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Abstract

We study the rate region of variable-length source-network codes that are used to compute a function of messages observed
over a network. The particular network considered here is the simplest instance of a directed acyclic graph (DAG) that is not a
tree. Existing work on zero-error function computation in DAG networks provides bounds on the computation capacity, which
is a measure of the amount of communication required per edge in the worst case. This work focuses on the average case: an
achievable rate tuple describes the expected amount of communication required on each edge, where the expectation is over the
probability mass function of the source messages.

We describe a systematic procedure to obtain outer bounds to the rate region for computing an arbitrary demand function at the
terminal. Our bounding technique works by lower bounding the entropy of the descriptions observed by the terminal conditioned
on the function value and by utilizing the Schur-concave property of the entropy function. We evaluate these bounds for certain
example demand functions.

I. INTRODUCTION

Computing functions of data observed over a network is a well-motivated problem, and different frameworks addressing the
problem have been studied in the literature. Broadly speaking, a general function computation problem can be modeled in the
following manner. A directed acyclic graph (DAG) is used to model a communication network. Its vertices denote the nodes
of the network that are assumed to have unrestricted computational power and storage capacity. The edges denote one-way
communication links that can be thought of as noiseless bit-pipes. Each node can act as a decoder on the information received
on its incoming edges and as an encoder for information transmitted on its outgoing edges. Some of the nodes in the network,
called the source nodes, observe discrete-valued source messages that take values in a finite alphabet. The random process
generating the source messages is assumed to be stationary and memoryless. There is a single terminal node that wishes to
compute losslessly a discrete-valued function of all the source messages using the information it receives on its incoming edges.
A solution to such a function computation problem will specify the communication carried out on each link and the information
processing performed at each node of the network. We are interested in finding the minimal communication required for solving
a given problem instance. The amount of communication in a network can be specified by a rate tuple that has as many entries
as the number of edges in the network. Each entry denotes the rate of the code employed on the corresponding edge in the
network. As remarked in [1], this problem in its full generality encompasses several different areas in information theory, and
as such, existing literature focuses on simplified versions that highlight different aspects of the problem.

If there is just one encoder and one decoder connected by a noiseless communication link, and the decoder wants to compute
the identity function for the message, then it is a standard source coding problem. When there is some coded side information
available through an additional link at the decoder, then the optimal rate pair is given by the Ahlswede–Körner–Wyner solution
[2, Thm. 10.2]. Extending this one-help-one solution to a two-help-one scenario is not optimal, as was demonstrated for a
particular two-help-one problem instance by Körner and Marton [3].

Consider now the case of two encoders, connected by two separate links to a decoder which is interested in computing the
identity function on the pair of source messages. The optimal rate pair for this distributed source coding problem is known to
be the Slepian–Wolf rate region, and this solution can be extended to multiple encoders each of which are directly connected
to the decoder via a separate link [2, Chap. 10].

In reproducing the source messages at the terminal in the above scenarios, the coding schemes allow for an ε-block error
that can be made as small as desired by choosing asymptotically large block lengths. Concurrently, work on zero-error source
coding with side information was initiated by Witsenhausen [4]. With X being the source message and Y the side information,
he defined a confusability graph GX for X that specifies the realizations of X that must be given distinct codewords by
the encoder in order to attain zero-error. The optimum number of distinct codewords required was shown to be the graph
chromatic number χ(GX); for encoding multiple (say, k) instances it is χ(GkX) where GkX denotes the k-wise AND product
graph of GX . Thus when χ(GkX) < (χ(GX))k, block encoding multiple instances allows one to reduce the number of distinct
codewords required. The above idea along with the p.m.f. of X was used to find the expected number of bits that must be
transmitted by the encoder in [5]. For the case when the codewords are restricted to be prefix-free, their expected length was
shown in [5] to be within one bit of the chromatic entropy Hχ(GX , X) of the probabilistic graph (GX , X). When multiple
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instances are block encoded, the asymptotic per-instance expected codeword length is limk→∞
1
kHχ(G

∨k
X , Xk), where G∨kX

is the k-wise OR product graph of GX . This limit was shown to be the graph entropy of (GX , X) in [5]. More information
about the possible savings due to encoding multiple instances can be found in [6, Sec. XI].

In a function computing problem, the terminal would want to compute a general demand function of the messages and not
necessarily the identity function. Reference [7] considered computing a function on the setup of the source coding with side
information problem, and allowed a vanishing block-error probability. They defined the conditional graph entropy H(GX , X|Y )
for the probabilistic graph (GX , X|Y ) of X given Y and showed that it is equal to the optimal number of bits per-instance of X
that must be communicated by the encoder when asymptotically large block lengths are used. This was extended by the authors in
[8] where they defined a conditional chromatic entropy of a probabilistic graph and showed that limk→∞

1
kHχ(G

∨k
X , Xk|Y k) =

H(GX , X|Y ). This gave a graph coloring procedure to obtain codes with rate close to the lower bound of [7].
Function computation was also considered in the distributed setting where two encoders separately encode X and Y such

that the decoder is able to compute F (X,Y ) losslessly. This scenario is closer to the source coding with side information
problem than the distributed source coding problem because of the following. Any demand function can be computed at the
decoder after communicating each of the source messages to it, thus the Slepian–Wolf region is an inner bound to the rate
region of a function computation problem on the same network. Körner and Marton showed in [3] that if the decoder wants
to decode just Z, then the rate tuple (RX , RY , RZ) = (H(Z), H(Z), 0) is achievable for the case when Z = X ⊕ Y , where
X and Y are a doubly symmetric binary source pair and ⊕ denotes modulo-2 sum. This rate tuple, with RZ = 0, can be
interpreted as the decoder wanting to compute the modulo-2 sum using the information obtained from the X and Y encoders.
This view was taken by Han and Kobayashi in [9] where, subject to the constraint Pr(X = x, Y = y) > 0, ∀(x, y) ∈ X ×Y ,
they gave necessary and sufficient conditions on the demand function F (X,Y ) for which the Slepian–Wolf region for the
source pair (X,Y ) coincides with the rate region of the function computation problem.

The authors in [8] also considered distributed function computation, where they showed that if the joint p.m.f Pr(X =
x, Y = y) for (x, y) ∈ X × Y satisfied a restrictive ‘zigzag’ condition, then coloring the confusability graphs G∨kX and G∨kY
and then using Slepian–Wolf code is optimal for asymptotic block length. This sufficient condition was relaxed in [10] to a
coloring connectivity condition by taking into account the function value. This condition was shown to characterize the rate
region for function computation on one-stage tree-networks. It also gave an inner bound to the rate region of a general tree
network. The rate region for a multi-stage tree-network when every source message at a vertex in the network satisfies a local
Markovian property was characterized in [11]. The function computation scenarios described above all allowed for a vanishing
block-error probability with asymptotically large block lengths.

