)
(e|2)

R1 = R3

R2 +R3 ≤ 1

(1|3)
(2|1, 3)
(3|1)
(e|−)

R1 +R2 ≤ 1
R1 = R3

R2 ≤ R3

(1|3)
(2|1, 3)
(3|1)
(e|2)

R1 +R2 ≤ 1
R1 = R3

(1|2, 3)
(2|1, 3)
(3|1)
(e|−)

R3 ≤ R1

R2 ≤ R1

R2 +R3 ≤ 1
R1 ≤ R2 +R3

(1|2, 3)
(2|1, 3)
(3|1)
(e|2)

R1 = R3

R2 +R3 ≤ 1

(1|2, 3)
(2|1, 3)
(3|1)
(e|3)

R1 = R2

R2 +R3 ≤ 1

(1|2, 3)
(2|1, 3)
(3|1, 2)
(e|−)

R1 ≤ 1
R2 ≤ 1
R3 ≤ 1

R1 ≤ R2 +R3

R2 ≤ R1 +R3

R3 ≤ R1 +R2

(1|2, 3)
(2|1, 3)
(3|1, 2)
(e|1)

R1 ≤ 1
R2 ≤ 1
R2 = R3

(1|2, 3)
(2|1, 3)
(3|1, 2)
(e|2)

R2 ≤ 1
R3 ≤ 1
R1 = R3

(1|2, 3)
(2|1, 3)
(3|1, 2)
(e|3)

R1 ≤ 1
R3 ≤ 1
R1 = R2

APPENDIX C
PROOF OF PROPOSITION 2

Observe that the first three rate constraints of Proposition
2 follow from the achievability proof of [12]. We are done if
we show that (24) implies for each D ∈ ∆,

I(Xi(D); (WK,D : K ∈ T )|XAe
(D)) = o(1) (59)

as r → ∞. Since different parts of messages are indepen-
dently encoded, the above would also ensure that

I(Xi; (WK,D : K ∈ T,D ∈ ∆)|XAe
) = o(1) as r →∞.

To show that (59) holds under (24), we pick D ∈ ∆ and
focus on only the part of message conveyed via this choice
of decoding configuration. For the remainder of proof, we
drop the reference to D remembering that Xj , Rj , SK stand
for Xj(D), Rj(D), SK(D), respectively.

Recall that Xj ∈ [2rRj ], j ∈ [n], are independent and
uniformly distributed. Let Zi = {i} ∪ Ae for some i ∈ Ace.



Set T = {K : K ⊆ [n],K 6⊆ Ae} and PQ =
⋃
J∈Q J\Ae,

for any Q ⊆ T .
Define RZi = Ri+

∑
j∈Ae

Rj and RK =
∑
j∈K Rj , K ∈

T . We have XZi = (Xi,XAe) ∈ [2rRi ] ×∏j∈Ae
[2rRj ] =

[2rRZi ] and for each K ∈ T , XK = (xi, i ∈ K) ∈∏
j∈K [2rRj ] = [2rRK ]. Then ((XK ,K ∈ T ),XZi

) is a well-
defined discrete memoryless correlated source.

For each K ∈ T , the random mapping bK : [2rRK ] →
[2rSK ] uniformly and independently maps each sequence xK
to wK ∈ [2rSK ]. Denote by BK and WK the random encod-
ing and the random bin index corresponding to bK and wK ,
respectively. Let wT = (wK ,K ∈ T ), WT = (WK ,K ∈ T ),
bT = (bK ,K ∈ T ) and BT = (BK ,K ∈ T ). Note that for
each Q ⊆ T ∑

J∈Q
SJ =

∑
K⊆PQ∪Ae

K 6⊆Ae

SK , (60)

and for each Q ⊆ T and Zi,

H(X⋃
J∈Q
|XZi

) = H(X⋃
J∈Q
|Xi ∪XAe

) =
∑

j∈(PQ\{i})

Rj .

Using our notation, Theorem 1 in [15] can be restated as:
Theorem 7: If for each Q ⊆ T ,∑

K⊆PQ∪Ae

K 6⊆Ae

SK <
∑

j∈(PQ\{i})

Rj . (61)

then

EBT

∥∥∥∥∥pXZi
WT
− pXZi

∏
K∈T

pU[2rSK ]

∥∥∥∥∥
1

< o(2−βr), (62)

where: (1) The outer expectation is only over the choice of
random binning; (2) pXZi

WT
is the joint pmf induced by a

particular random binning; (3) pUA is the uniform distribution
over set A , and (4) β > 0 is the rate of convergence. Since
(62) exponentially converges to 0 as r goes to infinity [15],
there exists a sequence of binning schemes {b∗T,r : r ∈ N}
such that the sequence of joint pmfs {p∗(r)XZi

