
A Neural Network Lattice Decoding Algorithm
Mohammad-Reza Sadeghi, Farzane Amirzade, Daniel Panario, and Amin Sakzad

Abstract—Neural network decoding algorithms are recently
introduced by Nachmani et al. to decode high-density parity-
check (HDPC) codes. In contrast with iterative decoding algo-
rithms such as sum-product or min-sum algorithms in which the
weight of each edge is set to 1, in the neural network decoding
algorithms, the weight of every edge depends on its impact in
the transmitted codeword. In this paper, we provide a novel
feed-forward neural network lattice decoding algorithm suitable
to decode lattices constructed based on Construction A, whose
underlying codes have HDPC matrices. We first establish the
concept of feed-forward neural network for HDPC codes and
improve their decoding algorithms compared to Nachmani et
al. We then apply our proposed decoder for a Construction A
lattice with HDPC underlying code, for which the well-known
iterative decoding algorithms show poor performances. The main
advantage of our proposed algorithm is that instead of assigning
and training weights for all edges, which turns out to be time-
consuming especially for high-density parity-check matrices, we
concentrate on edges which are present in most of 4-cycles and
removing them gives a girth-6 Tanner graph. This approach, by
slight modifications using updated LLRs instead of initial ones,
simultaneously accelerates the training process and improves the
error performance of our proposed decoding algorithm.

Index Terms—Lattices, deep learning, Tanner graph, trellis
graph.

I. INTRODUCTION

COnstructing lattices from codes has been an intense
research topic which resulted in well-know Constructions

A, B, C, D, and D’ (see [1] and [2]). High dimensional lattices
along with iterative decoding algorithms were first introduced
by Sadeghi et al. [3]. Although high dimensional lattices have
high coding gain, in practice, they are difficult to implement
and in higher dimensions they have high decoding complexity.
Several decoding algorithms have been proposed in the liter-
ature. The generalized min-sum algorithm was presented in
[3] to decode low-density parity-check (LDPC) lattices. Other
iterative decoding algorithms to decode LDPC lattices are
sum-product algorithm (SPA) [4] and FFT based SPA [5]. In
these methods, the process of transmitting messages in variable
node and check node operations is applied on the Tanner graph
of LDPC lattices.

Some underlying codes of the algebraic lattices have a rather
high-density parity-check (HDPC) matrix. For example, the
underlying code of Barnes-Wall lattices are Reed-Muller codes
whose parity-check matrices are not sparse. These lattices are

M.-R. Sadeghi and F. Amirzade are with the Faculty of Mathematics
and Computer Science, Amirkabir University of Technology, Tehran, Iran.
D. Panario is with the School of Mathematics and Statistics, Carleton
University, Ottawa, Canada. A. Sakzad is with the Clayton School of
IT, Monash University, Melbourne, Australia. (e-mails: msadeghi@aut.ac.ir,
famirzade@gmail.com, daniel@math.carleton.ca, amin.sakzad@monash.edu).

based on Construction D’ [6] using a set of nested Reed-
Muller codes. In this case, the variable-node and check-node
operations in message passing decoding algorithms are time-
consuming. In fact, applying iterative algorithms to decode
most well-known algebraic codes would result in poor perfor-
mance when compared to maximum likelihood decoders [7].
To resolve this problem, deep neural network decoders were
proposed [8], [9].

In recent years, deep learning methods have shown amaz-
ing performances in a variety of subjects. For example, an
application of deep learning methods to the problem of low
complexity channel decoding has been proposed [9]. It has
been demonstrated that deep learning methods improve the
min-sum and sum-product algorithms for HDPC codes using
a weighted trellis graph, which is another representation of
codes. The main benefit of the neural network decoder is
that the weight of every edge relies on its influence in the
transmitting messages. By setting weights properly, we can
compensate for small cycles, which are the main causes of
high error floor regions and deterioration of the decoding
process. The first step in this method is to train weights for
a given codeword like the all-zero codeword 0. Then, using
these trained weights, we decode codewords. The computation
complexity of the neural network decoder depends on the
number of weights required to be trained. For example in [8],
this number is 2n+ 2LE, where n is the number of variable
nodes, L is the number of iterations and E is the number of
edges in the corresponding trellis diagram of the code.