In this paper, we study the problem of zero-error function computation over a simple DAG network that is not a tree,
shown in Figure 1. We assume that the three source messages are independent and the terminal wants to compute an arbitrary
specified demand function of the messages. We allow for block encoding and decoding of multiple instances at the sources
and the terminal. Even with the independence assumption, characterizing the rate region of this function computation problem
is difficult as was observed in [21], where the problem of computing a particular arithmetic sum demand function on the same
DAG network was considered. We describe works closely related to our problem next.

A. Related work

Zero-error function computation over a graphical network using network coding [12], [13] was studied in [14]. There they
considered two variants of the communication load on the network, called worst-case and average-case complexity, depending
on whether the probability information of the source messages was used or not. They characterized the rate region of achievable
rate tuples that allowed zero-error function computation in tree-networks, each entry in a rate tuple was the rate of a code
employed on the corresponding edge in the tree-network. They also made the observation that finding the rate region of a
DAG network is significantly challenging because of multiple paths between a source node and the terminal, which allows for
different ways of combining information at the intermediate nodes.

Zero-error function computation was also studied in [15], where the authors defined the computation capacity of a function
computation problem instance. This is a generalization of the coding capacity of a network (c.f. [16, Sec. VI], [17]), which is
the supremum of the ratio k

n over all achievable (k, n) fractional coding solutions for that communication network. A (k, n)
fractional network code is one in which k source messages are block encoded at each encoder and every edge in the network
transmits n symbols from the alphabet in one channel use. The authors in [15] characterized the computation capacity of
multi-stage tree-networks by finding the necessary and sufficient amount of information that must be transmitted across all
graph cuts that separate one or more source nodes from the terminal. Upper bounds on the computation capacity of DAG
networks are more complicated and have been obtained in [18], [19]. These upper bounds were shown to be unachievable for
a function computation problem on a particular DAG in recent work [25, Sec. V]. An illuminating example in the search for
improved upper bounds for function computation on DAG networks has been the problem of computing the arithmetic sum of
three source bits over the network shown in figure 1. By counting the necessary and sufficient number of codewords required,
the computation capacity for this problem was evaluated to be log6 4 in [15, Sec. V]. A qualitatively different line of work
considers the computation of simple functions such as finite-field sum [27]–[29] over arbitrary acyclic networks with multiple
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Fig. 1. A directed acyclic network with three sources, two of which also act as relay nodes, and one terminal.

terminals, i.e., there is a set of terminals each of which is interested in recovering a function of certain source messages (see
also [30]–[32]) that discuss the multiple unicast problem which is an important special case of function computation). The
literature in this area examines the role of the network topology in function computation.

While the upper bounds for DAG networks described above hold for the worst-case scenario, the arithmetic sum example
(cf. Example 1 in Section II) shows that we can do better in the average-case scenario by using the probability information
of the source messages. It can be seen that an upper bound to the computation capacity corresponds to an outer bound to
the rate region of a function computation problem. We use the framework of a source-network code as used for zero-error
network coding in [22]. Correspondingly, the quantity of interest here is the zero-error function computation rate region, and
we provide outer bounds to this rate region for computing an arbitrary specified demand function on the network shown in
figure 1. We summarize our contributions below.

B. Main contributions

• We compute lower bounds on the rates that must be used on the edges of the DAG in Figure 1 in order to compute with
zero-error an arbitrary demand function of the messages at the terminal. This provides us an outer bound to the achievable
rate region.

• The technique used for obtaining the lower bounds involves lower bounding the conditional entropy of the descriptions
transmitted on the edges given the demand function value. This is done by first finding a family of p.m.fs. that must
necessarily contain the conditional p.m.f. of the descriptions transmitted by any valid source-network code for the problem.
The required lower bound was then obtained by finding the entropy-minimizing p.m.f. in this family. This p.m.f. was
found using the Schur-concave property of the entropy function.

• Computing the arithmetic sum over the DAG network in figure 1 was considered in [21]. By letting the number of
symbols transmitted across the edges be a random variable N (instead of a fixed n for every k source bits as in the (k, n)
fractional network code framework1), it was shown that the computation rate k

EN = 0.8 is achievable. This is larger than
its computation capacity in the (k, n) fractional code framework, which was evaluated to be log6 4 in [15]. The work in
[21] also gave an upper bound of 8/9 for the computation capacity of this arithmetic sum example in the framework of
variable-length network codes. We recover and improve upon their results in the rate region framework, by obtaining a
tighter outer bound to rate region in this case.

• When the demand function to be computed over the DAG in figure 1 is set to be the GF (2)-sum, we show using a simple
achievable scheme that the outer bound obtained for the rate region is tight.

The paper is organized as follows. Section II describes the problem setup formally and motivates the use of variable-length
network codes as defined in Section II-A. Section III describes the procedure used to obtain outer bounds to the rate region
for computing an arbitrary demand function over the network in Figure 1. Central to our approach are lower bounds to the
conditional entropy of the descriptions transmitted, and these are described and illustrated using a running example in Section
III-A. We also consider two other example demand functions in Sections III-D and III-C. Section IV concludes the chapter
and lists some avenues for future work.

II. PROBLEM FORMULATION

The edges in Figure 1 (later denoted by an ordered pair of vertices) have unit-capacity, i.e., they transmit one symbol from
Z in one time slot. We use the notation of a standard network code from [15]. In what follows, all logarithms denoted as log
are to the base 2 unless specified otherwise. Suppose that Z is the alphabet used for communication, and |Z| > 1. Vertices
s1, s2, s3 are the three memoryless source nodes that observe source messages X1, X2, X3 respectively, each from a discrete

1As described in [21], for finding the computation capacity, it can be assumed w.l.o.g. that the message vector Xk
3 is available to both the encoders at s1

and s2. Then the random variable N is defined as a stopping time w.r.t. the pair of random variables transmitted over the edges (s1, t) and (s2, t).
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alphabet A with size |A| > 1. The sources are assumed to be i.i.d. uniformly distributed over A. Terminal node t wants to
compute with zero error and zero distortion a known demand function:

f : A×A×A → B,

where B is a discrete alphabet of size |B| > 1. To avoid trivialities we assume that the demand function is not constant in any
of its three arguments. A (k, n) network code that satisfies the terminal has the following components.
• An encoding function he(·) associated with every edge e in the network:

h(s3,s1)(Xk
3 ) : Ak → Zn

h(s3,s2)(Xk
3 ) : Ak → Zn

h(s1,t)
(
Xk

1 , h
(s3,s1)(Xk

3 )
)
: Ak ×Zn → Zn

h(s2,t)
(
Xk

2 , h
(s3,s2)(Xk

3 )
)
: Ak ×Zn → Zn

Here, the notation Xk
j , j ∈ {1, 2, 3} denotes a block of k i.i.d. uniform messages observed at source node sj .