WT
: r ∈ N}

induced by the sequence of binning schemes satisfies∥∥∥∥∥p∗(r)XZi
WT
− pXZi

∏
K∈T

pU[2rSK ]

∥∥∥∥∥
1

< o(2−βr), (63)

Now, we use Lemma 2.7 from [16]:
Lemma 1: If p1 and p2 are two distributions over a finite

set X such that
∑
x∈X
‖p1(x)− p2(x)‖1 ≤ θ ≤ 1

2 , then

‖H(p1)−H(p2)‖1 ≤ −θ log
θ

|X| . (64)

Recall |X| = r(
∑
j∈{i}∪Ae

Rj +
∑
K∈T SK) = αr. Thus,

by invoking Lemma 1 for the two distributions in (63), we
see that for the sequence of binning schemes {b∗T,r : r ∈ N}:

I(Xi ∪XAe
; (WK ,K ∈ T )) < o(αr2−βr)

⇒ I(Xi; (WK ,K ∈ T )|XAe
) < o(αr2−βr).

Therefore, the security condition (17) holds as r →∞.

APPENDIX D
PROOF OF THEOREM 6

To prove Rg ⊆ Rh, suppose (R1, . . . , Rn) ∈ Rg. Then
there exists g(J), J ⊆ [n], satisfying (30)-(34) such that

Ri ≤ g(Bi ∪ {i})− g(Bi). (65)

Define a set function h : 2{0}∪[n] → R≥0 as in (43)-(46). To
prove (36), we use (44) and (46) as

h({0}) = h(∅) +
g([n])∑n
i=1 g({i}) (66)

=
1∑n

i=1 g({i}) =
h({i})
g({i}) . (67)

Hence, we have

Ri ≤ g(Bi ∪ {i})− g(Bi) = g({i}) =
h({i})
h({0}) . (68)

Constraints (37) and (38) follow directly from the defini-
tion. To derive (39), we have

h(N) = h([n] ∪ {0}) = h([n]) +
g(∅)∑n

i=1 g({i}) (69)

= h([n]) =

∑n
i=1 g({i})∑n
i=1 g({i}) = 1, (70)

from which h(N\{i}) = h([n]) = 1 follows trivially, and for
i ∈ [n] we have

h(N\{i}) = h(([n]\{i}) ∪ {0}) (71)

=

∑
j 6=i g({j}) + g({i})∑n

k=1 g(k)
= 1. (72)

Constraint (40) can be derived from (34) and (46) as
follows:

h({i} ∪Ai ∪ {0}) = h({i} ∪Ai) +
g(Bi)∑n
i=1 g({i}) (73)

= h({i} ∪Ai) +
g(Bi ∪ {i})− g({i})∑n

i=1 g({i})
(74)

= h(Ai) +
g(Bi ∪ {i})∑n
i=1 g({i}) (75)

= h(Ai ∪ {0}). (76)

To prove (41), we consider the following cases.
• When 0 6∈ J and i 6= 0, from the definition of h and

non-negativity of g, we have

h(J) =
∑
j∈J

h(j) ≤
∑

j∈J∪{i}

h(j). (77)

• When 0 ∈ J and i 6= 0, let J = K ∪ {0}, 0 6∈ K. Then,

h(J) = h(K ∪ {0}) (78)

= h(K) +
g(K)∑n
i=1 g({i}) , (79)

and

h(J ∪ {i}) = h(K ∪ {i} ∪ {0}) (80)



= h(K ∪ {i}) +
g(K\{i})∑n
i=1 g({i}) . (81)

Subtracting one from another gives

h(J)− h(J ∪ {i}) (82)

= h(K)− h(K ∪ {i}) +
g(K)− g(K\{i})∑n

i=1 g({i}) (83)

=
g(K)− g({i})− g(K\{i})∑n

i=1 g({i}) (84)

≤ 0, (85)

where (85) follows from the submodularity of g in (33).
• When 0 6∈ J and i = 0,

h(J) =

∑
j∈J g({j})∑
j∈[n] g({j}) , (86)

h(J ∪ {i}) =

∑
j∈J g({j}) + g(J)∑

j∈[n] g({j}) ≥ h(J). (87)

Hence, (41) holds. Finally, (42) is proved by considering the
following cases. First, for compact notation, let

h(J) + h(J ∪ {i, k}) =
h′∑

j∈[n] g({j}) ,

and

h(J ∪ {i}) + h(J ∪ {k}) =
h′′∑

j∈[n] g({j}) .

• When 0 6∈ J and i, k 6= 0, (42) is satisfied due to
submodularity of function g.

• When 0 ∈ J and i, k 6= 0, define J = K ∪ {0} and
L = K\{i, k}. Then,

h′ =
∑
j∈K

g({j}) + g(K) +
∑
l∈K

g({l})

+ g({i}) + g({k}) + g(L),

and

h′′ =
∑
j∈K

g({j}) + g({i}) + g(K\{i})

+
∑
l∈K

g({l}) + g({k}) + g(K\{k}).