In the `-th iteration of trellis graph in [8], there are two
hidden layers V N` and CN` for the variable node operation
and the check node operation, respectively. In this framework,
two weights w` and w′` are defined for each edge in the
`-th iteration. The weight w` links the first layer and the
hidden layer, CN`, and the weight w′` links the hidden layers
CN`, V N(`+1). In [9], a new recurrent neural network (RNN)
algorithm was defined by which the number of weights to train
was significantly reduced to 2E. In this method, all weights
between the first layer and hidden layers CN`, for 1 ≤ ` ≤ L,
are set to 1. No training process is needed for them as the
experimental results have shown that training these parameters
did not result in any performance improvement. Moreover, for
each edge in the RNN method, two weights w and w′ are
considered fixed in iterations. In this framework, w is the
weight associated to the hidden layers CN`, V N(`+1) and
w′ is the weight associated to the hidden layer CN` and the
layer related to hard decision operation of the `-th iteration.
Numerical results [9] show that the RNN method outperforms
the neural network decoding algorithm in [8].

ar
X

iv
:1

80
7.

02
91

3v
2 

 [
cs

.I
T

] 
 1

3 
Se

p 
20

18



In a concurrent work, a deep learning lattice decoder is
also proposed in [12]. In this paper, we aim to present a
neural network decoding algorithm for lattices constructed
based on Construction A, whose underlying codes have high-
density parity-check matrices. All the weights w′ in the
RNN algorithm are trained in this work. However, instead of
considering the weight w for each edge, similar to the RNN
algorithm, we mainly focus on edges which are, potentially, the
main culprits of high decoding failure rates. In particular, we
define weights w only for the edges that are present in most of
the 4-cycles in the Tanner graph of the code and by removing
them the girth of the Tanner graph is increased to 6. We call
such edges “culprit edges”. The weight for the non-culprit
edges are considered to be 1. So, the pair of weights to train
for culprit edges is (w,w′) and for the other edges is set to be
(1, w′). By properly training these weights and running SPA
with the trained weights, we achieve an improvement in the
decoding process of lattices constructed based on Construction
A, whose underlying code is a HDPC code.

The rest of the paper is organized as follows. In Section
II, we give some basic notations and definitions. In Section
III, we present three contributions: first, the structure of the
trellis graph, which is completely new and different from the
ones in the literature; second, the message computations in
variable node and check node operations on the trellis graph;
and third, a few algorithms to train weights in the neural
network decoding algorithm. In Section IV, we apply our
newly proposed deep neural network decoding algorithm to
a lattice based on Construction A. We finish our paper in the
last section giving concluding remarks and open problems.

II. PRELIMINARIES

A lattice, Λ, is a discrete additive subgroup of Rm [2]. The
set of linearly independent vectors {b1,b2, . . . ,bn}, where n
is the dimension of the lattice, is a lattice basis. The generator
matrix of the lattice is defined as B = [b1,b2, . . . ,bn]T and
a lattice can be shown by Λ = {v = xB : x ∈ Zn}. We
let m = n and consider only full dimensional lattices in this
paper. The length of the shortest nonzero vector of the lattice is
denoted by dmin with respect to Euclidean norm. The notation
det(Λ) is used to denote the volume of the lattice which
is obtained by det(BBT ), and Vn is the volume of the n-
dimensional sphere of radius 1. For an unconstrained additive
with Gaussian noise (AWGN) channel, the volume-to-noise

ratio of the lattice Λ is defined by VNR = (det(Λ))
2
n

2πeσ2 .
Suppose C ⊆ Fnp is a linear code over Fnp , where p is a

prime number. We construct Λ as follows: x = (x1, . . . , xn)
is a point of lattice if and only if there exists a codeword
c = (c1, . . . , cn) such that x ≡ c mod p. In other words,

Λ=pZn+C={(pz1+c1, . . . , pzn+cn) : zi ∈ Z, c ∈ C}, (1)

where the components of c in (1) are considered as real
numbers and operations are done in reals. The produced lattice
Λ is said to be constructed based on Construction A [2].

III. TRELLIS GRAPH AND BACK-PROPAGATION
ALGORITHM

Every linear code with parity check matrix H can be
represented by a Tanner graph which is a bipartite graph
whose incident matrix is H, see Example 1. In the existing
iterative decoding algorithms in the literature, a message
passing process is considered on the Tanner graph. The SPA is
a message passing algorithm that exchanges messages through
the edges in the corresponding Tanner graph. In this section,
we first explain SPA on Tanner graphs and trellis diagrams
and then we introduce our back-propagation algorithm.