• A decoding function ψ(·) used by the terminal t:

ψ
(
h(s1,t)(Xk

1 , h
(s3,s1)(Xk

3 )), h
(s2,t)(Xk

2 , h
(s3,s2)(Xk

3 ))
)
: Zn ×Zn → Bk

With slight abuse of notation we let f(Xk
1 , X

k
2 , X

k
3 ) ∈ Bk denote the k values returned by the demand function

f(X1, X2, X3) when applied component-wise on a block of k i.i.d. (X1, X2, X3) triples. That is,

f(Xk
1 , X

k
2 , X

k
3 ) =

(
f(X

(1)
1 , X

(1)
2 , X

(1)
3 ), f(X

(2)
1 , X

(2)
2 , X

(2)
3 ), . . . , f(X

(k)
1 , X

(k)
2 , X

(k)
3 )

)
,

where X(i)
j denotes the ith component of Xk

j . By the zero-error criterion we have that

Pr
{
ψ
(
h(s1,t)(Xk

1 , X
k
3 ), h

(s2,t)(Xk
2 , X

k
3 )
)
6= f(Xk

1 , X
k
2 , X

k
3 )
}
= 0.

If such a set of encoding and decoding functions exist for a choice of positive integers k and n, we say that the network code
computes the demand function and has computation rate = k log |A|/(n log |Z|). The computation capacity for a particular
demand function is defined to be the supremum of all achievable computation rates.

The above framework is restrictive in the sense that the block length of the network code used (i.e., the value of n) is
the same for each edge in the network. If we know the probability distribution associated with the message random variables
and allow the block length of the network code on edge e be a random variable Ne, then we can compress the descriptions
transmitted on the edges and obtain savings in the expected length E[Ne].

Example 1: Consider the problem of computing the sum over the integers (arithmetic sum) of three messages, i.e. f(X1, X2, X3) =
X1 +X2 +X3, on the network shown in Figure 1. The messages X1, X2, X3 ∈ {0, 1}k and f(X1, X2, X3) ∈ {0, 1, 2, 3}k.
This example was first considered in [15], where they solve it using an optimal network code with Z = {0, 1} that has
computation rate log6 4 ≈ 0.77. The optimal network code transmits the value of X3 on the edges (s3, s1), (s3, s2) and the
values transmitted on the other two edges are as follows, assuming block length k to be a multiple of 2.

h(s1,t)(X1, X3) =

{
X

(i)
1 +X

(i)
3 , for all 1 ≤ i ≤ k/2

X
(i)
1 , otherwise.

h(s2,t)(X2, X3) =

{
X

(i)
2 , for all 1 ≤ i ≤ k/2

X
(i)
2 +X

(i)
3 , otherwise.

The number of bits to be transmitted on the edges using the above encoding functions can be seen to be k(1 + log 3)/2.
Now suppose that the messages are such that each X

(i)
j

i.i.d.∼ Bern(0.5), i.e., they are equally likely random bits. Then both
X

(i)
1 +X

(i)
3 and X(i)

2 +X
(i)
3 in the encoding functions above have a biased distribution and can be compressed. The entropy

H(X
(i)
1 + X

(i)
3 ) = 1.5, and hence its ε-typical set [23] for k/2 instances can be enumerated using 1.5k/2 bits. Thus the

expected number of bits needed to be transmitted in this case can be seen to be

EN(s1,t) = EN(s2,t) = (1− ε)(3k/4 + k/2) + ε(k log2 3 + k/2) ≈ 5k/4,

where the ε can be made small enough using large k. We note that 5/4 < (1 + log 3)/2, and that an analogous definition for
the computation rate of a network code in the variable-length framework would give that k/max{E[N(s1,t)],E[N(s2,t)]} =
0.8 > 0.77.

Example 2: Consider computing the maximum over the integers f(X1, X2) = max{X1, X2}, where X1, X2 ∈ {0, 1}, over
the reverse butterfly network shown in Figure 2. This problem was considered in [25], and they gave an upper bound of 2 for
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Fig. 2. A directed acyclic network with two sources, four relay nodes and one terminal.

the computation rate of any valid network code. They also gave a valid network code with rate 3/2 that has the following
edge functions, assuming block length k to be a multiple of 3.

h(s1,r3)(Xk
1 ) = (X

(1)
1 , X

(2)
1 , . . . , X

(k/3)
1 ),

h(s1,r1)(Xk
1 ) = (X

(1+k/3)
1 , X

(2+k/3)
1 , . . . , X

(k)
1 ),

h(s2,r4)(Xk
2 ) = (X

(1)
2 , X

(2)
2 , . . . , X

(k/3)
2 ),

h(s2,r1)(Xk
2 ) = (X

(1+k/3)
2 , X

(2+k/3)
2 , . . . , X

(k)
1 ),

h(r1,r2)(h(s1,r1)(Xk
1 ), h

(s2,r1)(Xk
2 )) = (max{X(1+k/3)

1 , X
(1+k/3)
2 }, . . . ,max{X(k)

1 , X
(k)
2 }),

h(r2,r3)(h(r1,r2)(h(s1,r1)(Xk
1 ), h

(s2,r1)(Xk
2 ))) = (max{X(1+k/3)

1 , X
(1+k/3)
2 }, . . . ,max{X(2k/3)

1 , X
(2k/3)
2 }),

h(r2,r4)(h(r1,r2)(h(s1,r1)(Xk
1 ), h

(s2,r1)(Xk
2 ))) = (max{X(1+2k/3)

1 , X
(1+2k/3)
2 }, . . . ,max{X(k)

1 , X
(k)
2 }),

h(r3,t)(h(s1,r3)(·), h(r2,r3)(·)) = (h(s1,r3)(·), h(r2,r3)(·)),
h(r4,t)(h(s2,r4)(·), h(r2,r4)(·)) = (h(s2,r4)(·), h(r2,r4)(·)),

where the last two equations state that the edges (r3, t), (r4, t) concatenate their inputs and forward it, and we have omitted
the arguments of certain edge functions (represented by a dot) for brevity.

Now consider the case when each X(i)
j

i.i.d.∼ Bern(0.75), i.e., it takes the value 1 with probability 0.75 and 0 with probability
0.25. Since max{X(i)

1 , X
(i)
2 } has a biased p.m.f., we are able to compress the descriptions transmitted on the edges. We

describe a variable-length network code that has a similar structure, except that the partitioning of the k components of X1

along the edges (s1, r3) and (s1, r1) is different from the 1:2 ratio used before, and it uses typical set encoding. For the
ith component, the entropy values H(X

(i)
j ) ≈ 0.8113 and H(max{X(i)

1 , X
(i)
2 }) ≈ 0.3373 can be verified. Set the value

c , 1/(2− 0.3373/(2 · 0.8113)) ≈ 0.558. Then the description transmitted on the edges (s1, r3) and (s1, r1) are as follows.

h(s1,r3)(X1) = Tε[(X(1)
1 , X

(2)
1 , . . . , X

(k−ck)
1 )]

h(s1,r1)(X1) = Tε[(X(1+k−ck)
1 , X

(2+ck)
1 , . . . , X

(k)
1 )],

where Tε[·] indicates typical set encoding and a similar description of X2 is transmitted on the edges (s2, r1) and (s2, r4).
This partitioning is chosen so as to have the best possible rate within a class of network codes that have the same structure as
the initial network code described, as the following computations indicate.

