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Abstract—In this paper, we study a wireless packet broad-
cast system that uses linear network coding (LNC) to help
receivers recover data packets that are missing due to packet
erasures. We study two intertwined performance metrics, namely
throughput and average packet decoding delay (APDD) and
establish strong/weak approximation relations based on whether
the approximation holds for the performance of every receiver
(strong) or for the average performance across all receivers
(weak). We prove an equivalence between strong throughput
approximation and strong APDD approximation. We prove that
throughput-optimal LNC techniques can strongly approximate
APDD, and partition-based LNC techniques may weakly ap-
proximate throughput. We also prove that memoryless LNC tech-
niques, including instantly decodable network coding techniques,
are not strong throughput and APDD approximation nor weak
throughput approximation techniques.

Index Terms—Wireless broadcast, network coding, through-
put, decoding delay, approximation.

I. INTRODUCTION

In this paper, we consider a wireless broadcast problem
where a sender wishes to broadcast a block P of K data
packets to a set of N receivers using linear network coding
(LNC) [1], [2]. Each receiver is assumed to already possess a
subset of P and still wants all the remaining data packets.

For such systems, two important performance metrics are
throughput and average packet decoding delay (APDD). While
throughput measures how fast the broadcast can be completed,
APDD measures how fast each individual data packet can be
decoded by each receiver. A lower APDD implies faster data
delivery to the application layer on average, and is particularly
important when individual data packets are informative.

Throughput can be maximized if every LNC coded packet
is innovative to every receiver who has not fully recovered P .
Such packets can be generated either randomly (i.e., the classic
random LNC (RLNC) technique [3]) or deterministically (e.g.,
by solving a hitting set problem [4], or by adding extra data
packets to instantly decodable coded packets [5]). However,
the APDD performance of these techniques have not been well
studied. Recently, Yu et al proved that RLNC approximates the
minimum APDD average over all receivers with a ratio of 2
[6], i.e., its APDD is at most two times of the minimum.

APDD can be minimized if every LNC coded packet allows
every receiver to instantly decode a wanted data packet [6].
Such coded packets, however, are NP-hard to find [6]. In-
stead, instantly decodable network coding (IDNC) techniques
generate in each transmission a coded packet that allows a
subset of receivers to instantly decode a wanted packet, and

Fig. 1. Interplay between throughput and APDD approximation.

ask the remaining receivers to discard this coded packet rather
than storing it in the memory for future decoding. Thus,
IDNC techniques are memoryless. Due to this feature, IDNC
techniques are generally not throughput optimal [7]. It has
also been proved in [8] that it is intractable to maximize
the throughput of general IDNC techniques. Although a large
body of heuristics have been developed as a remedy, it is an
open problem whether memoryless LNC techniques are able
to approximate the optimal throughput and APDD.

A tradeoff between throughput and APDD can be achieved
by partitioning P into disjoint sub-blocks and broadcast-
ing them separately using certain LNC techniques [9]–[12].
Although it is understood that such partitioned-based LNC
techniques are generally not throughput and APDD optimal,
their approximation performance has not been studied.

Due to the fact that throughput and APDD optimization
could be intractable and that heuristics cannot guarantee
bounded performance, throughput and APDD approximation
is important in the design and evaluation of LNC techniques.
However, to the best of our knowledge, LNC throughput and
APDD approximation has not received much attention in the
literature. Moreover, the interplay between throughput and
APDD optimization has not been well studied. We also note
that optimization is a special approximation with a ratio of 1.

Therefore, in this paper, we study the more general problem
of throughput and APDD approximation in linear network
coded wireless broadcast. Specifically, we will

1) introduce the concepts of strong/weak throughput and
APDD approximation. Here strong (resp. weak) means
that the approximation holds for the performance of every
receiver (resp. averaged over all receivers);

2) investigate the interplay between throughput and APDD
approximation;
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3) evaluate the approximation performance of the aforemen-
tioned three classes of LNC techniques.

Some main findings of this paper are (also depicted in Fig. 1):
• A strong throughput β-approximation technique also

strongly approximates APDD with a ratio of at most
2β. This relation does not necessarily hold between weak
throughput and APDD approximation;

• All strong throughput-optimal LNC techniques strongly
approximate APDD with a ratio between 4

3 and 2;
• A technique that partitions the packet block into M

disjoint sub-blocks and applies a weak throughput β-
approximation technique to each sub-block weakly ap-
proximates throughput with a ratio of at most βM ;

• Memoryless LNC techniques are not strong throughput
and APDD approximation nor weak throughput approx-
imation techniques.