A. Sum-Product Algorithm on Tanner Graph

Let us first recall a SPA on Tanner graph of a code. Each
iteration in SPA consists of two main processes, variable
node process and check node process. Let vi, chj , cv and yv
denote the i-th variable node, the j-th check node, the v-the
component of the transmitted codeword and the v-th channel
output, respectively. Nodes vi, 1 ≤ i ≤ n, are associated with
the initial inputs which are the log-likelihood ratios (LLR) of
the channel output given by

`v = log
Pr(cv = 1|yv)
Pr(cv = 0|yv)

. (2)

In the variable node operation, the message µvi,chj
from

i-th variable node to j-th check node is computed by

µvi,chj
= `v +

∑
chk∈Vi, k 6=j

µchk,vi , (3)

where Vi is the set of all neighboring check nodes to the
variable node vi. In the check node operation, the message
µchj ,vi from the j-th check node to the vi is computed by:

µchj ,vi = 2 tanh−1

 ∏
vk∈CHj , k 6=i

tanh
(µvk,chj

2

) , (4)

where CHj denotes the set of all neighboring variable nodes
to the j-th check node chj . After each check node operation
we have a hard decision process in which we obtain updated
LLRs, denoted by ov , for 1 ≤ v ≤ n, and computed as follows:

ov = `v +
∑

chk∈Vi

µchk,vi . (5)

If ov < 0, then cv = 0, and if ov > 0, then cv = 1. If
HcT = 0, then the decoding process halts and returns the
decoded codeword.

B. Sum-Product Algorithm on Trellis Graph

In the neural network decoding algorithms proposed in [8]
and [9], the message passing process is taken place on the
trellis graph corresponding to the Tanner graph. The number
of hidden layers with L full iterations is 2L; with the input
and output layers there are a total of 2L + 2 layers in the
trellis graph. In the following, we introduce a new trellis
graph representation, which is different from the ones in the
literature.



Fig. 1. The Tanner graph of H in Example 1.

Let n and E be the number of variable nodes and the
number of edges in the Tanner graph of a linear code,
respectively. If L is the number of iterations, then the trellis
graph has 3L + 1 layers. The first layer consists of n nodes.
There are three hidden layers for the `-th iteration. The first
layer is V N`, the second layer is CN`, each of which contains
E nodes. The first and the second layers are associated with
variable node and check node operations, respectively. The
third layer is O` consisting of n nodes. This layer is associated
with the hard decision process.

Before drawing edges between nodes in the trellis graph,
we have to find culprit edges whose weights, w’s, should be
trained. We explain this further in an example later. For each
edge in the Tanner graph between variable node vi and check
node chj , we define two types of edges in the trellis graph,
evi,chj

and echj ,vi , respectively, for V N` and CN`, where
1 ≤ ` ≤ L. We draw edges in the trellis graph using the
following steps:
• If chj ∈ Vi, then we connect node evi,chj

of the layer
V N1 and the i-th node of the first layer.

• Each node echj ,vi of the layer CN` in the `-th iteration is
connected to evk,chj

of the layer V N`, where vk ∈ CHj

and k 6= i. For each node, we define a weight wchj ,vi .
• Each node evi,chj

of the layer V N` in the `-th iteration is
connected to echk,vi of the layer CN`−1, where chk ∈ Vi
and k 6= j.

• Each node echj ,vi in the layer CN` is connected to vi
in the layer O`, where chj ∈ Vi. There is a weight,
w′chj ,vi

, between the node echj ,vi in the layer CN` and
its corresponding variable node, vi, in the layer O`.

Hence, we assigned a pair of weights (wchj ,vi , w
′
chj ,vi

) to
the edge echj ,vi ; see the following example.

Example 1: Let C be a linear code with parity-check matrix

H =

[
1 1 1
0 1 1

]
. (6)

As we see in Fig. 1, there are five edges in its Tanner graph
and four of them are involved in a unique 4-cycle in the graph.
We aim to train the weight w for one of these four edges.
Suppose the edge corresponding to h22 is chosen as a special
edge. Hence, the pairs of weights which we consider to train
are (1, w′ch1,v1

), (1, w′ch1,v2
), (1, w′ch1,v3

), (wch2,v2 , w
′
ch2,v2

),
and (1, w′ch2,v3

) for the corresponding edges ech1,v1 , ech1,v2 ,
ech1,v3 , ech2,v2 , and ech2,v3 , respectively. The corresponding
trellis graph with 2 iterations is shown in Fig. 2.