EN(s1,r1) = EN(s2,r1) = 0.8113 · ck = 0.4527k, EN(s1,r3) = EN(s2,r4) = 0.8113 · (1− c)k = 0.3586k,

EN(r1,r2) = 0.3373 · ck = 0.1882k, EN(r2,r3) = EN(r2,r4) = 0.1882k/2 = 0.0941k,

EN(r3,t) = EN(r4,t) = 0.0941k + 0.3586k = 0.4527k.

Thus we have that k/(maxall edges e E[Ne]) = k/(0.4527k) = 2.209 > 2.
The above examples illustrate the reduction in communication load that can be achieved by using the knowledge of the
probability distribution of the messages. The objective in this paper is to find bounds on rates of variable-length network codes
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that are valid for a given function computation problem. We first define the framework of variable-length network codes as
adapted to the network in Figure 1 next.

A. Variable-length network code for network in Figure 1

We use the Source-Network Code framework as described in [22] and adapt it to the function computation setting described
above. The quantity of interest here is the rate region R, which is a region containing all achievable rate tuples R. Each rate
tuple has four components, one for each edge in the network. We define the source-network code and the admissible rate tuples
below.

Definition 1: Let Z∗ denote the set of all finite-length sequences with alphabet Z . A source-network code Cf,k for computing
f(Xk

1 , X
k
2 , X

k
3 ) in the network of Figure 1 has the following components:

1) Encoding functions for edges e ∈ {(s3, s1), (s3, s2), (s1, t), (s2, t)}:

φ(s3,s1)(X
k
3 ) : Ak → Z∗

φ(s3,s2)(X
k
3 ) : Ak → Z∗

φ(s1,t)
(
Xk

1 , φ(s3,s1)(X
k
3 )
)
: Ak ×Z∗ → Z∗

φ(s2,t)
(
Xk

2 , φ(s3,s2)(X
k
3 )
)
: Ak ×Z∗ → Z∗

For brevity, we denote φ(s1,t)
(
Xk

1 , φ
(s3,s1)(Xk

3 )
)

by the random variable Z1, and similarly define the r.v.s Z2,Z31,Z32.
2) Decoding function for terminal t: ψt : Z∗ ×Z∗ → Bk is such that Pr{ψt(Z1,Z2) 6= f(Xk

1 , X
k
2 , X

k
3 )} = 0.

Thus the outputs of the encoders are variable length, and the terminal is equipped with a decoder that takes in a pair of
variable length inputs and returns without any error the block of k function computations on the message tuple. The rate of
a source-network code is defined below, taking into account the different alphabets in which the messages and the codewords
reside.

Definition 2: R = (R31, R32, R1, R2) is an admissible rate pair for the code Cf,k if for any ε > 0 there exists a sufficiently
large k such that

log |Z|E `(Z1) ≤ k log |A|(R1 + ε)

where E `(Z1) is the expected length (in symbols from Z , and over the probability space of all message realizations) of the
codeword Z1. A similar definition is used for the rates R31, R32 and R2.

III. BOUNDS ON THE RATE REGION FOR NETWORK IN FIGURE 1

We use a lower bound on the expected length of the codewords transmitted on the edges in terms of their entropy. Theorem
3 in [24] gives a lower bound for the expected length of a non-singular code over binary alphabet. The proof of the following
lemma, in Appendix A, adapts their proof procedure for codes over non-binary alphabet Z .

Lemma 1 (Adapted from Theorem 3 in [24]): The expected length (in symbols from an alphabet Z) of the best non-singular
code C?NS(Z) for a random variable Z satisfies the following lower bound:

E ` (C?NS(Z)) ≥ H|Z|(Z)− 2 log|Z|
(
H|Z|(Z) + |Z|

)
.

Since the identity mapping is also a non-singular code for Z, we have that

E `(Z) =
∑
z

Pr{Z = z}`(z) ≥ E ` (C?NS(Z)) . (1)

Because of the zero-error requirement for the decoding function at the terminal, we can give a value for what the sum rate
R31 +R32 must be greater than.

Lemma 2: Consider an equivalence relation on Ak for which x3 ≡ x′3 if and only if for all (x1,x2) ∈ Ak×Ak, we have that
f(x1,x2,x3) = f(x1,x2,x

′
3). Define the function g(Xk

3 ) which returns the equivalence class that Xk
3 belongs to under the

above relation. Then the range of g(Xk
3 ) is a subset of {1, 2, . . . , |A|k} and we have that R31 +R32 ≥ H(g(Xk

3 ))/k log |A|.
Proof: Suppose that H|Z|(g(Xk

3 )|Z31,Z32) > 0, then one cannot obtain g(Xk
3 ) from the pair (Z31,Z32), i.e., there

exist x3 6≡ x′3 but their associated codewords satisfy z31 = z′31 and z32 = z′32. There exists a pair (x1,x2) ∈ Ak × Ak
such that f(x1,x2,x3) 6= f(x1,x2,x

′
3). However, since z31 = z′31 and z32 = z′32, the codewords transmitted on the edges

(s1, t), (s2, t) in the two cases satisfy z1 = z′1 and z2 = z′2. Thus the decoder receives the same input arguments in both the
cases and consequently causes an error.

Thus we have that H|Z|(g(Xk
3 )|Z31,Z32) = 0. That gives us H|Z|(g(Xk

3 )) ≤ H|Z|(Z31)+H|Z|(Z32), and using the upper
bound to the entropy in terms of the expected codeword length (c.f. equation (1) and lemma 1), we have the following.

H|Z|(g(X
k
3 )) ≤E `(Z31) + 2 log|Z|(H|Z|(Z31) + |Z|) + E `(Z32) + 2 log|Z|(H|Z|(Z32) + |Z|),

=⇒ H(g(Xk
3 )) ≤ k(R31 +R32 + ε) log |A|,
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the second inequality uses the definition of rate, and ε can be made small enough because H|Z|(Z31) ≤ H|Z|(X
k
3 ) = k and

similarly for H|Z|(Z32).
Accordingly, in the rest of the paper, we focus on the quantities R1 and R2. Using inequality (1) and Lemma 1, we can
conclude the following for the sum rate R1 +R2.