II. SYSTEM MODEL AND PERFORMANCE MEASUREMENTS

We consider a block-based wireless broadcast scenario, in
which the sender wishes to deliver a block of K data packets,
denoted by P = {pk}Kk=1, to a set of N receivers, denoted by
R = {rn}Nn=1. All data packets are vectors of the same length,
with entries taken from a finite field Fq . Time is slotted, and
in each time slot the sender broadcasts a coded packet to all
receivers. The wireless channel between the sender and each
receiver rn is independent of each other, and is subject to
Bernoulli random packet erasures with a probability of Pe,n.

We assume each receiver has already received a subset
of packets in P and still wants all the rest. Such a packet
reception state could be the consequence of previous uncoded
transmissions [13], and is a common assumption in network
coding and index coding literature [14]. This state can be
summarized by a binary N ×K state feedback matrix (SFM)
A: A(n, k) = 1 means rn has missed pk and wants it, and
A(n, k) = 0 means rn already has pk. The set of data packets
wanted by rn is denoted by Wn. Its size is denoted by wn.

The sender then applies an LNC technique to help receivers
recover their missing data packets. In each time slot, it
broadcasts an LNC packet c, which takes the form of:

c =
∑
pk∈P

αkpk, (1)

where {αk} are coding coefficients chosen from Fq . In par-
ticular, RLNC technique chooses {αk} uniformly at random.

A. Performance Metrics

Our first performance metric is throughput. It measures how
fast the broadcast of P can be finished. Noting that a minimum
of K unocded transmissions is initially needed, we measure
throughput by the total number of coded transmissions in the
broadcast, which is denoted by U . Clearly, a smaller U indi-
cates higher throughput. We further denote by Un the number
of coded transmissions after which receiver rn decodes all its
wanted data packets. Consequently, U = max({Un}Nn=1).

Our second performance metric is average packet decoding
delay (APDD). It reflects how fast each individual data packet

is decoded by each receiver on average. Given a realization of
A, the APDD of receiver rn, denoted by Dn, is:

Dn =
1

wn

∑
∀k:pk∈Wn

un,k, (2)

where un,k is the index of the coded transmission after which
rn decodes pk. The APDD across all receivers is similar:

D =
1

sum(A)

∑
∀k,n:A(n,k)=1

un,k, (3)

where sum(A) is the sum of the entries of A, and is equal to
the number of ones in A.

B. Performance Limits and Expectations

We denote by Umin,n (resp. Umin) the minimum possible
Un (resp. U ) that any LNC techniques can offer without
packet erasures. It is clear that Umin,n = wn and Umin =
max({wn}Nn=1). We further denote by Umin,n (resp. Umin)
the minimum expected Un (resp. U ) that any LNC tech-
niques can offer with random packet erasures. It is clear that
Umin,n > Umin,n and Umin > Umin, and the equalities hold
when there are no packet erasures. Umin has been studied in
the literature through studying RLNC [15].

Similarly, we denote by Dmin,n (resp. Dmin) the minimum
Dn (resp. D) that any LNC techniques can offer without
packet erasures. It holds that Dmin,n > wn+1

2 and Dmin >∑
wnDmin,n∑

wn
, where the equality holds when every coded

packet allows every receiver to instantly decode a wanted
data packet. We further denote by Dmin,n (resp. Dmin) the
minimum expected Dn (resp. D) that any LNC techniques can
offer with random packet erasures. Again, Dmin,n > Dmin,n

and Dmin > Dmin. It is proved in [16] that Dmin is NP-hard
to find.

If an LNC technique called “X” is applied, we add (X) to
the end of the above. For example, Dmin,n(RLNC) denotes
the minimum expected APDD Dn of rn under RLNC.

III. DEFINING PERFORMANCE APPROXIMATION

In this section, we define strong and weak approximation
of throughput and APDD.