Fig. 2. The trellis graph of H in Example 1 with two iterations.

C. Back-propagation Algorithm

The back-propagation algorithm looks for the minimum
of the error function in the weight space using the gradient
descend method [10]. The combination of weights, which
minimizes the error function is the solution of the learning
problem. This method requires computation of the derivative
of the error function with respect to weights in each iteration
step. Therefore, we have to guarantee the continuity and
differentiability of the error function. The error function that
we use is the cross entropy, which is defined as:

L(o, c) =
−1

n

n∑
v=1

cv log2(ov) + (1− cv) log2(1− ov), (7)

where o = (o1, . . . , on), c = (c1, . . . , cn), and ov and
cv are v-th component of the deep neural network output
and the transmitted codeword, respectively. If the transmitted
codeword is 0, then cv = 0 for all v.

Moreover, in the back-propagation neural network, a sig-
moid function is extensively used because it reduces complica-
tions involved during the training phase. The sigmoid function
σ is a real function from R to (0, 1) defined as σ(x) = 1

1+e−x .
In the deep neural network decoder, each node of the hidden
layers in the trellis graph contains two messages which we
label them as the left and right messages. In the following,
we explain how to obtain these messages for each node of the
three hidden layers in the `-th iteration.
• In V N` layer, the right message µvi,chj ,` of each node

is defined as:

tanh

`v +
∑

chk∈Vi, k 6=j

wchk,viµchk,vi,(`−1)

 /2

 .

(8)
The left message of each node is a vector of derivatives
of µvi,chj ,` with respect to µchk,vi,(`−1),

∂µvi,chj,`

∂µchk,vi,(`−1)
.



• In the CN` layer, the right message µchj ,vi,` of each node
is

2 tanh−1

 ∏
vk∈CHj , k 6=i

µvk,chj ,`

 . (9)

The left message of each node is a vector of derivatives
of µchj ,vi,` with respect to µvk,chj ,`,

∂µchj,vi,`

∂µvk,chj,`
.

• In the Ol layer, the right message ov,` of each node is

σ

(
`v +

∑
chk∈Vi

w′chk,vi
µchk,vi,`

)
. (10)

The left message of each node is a vector of derivatives
of ov,` with respect to µchk,vi,`,

∂ov,`

∂µchk,vi,`
.

We call the above constructed trellis graph whose nodes
contain messages mentioned above a feed-forward neural
network. In fact, such a network represents a chain of function
compositions, which transform an input to an output vector.
The learning problem consists of finding the optimal combi-
nation of weights so that the decoded vector is as close as
possible to the transmitted codeword. In other words, we aim
to obtain weights by which the following error function L is
minimized:

L =

L∑
`=1

L(o`, c),

where o` is the output of neural network at `-th iteration,
1 ≤ ` ≤ L. Suppose the vector of weights are W =
(w1, . . . , wE′ , w

′
1, . . . , w

′
E), where E′ < E is the number of

culprit edges which are chosen to train their weights. We can
minimize L by using an iterative process of gradient descent
for which we need to calculate the gradient ∇L as follows(

∂L
∂w1

, . . . ,
∂L
∂wE′

,
∂L
∂w′1

, . . . ,
∂L
∂w′E

)
.

If ∇L 6= 0, then we have to update weights and begin the
process with new weights. We expect to find a minimum of
the error function, when ∇L = 0. In order to update weights,
a learning constant (rate), denoted by α, is used in the gra-
dient descent algorithm. The learning rate is a proportionality
parameter, which defines the step length of each iteration in
the negative gradient direction. Wnew = Wold−α ·∇L. In the
following example we illustrate how to update weights on the
trellis graph.