E `(Z1) + E `(Z2)

2
≥
H|Z|(Z1) +H|Z|(Z2)

2
− log|Z|(H|Z|(Z1) + |Z|)− log|Z|(H|Z|(Z2) + |Z|)

(a)
≥
(
H|Z|(f(X

k
1 , X

k
2 , X

k
3 )) +H|Z|(Z1,Z2|f(Xk

1 , X
k
2 , X

k
3 ))
)
/2

− log|Z|(H|Z|(Z1) + |Z|)− log|Z|(H|Z|(Z2) + |Z|)
(b)
≥
(
H|Z|(f(X

k
1 , X

k
2 , X

k
3 )) +H|Z|(Z1,Z2|f(Xk

1 , X
k
2 , X

k
3 ), X

k
3 )
)
/2

− k
(
log|Z|(H|Z|(Z1) + |Z|) + log|Z|(H|Z|(Z2) + |Z|)

)
/k

=⇒ R1 +R2 + ε

2
≥ E `(Z1) + E `(Z2)

2k log|Z| |A|

≥
α+H|Z|(f(X

k
1 , X

k
2 , X

k
3 ))/k

2 log|Z| |A|
− ε′ for ε, ε′ > 0 and large k, (2)

where inequality (a) is because H(Z1,Z2, f(X
k
1 , X

k
2 , X

k
3 )) = H(Z1,Z2) by the zero error criterion, inequality (b) is true as

conditioning reduces entropy, and implication (2) is true by the value of α obtained in Section III-B, by the definition of rate,
and the fact that H|Z|(Z1) ≤ H(Xk

1 , X
k
3 ) = 2k log|Z| |A| and similarly H|Z|(Z2) ≤ H(Xk

2 , X
k
3 ) = 2k log|Z| |A|.

Focusing on just H|Z|(Zu) for either u = 1 or 2, we have the following inequality.

E`(Zu) ≥ H|Z|(Zu)− 2 log|Z|(H|Z|(Zu) + |Z|)
(a)
≥ H|Z|(Zu|Xk

3 )− 2(log|Z|(H|Z|(Zu) + |Z|))
(b)
≥ γk − 2k(log|Z|(H|Z|(Zu) + |Z|)/k)

=⇒ Ru + ε ≥ log|A| |Z|E`(Zu)/k ≥ γ/ log|Z| |A| − ε′ for large k, (3)

where inequality (a) is true because conditioning reduces entropy. A procedure to obtain the value of γ in inequality (b) will
be described in the next section (c.f. equation (5)).

A. Lower bound on the conditional entropy

In this section we use the structure of the demand function to obtain a lower bound on the conditional entropy of the
descriptions transmitted on the edges (s3, s1) and (s3, s2). This enables us to find the values of α and γ used in the previous
section. To do this, we define quantities which denote the minimum number of distinct (Z1,Z2)-labels that allow the terminal
to recover f(Xk

1 , X
k
2 , X

k
3 ) with zero error. These quantities have been defined generally in [18], [19] and we adapt them

to our particular network instance. Let lowercase letters xj , yj ∈ A denote realizations of the message random variable
Xj , j ∈ {1, 2, 3}. For ease of notation, the ordering of the arguments of f(X1, X2, X3) is ignored and subscripts indicate
which message random variable a particular realization corresponds to.

Definition 3: For two different message realizations (x1, x2, x3), (y1, y2, y3) ∈ A3 such that x3 = y3 , a3, we say2 that
x1

a3≡ y1|1 if and only if f(x1, x2, a3) = f(y1, y2, a3) for all x2 = y2 ∈ A. Similarly, for two different message realizations
(x1, x2, x3), (y1, y2, y3) ∈ A3 such that x3 = y3 , a3, we say that x2

a3≡ y2|2 if and only if f(x1, x2, a3) = f(y1, y2, a3) for
all x1 = y1 ∈ A.
Note that for both u = 1, 2 and any value of a3 , x3 = y3,
• xu = yu implies xu

a3≡ yu|u,
• xu

a3≡ yu|u implies yu
a3≡ xu|u, and

• xu
a3≡ wu|u and wu

a3≡ yu|u implies xu
a3≡ yu|u.

Thus
a3≡ |u is an equivalence relation on A for any demand function f(X1, X2, X3), choice of u ∈ {1, 2} and a3 ∈ A. The

number of equivalence classes of A induced by
a3≡ |u is denoted as Vu(a3) for both u = 1 and 2.

Illustration 1: Throughout the paper we will use a running example to illustrate the various quantities defined. In the network
of Figure 1 we choose the message alphabet to be the finite field of order 3 (denoted GF (3)) and the demand function3 values
are as listed in Table I. From Table Ib we have that 0

1≡ 1|1 and 1
1≡ 2|2. This is because for any value of X2, the entries in

the rows corresponding to X1 = 0 and X1 = 1 in Table Ib are the same, giving 0
1≡ 1|1. A similar statement is true for the

2Read as ‘x1 is a3-equivalent to y1 for the message at s1’.
3Any function from GF (3)3 → GF (3) can be written as a multivariate polynomial in its arguments. Here it is X2

1X
2
2X3 −X2

1X2X2
3 +X1X2

2X
2
3 +

X2
1X2X3 +X1X2

2X3 +X2
1X

2
3 −X2

2X
2
3 +X2

1X3 +X2
2X3 +X1X2

3 −X2X2
3 −X1X3 −X2X3 −X2

3 +X1 −X2 +X3.
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TABLE I
FUNCTION TABLE FOR A DEMAND FUNCTION TO BE COMPUTED OVER THE NETWORK IN FIGURE 1. THE MESSAGE ALPHABET IS A = GF (3). TABLE IA
SHOWS THE FUNCTION VALUES FOR ALL (X1, X2) PAIRS WHEN X3 = 0, TABLE IB SHOWS THE FUNCTION VALUES WHEN X3 = 1 AND TABLE IC SHOWS

THE FUNCTION VALUES WHEN X3 = 2.

X3 = 0
X2

0 1 2
0 0 2 1

X1 1 1 0 2
2 2 1 0

(a)

X3 = 1
X2

0 1 2
0 0 0 0

X1 1 0 0 0
2 1 0 0

(b)

X3 = 2
X2

0 1 2
0 1 1 0

X1 1 1 1 1
2 1 1 1

(c)

columns corresponding to X2 = 1 and X2 = 2 in Table Ib. Since 0
1≡ 1

1

6≡ 2|1, we see that the relation
1≡ |1 partitions the

alphabet A = GF (3) into two equivalence classes i.e. {0, 1} and {2} and hence V1(1) = 2. From Table I one can verify the
following equivalence classes of GF (3) for each kind of relation in the considered demand function.