Due to submodularity of g, we have

g(K) + g(K\{i, k})− g(K\{i})− g(K\{k}) =

g(L ∪ {i, k}) + g(L)− g(L ∪ {i})− g(L ∪ {k}) ≤ 0.

Hence,

h(J) + h(J ∪ {i, k})− h(J ∪ {i})− h(J ∪ {k}) ≤ 0.

• When 0 6∈ J, i = 0, k 6= 0, we have

h′ =
∑
j∈J

g({j}) +
∑
j∈J

g({j}) + g({k}) + g(J\{k}),

h′′ =
∑
j∈J

g({j}) + g(J) +
∑
j∈J

g({j}) + g({k}).

Since g is monotonic, we have

g(J\{k})− g({k}) ≤ 0.

Hence,

h(J) + h(J ∪ {i, k})− h(J ∪ {i})− h(J ∪ {k}) ≤ 0.

The case 0 6∈ J, k = 0, i 6= 0 follows from symmetry.
Next, we prove Rh ⊆ Rg.
Suppose (R1, . . . , Rn) ∈ Rh, then there exists h(J), J ⊆
{0} ∪ [n], satisfying (37)-(42) such that

Ri ≤
h({i})
h({0}) , i ∈ [n]. (88)

Define a set function g : 2[n] → [0, 1] as in (47). We prove
(29) using (40) and the definition of g:

Ri ≤
h({i})
h({0}) (89)

=
1

h({0}) (−h(Ai) + h({i} ∪Ai)) (90)

=
1

h({0}) (h(Ai ∪ {0})− h(Ai)−

(h(Ai ∪ {0})− h({i} ∪Ai))) (91)

=
1

h({0}) (h(Ai ∪ {0})− h(Ai)−

(h({i} ∪Ai ∪ {0})− h({i} ∪Ai))) (92)
= g({i} ∪Bi)− g(Bi). (93)

Next, we prove for this choice of g, that constraints (30)-
(34) are satisfied.

Due to (39), constraint (30) follows immediately as

g(∅) =
h([n] ∪ {0})− h([n])

h({0}) = 0. (94)

Constraint (31) also follows from definition

g([n]) =
h({0})− h(∅)

h({0}) = 1. (95)

To prove the monotonicity of g, i.e., (32), we first note that

g(J) =
h(J ∪ {0})− h(J)

h({0}) , (96)

g(J ∪ {i}) =
h(J\{i} ∪ {0})− h(J\{i})

h({0}) . (97)

Denote J\{i} = K. By taking the difference between g(J)
and g(J ∪ {i}), we see that

g(J)− g(J ∪ {i})

=
h(K) + h(K ∪ {i, 0})− h(K ∪ {i})− h(K ∪ {0})

h({0}) ≤ 0,

where the above follows from submodularity of h in (42).
To prove the submodularity of g, i.e., (33), define L =

J\{i, k}. Then, we have

g(J) =
h(L ∪ {k} ∪ {i} ∪ {0})− h(L ∪ {k} ∪ {i})

h({0})



=
h(L ∪ {k} ∪ {i} ∪ {0})− h(L)− h({i})− h({k})

h({0}) ,

and

g(J ∪ {i} ∪ {k}) =
h(L ∪ {0})− h(L)

h({0}) ,

g(J ∪ {i}) =
h(L ∪ {k} ∪ {0})− h(L ∪ {k})

h({0})

=
h(L ∪ {k} ∪ {0})− h(L)− h({k})

h({0}) ,

g(J ∪ {k}) =
h(L ∪ {i} ∪ {0})− h(L ∪ {i})

h({0})

=
h(L ∪ {k} ∪ {0})− h(L)− h({i})

h({0}) .

Taking the difference and using the submodularity of h, we
see that

g(J) + g(J ∪ {i} ∪ {k})− g(J ∪ {i})− g(J ∪ {k})

=
1

(h({0})
(
h(L ∪ {k} ∪ {i} ∪ {0}) + h(L ∪ {0})

− h(L ∪ {k} ∪ {0})− h(L ∪ {i} ∪ {0})) ≤ 0.

Finally, to prove (34), we write

g({i} ∪Bi)− g(Bi) (98)

=
h(Ai ∪ {0})− h(Ai)− h({i} ∪Ai ∪ {0}) + h({i} ∪Ai)

h({0}

=
h({i} ∪Ai)− h(Ai)

h({0}) (99)

=
h({i})
h({0}) (100)

=
h([n])− h([n]\{i})

h({0}) (101)

=
h([n]\{i} ∪ {0})− h([n]\{i})

h({0}) = g({i}). (102)

Note that (99) is due to (40) and (102) is due to (39).
Therefore, Rg = Rh.
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