Example 2: Consider the parity-check matrix of Example 1
with L = 2 and the initial input y = (−0.5, 2.5,−4) (received
vector corresponding to sent codeword c = 0) and with the
initial weight vector W = (0.1, 0.15, 0.16, 0.17, 0.18, 0.19) in
which the first element is associated to wch2,v2 and the other
elements are associated to w′chj ,vi

. We also let the training
rate be α = 0.1. We compute all messages both left and right
in the trellis graph. Then, using the paths between the nodes
of the last layer and nodes in the CN1 and CN2 layers in the
trellis graph we update the weights. For example to update
wch2,v2 , we have to find paths from the last layer to the node
ech2,v2 of the first iteration. As can be seen in Fig. 2, we

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Eb/No (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E

R

BER of C1
BER of C2
BER of C3
BER of C4

Fig. 3. The comparisons of performances of C1, C3 and C2, C4.

have two paths to this node, which are highlighted bold. The
paths P1 and P2 are o1,2 → ech1,v1 → ev2ch1

→ ech2,v2 and
o3,2 → ech1,v3 → ev2ch1

→ ech2,v2 , respectively. Therefore,
the derivative of the function L with respect to wch2,v2 is

∂L
∂wch2,v2

= −0.013967. Hence, the new weight for the edge
ech2,v2 is (wch2,v2)new = (wch2,v2)old−α× ∂L

∂wch2,v2
= 0.1−

0.1 × (−0.013967) = 0.101396. Continuing this process we
obtain the new weights W as:

(0.101396, 0.099499, 0.182551, 0.169208, 0.39523, 0.185566).

Comparison between the works of [8] and [9] shows that
the former does not perform hard decision till the end of
the last iteration while the latter performs hard decision in
every iteration. Whereas, when it comes to decoding using
SPA we perform hard decision in every iteration. However,
we observed that in each variable node operation if instead
of adding the initial input to the incoming messages we add
the updated LLRs from the previous iteration to the incoming
messages, we obtain better performances. To show this, we
compare the performance curves of two LDPC codes of sizes
10×15 and 63×105 using initial LLRs, C2, C4, respectively,
and using updated LLRs, C1, C3, respectively. The difference
between these curves is noticeable; see Fig. 3.

IV. DEEP LEARNING METHOD TO DECODE LATTICES
CONSTRUCTED BASED ON CONSTRUCTION A

The belief propagation algorithm obtains poor performance
results compared to maximum likelihood algorithms if applied
to HDPC codes. Therefore, to achieve better performances,
we provide a deep neural network decoder for such lattices
constructed based on Construction A. Using the same notation
proposed in [11] and the deep neural network decoder pre-
sented in Section III, we present the lattice decoding algorithm.

We take the volume-to-noise-ratio as VNR = 4(2n−k)/n

2πeσ2 .
Suppose we send the all-zero codeword c. We employ BPSK
modulation to convert c into (−1, . . . ,−1). If the noise n is
distributed as a normal distribution N (0, σ2) with zero mean



and variance σ2, then the transmitted vectors are of the form
y = c+4z+n, [11]. At the first step, z has to be decoded. We
define the decoded z as ẑ = by−(1,...,1)

4 e as an all-one vector
is added during encoding [11]. Now we define ai = yi − 4ẑi,
for 1 ≤ i ≤ n, and put âi = 2 − ai for ai > 1 and ai itself
otherwise. Similar to [11], we need to define the i-th input
LLRs as

`i =
(âi + 1)2

2σ2
− (âi − 1)2

2σ2
. (11)

Considering these LLRs as the received word of the deep
neural network decoder, we decode c with c̃ as its decoded
vector. We convert c̃ to ±1 notation and call the obtained
vector c̃′. Finally, we let ĉi = 2 − c̃′i if ai > 1 and c̃′i
otherwise. Then, the decoded lattice vector is x̂ = ĉ + ẑ.
The stopping criterion in the back-propagation algorithm is
∇L = 0, in other words we can get the trained weights
when the trend of cross entropy changes from downwards to
upwards. In practice, meeting this criterion is computationally
costly. Instead, we impose a second termination condition. We
define a parameter β for the value of cross entropy which
depends on VNR. Therefore, the stopping criteria in our
neural network decoding algorithm for lattices are either: 1) a
change in the trend of the cross entropy, and/or 2) the value
of cross entropy becomes smaller than β. Therefore, the two
parameters α and β determine the speed and precision of the
experiment. The smaller parameters provide a better chance to
train weights although, in this case, we need more time to get
results. The learning rates chosen in [8] and [9] are α = 0.001
and α = 0.003, respectively.