A. Strong Approximation

We define strong throughput approximation as follows:

Definition 1. An LNC technique X is a strong throughput β-
approximation technique if and only if:

Umin,n(X)

Umin,n

6 β (4)

for every receiver rn under any SFM and any packet erasure
probabilities {Pe,n}Nn=1, where β > 1 is a constant. In
particular, if β = 1, then technique-X is a strong throughput-
optimal technique.

According to this definition, when a strong throughput β-
approximation LNC technique is applied, every receiver rn can
expect to decode all its wanted data packets within βUmin,n



coded transmissions regardless of the packet reception state
and packet erasure probability of the other receivers.

We define strong APDD approximation similarly:

Definition 2. An LNC technique X is a strong APDD β-
approximation technique if and only if:

Dmin,n(X)

Dmin,n

6 β (5)

for every receiver rn under any SFM and any packet erasure
probabilities {Pe,n}Nn=1, where β > 1 is a constant. In
particular, if β = 1, then technique-X is a strong APDD-
optimal technique.

B. Weak Approximation

We define weak throughput approximation as follows:

Definition 3. An LNC technique X is a weak throughput β-
approximation technique if and only if:

Umin(X)

Umin

6 β (6)

for any SFM and any packet erasure probabilities {Pe,n}Nn=1,
where β > 1 is a constant. In particular, if β = 1, then
technique-X is a weak throughput -ptimal technique.

According to this definition, with a weak throughput β-
approximation LNC technique, we can expect to complete the
coded broadcast within βUmin coded transmissions.

Similarly, we define weak APDD approximation as follows:

Definition 4. An LNC technique X is a weak APDD β-
approximation technique if and only if:

Dmin(X)

Dmin

6 β (7)

for any SFM and any packet erasure probabilities {Pe,n}Nn=1,
where β > 1 is a constant. In particular, if β = 1, then
technique-X is a weak APDD-optimal technique.

It is clear that a strong throughput/APDD approxima-
tion technique is also a weak one, but not necessarily vice
versa. Our main interest in this paper is the interplay be-
tween throughput and APDD approximation. To this end,
we first establish the performance of a reference technique,
namely RLNC, that strongly approximates both throughput
and APDD.

IV. THE PERFORMANCE OF RLNC

In this section, we study the approximation performance
of RLNC, and then extend the result to the general class of
throughput-optimal LNC techniques.

Theorem 1. RLNC is a strong throughput-optimal and strong
APDD 2-approximation technique. Mathematically, for every
receiver rn, it always holds that Umin,n(RLNC) = Umin,n

and Dmin,n(RLNC) 6 2Dmin,n.

Proof: It is clear that

Umin,n(RLNC) = Umin,n =
wn

1− Pe,n
, (8)

Then, since rn decodes all its wanted data packets on average
after Umin,n(RLNC) coded transmissions, we have

Dmin,n(RLNC) = Umin,n(RLNC) =
wn

1− Pe,n
. (9)

On the other hand, the authors of [16] has proved that

Dmin,n >
wn + 1

2(1− Pe,n)
, (10)

Therefore,
Dmin,n(RLNC)

Dmin,n

6
2wn

wn + 1
6 2, (11)

which completes the proof.
We note that in terms of APDD performance, RLNC is in

fact, the worst technique in the class of strong throughput-
optimal LNC techniques, as it generally does not provide
early packet decodings (excluding occasional early decodings).
Thus, we can state that all LNC techniques in this class
strongly approximate APDD with a ratio of at most 2. This
result can be further strengthened into the following:

Theorem 2. All strong throughput-optimal LNC techniques
strongly approximate APDD with a ratio between 4

3 and 2.

Proof: Since the approximation ratio of an LNC technique
is the largest ratio it provides across any SFMs, to prove that
the ratio is at least 4

3 for strong throughput-optimal techniques
we only need an instance of SFM where 4

3 is achieved by them.
Our SFM consists of 2 data packets and 3 receivers. r1 only

wants p1, r2 only wants p2, and r3 wants both packets. For
this SFM, any strong throughput-optimal LNC technique-X
will send as c1 a linear combination of p1 and p2 to satisfy
both r1 and r2. However, c1 does not allow r3 to decode. r3
can only decode after the second coded transmission. Thus,
Dmin,3(X) = 2. On the other hand, by sending p1 and p2

separately, Dmin,3 = 1.5. Thus, Umin,3(X)
Umin,3

= 4
3 .