0≡ |1 : {0} ∪ {1} ∪ {2}, 1≡ |1 : {0, 1} ∪ {2}, 2≡ |1 : {0} ∪ {1, 2}, (4a)
0≡ |2 : {0} ∪ {1} ∪ {2}, 1≡ |2 : {0} ∪ {1, 2}, 2≡ |2 : {0, 1} ∪ {2}. (4b)

Hence for this demand function we have that V1(0) = V2(0) = 3, V1(1) = V2(1) = 2 and V1(2) = V2(2) = 2.
Lemma 3 (Adapted from Lemma 3 in [19]): The source node s1 is the only source disconnected from the terminal if the

edge (s1, t) is removed from the network, even though s3 has a path connecting it to the terminal through the edge (s1, t). A
similar statement also holds for the case of source node s2 and edge (s2, t). For two realizations (x1, x2, x3), (y1, y2, y3) ∈ A3

such that x3 = y3 = a3 a valid network code must transmit different Z1-labels on the edge (s1, t) if x1
a3
6≡ y1|1 and different

Z2-labels labels on the edge (s2, t) if x2
a3
6≡ y2|2.

Thus, for a given realization a3 of X3, what matters is whether the function takes different values for different realizations of
X1 for some value of X2 ∈ A. If it does, then those two realizations of X1 belong to different

a3≡ |1 equivalence classes and
hence by Lemma 3 must have distinct labels transmitted over the edge (s1, t). A similar argument can be made for the labels
transmitted on the (s2, t) edge based on the

a3≡ |2 equivalence class of X2 ∈ A. For either u = 1 or 2, the
a3≡ |u relation has a

natural extension to vector realizations xu ∈ Ak. We then have the following lemma, whose proof is in Appendix B. We use
lowercase boldface to denote vectors whose length is inferred from the context henceforth, like a3 ,

(
a
(1)
3 , a

(2)
3 , . . . , a

(k)
3

)
.

Lemma 4: Consider a block of k independent realizations of X1, X2 and X3 and let a3 ∈ Ak be the realization for Xk
3 .

Then for u ∈ {1, 2}, the number of distinct Zu-labels that must be transmitted on the edge (su, t) to allow the terminal to
recover f(Xk

1 , X
k
2 , X

k
3 ) with zero error is at least Vu(a3) ,

∏k
i=1 Vu(a

(i)
3 ). Equivalently, let

a3≡ |u denote the collection of
equivalence relations of Definition 3 for each component of a3. In this notation, we have that

xu
a3≡ yu|u ⇔ x(j)u

a
(j)
3≡ y(j)u |u, ∀j ∈ {1, 2, . . . , k}.

If x1

a3

6≡ y1|1, then φ(s1,t)(x1,a3) 6= φ(s1,t)(y1,a3), i.e., their Z1 labels must be different. An analogous statement can be
seen to be true for the Z2 label as well.

For either u = 1 or 2 and each i ∈ {1, 2, . . . , k}, the equivalence classes under
a
(i)
3≡ |u are denoted as Cl(j)u (a

(i)
3 ), where the

superscript j ∈ {1, 2, . . . , Vu(a(i)3 )} indexes the classes such that

|Cl(1)u (a
(i)
3 )| ≥ |Cl(2)u (a

(i)
3 )| ≥ · · · ≥ |Cl(Vu(a

(i)
3 ))

u (a
(i)
3 )|.

As described in the proof of Lemma 4, Ak can be partitioned into Vu(a3) =
∏k
i=1 Vu(a

(i)
3 ) partitions based on the value of

a3 for each component. Thus the partitions of Ak under
a3≡ |u can be represented using a index vector v having k components,

each of which satisfies v(i) ∈ {1, 2, . . . , Vu(a(i)3 )} and

xu ∈ Cl(v)u (a3)⇔ x(i)u ∈ Cl(v
(i))

u (a
(i)
3 ), ∀i ∈ {1, 2, . . . , k}.

Similar to the scalar case, we add a subscript t ∈ {1, 2, . . . , Vu(a3)} to get the index vector vt such that the equivalence
classes under

a3≡ |u satisfy
|Cl(v1)

u (a3)| ≥ |Cl(v2)
u (a3)| ≥ · · · ≥ |Cl

(vVu(a3))
u (a3)|.

From the definition, for every t ∈ {1, 2, . . . , Vu(a3)}, we have that Cl(vt)
u (a3) =×k

i=1
Cl(v

(i)
t )

u (a
(i)
3 ), i.e., a cartesian product

of k scalar equivalence classes and accordingly |Cl(vt)
u (a3)| =

∏k
i=1 |Cl

(v
(i)
t )

u (a
(i)
3 )|.
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The following notation is useful in characterizing all valid probability mass functions for Zu for both u = 1, 2 and also
the pair label (Z1,Z2). For any index i of a vector p, we use p[i] to denote the ith component of p when it is arranged in
non-increasing order. For two vectors p, q of the same length l, the vector p is majorized by q, denoted as p ≺ q, if the
following holds.

t∑
i=1

p[i] ≤
t∑
i=1

q[i], for all t = 1, 2, . . . , l − 1, and

l∑
i=1

p[i] =

l∑
i=1

q[i].

As an example, the vector [0.5 0.5] is majorized by [0.25 0.75]. Note that any vector p is majorized by itself.
Lemma 4 gives a lower bound on the number of distinct Z1 and Z2 labels that must be used by a source-network code for

a particular realization of Xk
3 . Using this and the uniform i.i.d. assumption on the messages, we can characterize the set of

valid p.m.f.s for the conditional probability of the Zu label given a realization a3 of the message Xk
3 .

Lemma 5: Let Z≥0 denote the set of non-negative integers and superscript > indicates the transpose operation. Consider the
partitions of Ak induced by the set of relations

a3≡ |u where a3 is a realization of Xk
3 and u = 1 or 2. Let Lu(a3) ≥ Vu(a3)

be the number of distinct Zu labels assigned by an encoding scheme to the |A|k different (Xk
u ,a3) pairs. Define a vector

du(a3) ∈ ZLu(a3)
≥0 as

du(a3) ,
[
|Cl(v1)

u (a3)| |Cl(v2)
u (a3)| · · · |Cl

(vVu(a3))
u (a3)| 0Lu(a3)−Vu(a3)

]>
,

where 0Lu(a3)−Vu(a3) indicates a zero vector of length Lu(a3)− Vu(a3). Then any valid conditional p.m.f. p ∈ RLu(a3) for
Zu given the value of Xk

3 = a3 satisfies p ≺ du(a3)/|A|k.
Proof: We first note that du(a3)/|A|k is a valid p.m.f. as its components are non-negative and sum up to 1. Suppose that

there is an encoding scheme for Zu such that Pr{Zu|Xk
3 = a3} , p ⊀ du(a3)/|A|k. Furthermore let p be supported on

Lu(a3) components. Then the assumption implies that there is a t < Lu(a3) such that
t∑

j=1

p[j] >
1

|A|k
t∑

j=1

d[j]u =
1

|A|k
t∑

j=1

|Cl(vj)
u (a3)|.