Example 3: We applied our proposed neural network de-
coding algorithm with four iterations to decode Barnes-Wall
lattice BW8 (see [1]). We first determined the culprit edges in
the Tanner graph of the Reed-Muller code, which is used in
construction of BW8. The boldface 1’s correspond to culprit
edges. We train these edges using back-propagation algorithm
to find the best possible weights. For initial weights, we used a
vector of length 33 with normal distribution. We chose α = 0.1
and β = 0.01 for VNR = 1. By assuming weight 1 for each
edge, the bit error rate (BER) is 0.13 and the trained weights
cause an improvement in BER, 0.098. For VNR = 3 and 6,
we let α = 0.1 and β = 0.001 and 5 × (10)−5, respectively.
An error performance comparison for BW8 between SPA in
[11] and our proposed decoding algorithm with four iterations
is shown in Fig. 4. It is clear that by reducing β we can have
better results for different VNR’s.

H =



1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0


(12)

The dependency of simulation results to the choices of pa-
rameters α, β and culprit edges is the topic of our future work.
We also plan to extend neural network decoding algorithms
to lattices constructed based on Construction D and D’ with
underlying HDPC codes such as Reed-Muller codes.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

VNR

10-4

10-3

10-2

10-1

100

B
E

R

BER of the code with weight 1
BER of the code with backpropagation algorithm

Fig. 4. A comparison between the performance of SPA and back-propagation
algorithm.

V. CONCLUSION

In this paper, for the first time, a deep neural network
decoding algorithm was presented for Construction A based
lattices whose parity-check matrices are high-dense and have
high decoding failure rates when iterative algorithms are used
to decode them. In contrast with the neural network decoding
algorithms in the literature, which were proposed for decoding
linear codes and weights for all edges are required to be
trained, we focused on training weights for edges which occur
in most of 4-cycles and are, potentially, the main culprits
of high decoding failure rates. Computer simulations were
conducted to compare the error performance of the proposed
algorithm versus a message passing algorithm.

REFERENCES

[1] E.S. Barnes and N.J.A. Sloane, “New lattice packings of spheres,”
Canad. J. Math., vol. 35, pp. 117–130, 1983.

[2] J.H. Conway and N.J.A. Sloane, “Sphere Packings, Lattices, and
Groups,” Springer Verlag, 1998.

[3] M-R. Sadeghi, A.H. Banihashemi, and D. Panario, “Low-density parity-
check lattices: Construction and decoding analysis,” IEEE Trans. Inf.
Theory, vol. 52, no. 10, pp. 4481–4495, 2006.

[4] Y.S. Choi, I.J. Baik, and S.Y. Chung, “Iterative decoding for low-density
parity-check lattices,” 2008 International Conf. on Adv. Commun. Tech.,
pp. 358-361, 2008.

[5] L. Safarnejad and M-R. Sadeghi, “FFT Based Sum-Product Algorithm
for LDPC Lattices,” IEEE Commun. Letters, vol. 16, no. 9, pp. 1504–
1508, 2012.

[6] G.D. Forney, Jr., M.D. Trott, and S.-Y. Chung, “Sphere-boundachieving
coset codes and multilevel coset codes,” IEEE Trans. Inf. Theory, vol. 46,
no. 3, pp. 820–850, 2000.

[7] E. Viterbo and J.J. Boutros, “A universal lattice decoder for fading
channels,” IEEE Trans. Inf. Theory, vol. 45, pp. 1639–1642, Jul. 1999.

[8] E. Nachmani, Y. Be’ery and D. Burshtein, “Learning to decode linear
codes using deep learning,” 54th Annual Allerton, pp. 341-346, 2016.

[9] E. Nachmani, E. Marciano, L. Lugosch, W.J. Gross, D. Burshtein, and
Y. Be’ery, “Deep Learning Methods for Improved Decoding of Linear
Codes”, IEEE J. Selected Topics in Sig. Proc., vol. 12, no. 1, pp. 119-
131, 2018.

[10] R. Rajosh, “Neural Networks”, Springer-Verlag, Berlin, 1996.
[11] H. Khodaiemehr, M-R. Sadeghi, and A. Sakzad, “Practical encoder and

decoder for power constrained QC-LDPC lattice codes”, IEEE Trans.
Commnu. vol. 65, no. 2, 2017.

[12] V. Corlay, J.J. Boutros, Ph. Ciblat, and L. Brunel, “Neural Lattice
Decoders,” arXiv preprint arXiv: 1807.00592, July 2018.