V. INTERPLAY BETWEEN THROUGHPUT AND APDD
APPROXIMATION

With the help of RLNC, we establish the following relation
between throughput and APDD approximation:

Theorem 3. Strong throughput β-approximation techniques
strongly approximate APDD with a ratio of at most 2β.

Proof: Consider a strong throughput β-approximation
LNC technique called X. By definition,

Umin,n(X) 6 βUmin,n, (12)

for any receiver rn in any given SFM. Then, since
Dmin,n(X) 6 Umin,n(X),

Umin,n = Umin,n(RLNC) = Dmin,n(RLNC), and

Dmin,n(RLNC) 6 2Dmin,n,



we obtain Dmin,n(X) 6 2βDmin,n.
On the other hand, weak throughput approximation tech-

niques do not necessarily weakly approximate APDD. To see
this, we will prove in the next section that partition-based
LNC techniques may weakly approximate throughput but may
not weakly approximate APDD. We summarize the interplay
between throughput and APDD approximation in Fig. 1.

VI. PARTITION-BASED LNC TECHNIQUES

Given an SFM, partition-based LNC techniques partition the
packet block P into M (M > 1) disjoint or overlapped sub-
blocks {Pm}Mm=1 [9]–[12], [17]. In this paper, we only con-
sider the disjoint case. Correspondingly, the SFM is partitioned
into M sub-SFMs {Am}Mm=1, where in Am, the N receivers
want data packets from Pm. A certain LNC technique (e.g.
RLNC) is then applied to each sub-block separately in order.

Theorem 4. If a partition-based LNC technique applies a
weak throughput β-approximation LNC technique to each of
the M sub-SFMs, then it is at most a weak throughput 2βM -
approximation technique.

Proof: When a weak throughput β-approximation tech-
nique called X is applied to any given SFM A, by definition
it holds that Umin(X) 6 βUmin. Since any sub-SFM of A
requires, on average, at most Umin(X) coded transmissions,
any M -partition of A need at most MUmin(X) coded trans-
missions. Thus, Umin(partition, X) 6 βMUmin.

However, weakly approximating throughput may not help
these techniques weakly approximate APDD:

Theorem 5. Partition-based throughput weak approximation
techniques do not necessarily weakly approximate APDD.

Proof: For any given SFM A, without loss of generality
let us assume receiver r1 wants the largest subset W1 of data
packets of P . Consider a partition-based technique, called X,
that partitions P into two sub-blocks: P1 = W1 and P2 =
P\W1. Due to Theorem 5, when RLNC is applied, technique-
X can weakly approximate the throughput with a ratio of 2.

We now show that technique-X cannot weakly approximate
APDD. Consider an SFM with N receivers. r1 wantsW1, and
all the remaining N−1 receivers only want one data packet not
in W1. When N � w1, we have Dmin ≈ 1. But if technique-
X is applied, the remaining N − 1 receivers can only decode
after r1 has fully decoded, indicating that Dmin(X) ≈ w1+1,
which is not within a constant multiple of Dmin.1

This theorem also indicates the general relation between
weak throughput and APDD approximation:

Corollary 1. Weak throughput approximation techniques are
not necessarily weak APDD approximation techniques.

However, we are not able to identify the strong through-
put and APDD approximation performance of partition-based
LNC techniques without specifying the partitioning strategy,
which is out of the scope of this paper.

1 For this particular SFM, there exist better partition strategies that are able
to minimize APDD. This, however, is irrelevant to the theorem and its proof.

VII. MEMORYLESS LNC TECHNIQUES

An LNC technique is memoryless if its receivers discard
undecodable coded packet(s) rather than storing them for
future decodings. A well-known class of memoryless LNC
techniques is IDNC, which allows a subset of receivers to
instantly decode a wanted data packet from each coded packet,
so that APDD could be reduced. However, the cost is a
degradation in the throughput of receivers who discard useful,
but instantly undecodable coded packets. In this section, we
prove the following two theorems:

Theorem 6. Memoryless LNC techniques are not weak
throughput approximation techniques.

We prove this theorem in the appendix by showing that,
for an SFM where every pair of two data packets is wanted
by a different receiver, memoryless LNC techniques require at
least dlog2Ke + 1 coded transmissions, which is not within
a constant multiple of Umin = 2. (Here dxe is the smallest
integer greater than or equal to x.)