Since each realization of Xk
u is equally likely, the RHS in the above equation is the conditional probability given the value

of Xk
3 = a3 of the event that Xk

u belongs to one of the t largest equivalence classes under
a3≡ |u. The LHS is the conditional

probability of observing any of the t most probable Zu labels. Hence the encoding scheme gives a total of t distinct Zu labels
to at least as many (Xk

u ,a3) pairs for which Xk
u belongs to t+1 different equivalence classes under

a3≡ |u. By the pigeonhole
principle, this contradicts lemma 4.
In order to obtain a lower bound on H(Zu|Xk

3 = a3), we use the order-preserving property of the entropy function with respect
to the majorization relation between two vectors [20]. The entropy function H : RLu(a3) → R is a strictly Schur-concave
function [20, Chap. 3], i.e., for two p.m.f.s p, q ∈ RLu(a3) that are not equal to each other under any permutation of their
components, we have that

p ≺ q =⇒ H(p) > H(q).

Thus, from lemma 5, we have that H|Z|(Zu|Xk
3 = a3) ≥ H|Z|(du(a3)/|A|k). The value of γ as used in equation (3) can be

found as follows.

γ ,
1

k

∑
a3∈Ak

Pr(Xk
3 = a3)H|Z|(du(a3)/|A|k) ≤

1

k

∑
a3∈Ak

Pr(Xk
3 = a3)H|Z|(Zu|Xk

3 = a3) =
H|Z|(Zu|Xk

3 )

k
. (5)

Illustration 2: We evaluate the vector d1(a3) for the example function and consequently obtain a lower bound for H(Z1|Xk
3 )

and R1 in this case. As shown in the previous illustration, V1(0) = 3 and V1(1) = V1(2) = 2. Suppose Xk
3 takes the value

a3, where a3 has mt components with value t for t ∈ {0, 1, 2} such that m0 + m1 + m2 = k. For each component

a
(i)
3 ∈ A, i ∈ {1, 2, . . . , k} the scalar equivalence classes under

a
(i)
3≡ |u are given in equations (4a), (4b), and are represented as

below.

Cl(1)u (0) = {0}, Cl(2)u (0) = {1}, Cl(3)u (0) = {2}, for both u = 1, 2 and

Cl
(1)
1 (1) = {0, 1}, Cl

(2)
1 (1) = {2}, Cl

(1)
1 (2) = {1, 2}, Cl

(2)
1 (2) = {0},

Cl
(1)
2 (1) = {1, 2}, Cl

(2)
2 (1) = {0}, Cl

(1)
2 (2) = {0, 1}, Cl

(2)
2 (2) = {2}.
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Accordingly, the total number of partitions

V1(a3) =
∏k
i=1 V1(a

(i)
3 ) =

(∏
i:a

(i)
3 =0

V1(0)
)(∏

i:a
(i)
3 =1

V1(1)
)(∏

i:a
(i)
3 =2

V1(2)
)
= 3m02m1+m2 .

To find the value of |Cl(v1)
1 (a3)|, we pick the scalar partitions for each component that have the largest number of elements

under
0≡ |1,

1≡ |1 and
2≡ |1. From the above equations we get |Cl(v

(i)
1 )

1 (a
(i)
3 )| = 2 if a(i)3 ∈ {1, 2} and |Cl(v

(i)
1 )

1 (a
(i)
3 )| = 1 if

a
(i)
3 = 0. Thus |Cl(v1)

1 (a3)| = 2m1+m2 . Furthermore, since there are 3 different largest equivalence classes under
0≡ |u, we get

that
|Cl(v1)

1 (a3)| = |Cl(v2)
1 (a3)| = · · · = |Cl

(v(3m0 ))

1 (a3)| = 2m1+m2 .

Now, we find the number of realizations x1 whose components do not necessarily belong to the largest scalar equivalence
class at each component. If t ≤ m1 + m2 components of x1 are such that either x(i)1 = 0 ∈ Cl

(2)
1 (a

(i)
3 ) if a(i)3 = 2 or

x
(1)
1 = 2 ∈ Cl

(2)
1 (a

(i)
3 ) if a(i)3 = 1, then the total number of Xk

1 realizations that belong to the same equivalence class as x1

is 2m1+m2−t. Thus we have that

for t = 1: |Cl(v3m0+1)
1 (a3)| = · · · = |Cl

(v
3m0+(m1+m2

1 )3m0
)

1 (a3)| = 2m1+m2−1,

for t = 2: |Cl
(v

3m0+(m1+m2
1 )3m0+1

)

1 (a3)| = · · · = |Cl
(v

3m0+(m1+m2
1 )3m0+(m1+m2

2 )3m0
)

1 (a3)| = 2m1+m2−2,

...

for t = m1 +m2:|Cl
(v

3m0
∑m1+m2−1

l=0 (m1+m2
l )

)

1 (a3)| = · · · = |Cl
(v

3m0
∑m1+m2

l=0 (m1+m2
l )

)

1 (a3)| = 20 = 1.

The above equations determine the components of the vector d1(a3). We can then evaluate H|Z|(d1(a3)/3
k) as

3m0 · 1

3m0

(2
3

)m1+m2
log|Z|

3k

2m1+m2
+ 3m0

(
m1 +m2

1

)
· 1

2 · 3m0

(2
3

)m1+m2
log|Z|

3k

2m1+m2−1

+ 3m0

(
m1 +m2

2

)
· 1

22 · 3m0

(2
3

)m1+m2
log|Z|

3k

2m1+m2−2
+ · · ·+ 3m0

(
m1 +m2

m1 +m2

)
· 1

2m1+m2 · 3m0

(2
3

)m1+m2
log|Z|

3k

20

= (k log|Z| 3− (m1 +m2) log|Z| 2)

(
2

3

)m1+m2
(
1 +

(
m1 +m2

1

)
2−1 + · · ·+

(
m1 +m2

m1 +m2

)
2−m1−m2

)
+ log|Z| 2

(
2

3

)m1+m2
((

m1 +m2

1

)
2−1 + 2

(
m1 +m2

2

)
2−2 + · · ·+ (m1 +m2)

(
m1 +m2

m1 +m2

)
2−m1−m2

)
= (k log|Z| 3− (m1 +m2) log|Z| 2)

(
2

3

)m1+m2
(
3

2

)m1+m2

+ log|Z| 2

(
2

3

)m1+m2m1 +m2

3

(
3

2

)m1+m2

= k log|Z| 3−
2(m1 +m2)

3
log|Z| 2.

It follows that

H|Z|(Z1|Xk
3 ) =

∑
a3

Pr{Xk
3 = a3}H|Z|(Z1|Xk

3 = a3) =

k∑
m1,m2=0,
m1+m2≤k

∑
a3 has m1 1’s,

m2 2’s

Pr{Xk
3 = a3}H|Z|(Z1|Xk

3 = a3)

≥
k∑

m1,m2=0,
m1+m2≤k

k!

3km1!m2!(k −m1 −m2)!

(
k log|Z| 3−

2(m1 +m2)

3
log|Z| 2

)

= k log|Z| 3−
2 log|Z| 2

3

2k3k−1

3k
= k(log|Z| 3−

4

9
log|Z| 2).