Then, since every strong throughput approximation tech-
nique is a weak one, the above theorem indicates that:

Corollary 2. Memoryless LNC techniques are not strong
throughput approximation techniques.

The proof of Theorem 6 also sheds some light on the APDD
approximation performance of memoryless LNC techniques.

Theorem 7. Memoryless LNC techniques are not strong
APDD approximation techniques.

Proof: In the proof of Theorem 6, receivers who decode
their second wanted data packet after the last coded transmis-
sion have an APDD of at least dlog2Ke /2 + 1. However,
Dmin,n 6 Dmin,n(RLNC) = 2. Thus, Dmin,n(memoryless)
is not within a constant multiple of Dmin,n.

We summarize our results on the approximation perfor-
mance of the three classes of LNC techniques in Table I.

VIII. CONCLUSION

In this paper, we generalized the problem of throughput
and APDD optimization in linear network coded wireless
broadcast to their strong and weak approximations. This gener-
alization fills the gap between optimal and heuristic LNC tech-
niques with approximation techniques, such as RLNC (strong
throughput optimal and strong APDD 2-approximation) and
partition-based LNC techniques (weak throughput approxi-
mation). By using these LNC techniques as references, we
also revealed the interplay between throughput and APDD
approximation, including a relation between strong throughput
β-approximation and strong APDD 2β-approximation, as well
as the independence between weak throughput and APDD
approximation. Besides, we negated the strong and weak
throughput approximation and the strong APDD approxima-
tion of memoryless LNC techniques. Our results could inspire
new approaches to design and evaluate LNC techniques.



TABLE I
THE APPROXIMATION PERFORMANCE OF THREE CLASSES OF LNC.

Strong
Throughput

Strong
APDD

Weak
Throughput

Weak
APDD

RLNC yes yes yes yes
Partition-based open open yes may not be

Memoryless LNC no no no open

As future work, we wish to tackle the interplay between
strong APDD approximation and weak throughput approx-
imation, the strong throughput and APDD approximation
performance of partition-based LNC techniques, and the weak
APDD approximation performance of memoryless LNC tech-
niques. We are also interested in extending our research to
index coding [14], as well as and other applications of LNC,
such as cooperative data exchange [18].

APPENDIX A
PROOF OF THEOREM 6

Our proof involves two types of SFMs:
• A1(K): every pair of data packets is wanted by a

different receiver. There are N = K(K−1)
2 receivers;

• A2(K,m): every data packet is wanted by m different
receivers. Every pair of data packets is wanted by a dif-
ferent receiver. There are N = mK + K(K−1)

2 receivers.
Note that Umin = 2 for A1(K). We prove the theorem by

proving that Umin(memoryless) = dlog2Ke+ 1 for A1(K).
The transmission starts by sending as c1 the XOR of any

m1 ≥ 1 data packets in A1(K). The resulted SFM consists of
two sub-SFMs: 1) an A1(K−m1), which contains the m1 data
packets and the receivers who want 2 data packets from c1 and
thus discard c1; 2) an A2(K−m1,m−1), which contains the
remaining K −m1 data packets and the remaining receivers,
which either has decoded one wanted data packet from c1 and
still want one data packet from K−m1, or want 2 data packets
from K − m1. These two sub-SFMs are independent in the
sense that a coded packet of A1(m1) and a coded packet of
A2(K −m1,m1) can be XOR-ed and sent without affecting
their decodability for receivers.

Similarly, we can show that after sending the XOR of any
arbitrary m3 data packets from A2(K−m1,m1), the resulted
SFM consists of two independent sub-SFMs: an A1(m3) and
an A2(K −m1 −m3,m1 +m3).

Continuing the logic, after the u-th transmission (u > 1),
A1(K) is split into 2u−1 type-1 sub-SFMs and 2u−1 type-2
sub-SFMs. Only sub-SFMs that consists of a single data packet
can be completed in one coded transmission and be removed.
The evolution of A1(K) is demonstrated in a layered graph in
figure 2. The u-th layer corresponds to the SFM before the u-th
coded transmission. The total number of coded transmissions
is thus the number of layers plus one. It is clear that the
minimum number of layers is dlog2Ke, which is achieved by
XOR-ing half of the data packets from each sub-SFM. Thus,
Umin(memoryless) = dlog2Ke+ 1.
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