Thus the value of γ is (log|Z| 3− 4
9 log|Z| 2) and from equation (3), R1 + ε ≥ log|A| 3− 4

9 log|A| 2 ≈ 0.7196.
To obtain a lower bound on the conditional entropy of the pair of labels as in equation (2), we characterize the family of

valid conditional p.m.f.s for the pair (Z1,Z2) given the values of the demand function f(Xk
1 , X

k
2 , X

k
3 ) and the realization of

the message Xk
3 . Towards this end we first find the number of distinct (Z1,Z2)-labels that must be assigned by the network

code to message tuples that result in a particular value, say, b ∈ Bk of the demand function f(Xk
1 , X

k
2 , X

k
3 ). The set A3(b)

has all possible realizations a3 of Xk
3 that can result in the value of b for the demand function, i.e.,

A3(b) , {a3 ∈ Ak : ∃ x1,x2 ∈ Ak such that f(x1,x2,a3) = b}.

Let M(a3, b) denote the number of distinct (Z1,Z2) pair labels used for message tuples that have Xk
3 = a3 and

f(x1,x2,a3) = b. Consider two message tuples (x1,x2,a3) and (y1,y2,a3) which satisfy f(x1,x2,a3) = f(y1,y2,a3) = b.
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TABLE II
THE SETS V12(a3, b) FOR DIFFERENT VALUES OF a3 AND b IN DIFFERENT ROWS AND COLUMNS RESPECTIVELY.

a3 b = 0 b = 1 b = 2

0 {(Cl
(1)
1 ,Cl

(1)
2 ), (Cl

(2)
1 ,Cl

(2)
2 ), (Cl

(3)
1 ,Cl

(3)
2 )} {(Cl

(1)
1 ,Cl

(3)
2 ), (Cl

(2)
1 ,Cl

(1)
2 ), (Cl

(3)
1 ,Cl

(2)
2 )} {(Cl

(1)
1 ,Cl

(2)
2 ), (Cl

(2)
1 ,Cl

(3)
2 ), (Cl

(3)
1 ,Cl

(1)
2 )}

1 {(Cl
(1)
1 ,Cl

(1)
2 ), (Cl

(1)
1 ,Cl

(2)
2 ), (Cl

(2)
1 ,Cl

(1)
2 )} {(Cl

(2)
1 ,Cl

(2)
2 )} ∅

2 {(Cl
(2)
1 ,Cl

(2)
2 )} {(Cl

(1)
1 ,Cl

(1)
1 ), (Cl

(1)
1 ,Cl

(2)
2 ), (Cl

(2)
1 ,Cl

(1)
2 )} ∅

If either x1

a3

6≡ y1|1 or x2

a3

6≡ y2|2, then the pair of labels (Z1,Z2) assigned to the two message tuples must be different. This
motivates us to define the pair index set:

V12(a3, b) ,

{
(Cl

(vj)
1 ,Cl

(wt)
2 ) : ∃ x1 ∈ Cl

(vj)
1 (a3),x2 ∈ Cl

(wt)
2 (a3) s.t. f(x1,x2,a3) = b,

1 ≤ j ≤ V1(a3), 1 ≤ t ≤ V2(a3)

}
.

The above discussion then implies that M(a3, b) ≥ |V12(a3, b)|. By the definition, if (Cl
(v)
1 ,Cl

(w)
2 ) ∈ V12(a3, b) then for

every i ∈ {1, 2, . . . , k}, the pair of scalar equivalence classes (Cl
(v(i))
1 ,Cl

(w(i))
2 ) ∈ V12(a(i)3 , b(i)).

Illustration 3: Consider block size k = 1 and a realization b = 0 of the demand function of Table I. In the previous
illustration we evaluated that Cl(1)1 (1) = {0, 1}, Cl(2)1 (1) = {2} and Cl

(1)
2 (1) = {1, 2}, Cl(2)2 (1) = {0}. Then we can evaluate

that the pair index set V12(1, 0) = {(Cl(1)1 ,Cl
(1)
2 ), (Cl

(1)
1 ,Cl

(2)
2 ), (Cl

(2)
1 ,Cl

(1)
2 )}. Note that the pair (Cl

(2)
1 ,Cl

(2)
2 ) /∈ V12(1, 0)

as the elements of that pair of equivalence classes do not result in the demand function value of 0, i.e.,

Cl
(2)
1 (1) = {2}, Cl(2)2 (1) = {0} but for x1 = 2, x2 = 0, x3 = 1, f(x1, x2, x3) = 1 6= 0.

Thus in this case we have that |V12(1, 0)| = 3. The other pair index sets are summarized in Table II.
We now explicitly derive a p.m.f. whose entropy is a lower bound to the conditional entropy H(Z1,Z2|f(Xk

1 , X
k
2 , X

k
3 ) =

b, Xk
3 = a3). Let A123(b) ⊆ Ak × Ak × Ak contain all message tuples that are present in the pre-image of the demand

function value of b. We also let A123(b,a3) ⊆ A123(b) denote the subset of message tuples for which the realization of Xk
3

is a3. Suppose that (Cl(v)1 ,Cl
(w)
2 ) ∈ V12(a3, b). The number of different message tuples that cause the membership of the

equivalence class pair (Cl(v)1 ,Cl
(w)
2 ) ∈ V12(a3, b) is denoted as follows.

ha3(v,w) ,
∣∣∣{(x1,x2) : x1 ∈ Cl

(v)
1 (a3),x2 ∈ Cl

(w)
2 (a3), f(x1,x2,a3) = b}

∣∣∣ , (6)

= |Cl(v)1 (a3)| · |Cl(w)
2 (a3)|, (7)

=

k∏
i=1

|Cl(v
(i))

1 (a
(i)
3 )| · |Cl(w

(i))
2 (a

(i)
3 )| =

k∏
i=1

h
a
(i)
3
(v(i), w(i)). (8)

Equality (7) is true above as by Definition 3 every element of an equivalence class under
a3≡ |1 results in the same demand

function value (while the other message x2 is held constant), and since (Cl
(v)
1 ,Cl

(w)
2 ) ∈ V12(a3, b), there is at least one x1 ∈

Cl
(v)
1 (a3) and one x2 ∈ Cl

(w)
2 (a3) such that f(x1,x2,a3) = b. Hence every other pair of elements in Cl

(v)
1 (a3)×Cl

(w)
2 (a3)

would also result in the same demand function value with Xk
3 = a3.

Illustration 4: For block size k = 1 and demand function realization b = 0, we can check that A3(0) = {0, 1, 2}. Following
the indexing of the equivalence partitions and Table II we have that h1(1, 1) = |Cl(1)1 (1)| · |Cl(1)2 (1)| = 4 as Cl

(1)
1 (1) = {0, 1}

and Cl
(1)
2 (1) = {1, 2}. One can similarly check that h1(1, 2) = h1(2, 1) = 2 and for other values of a3, that h0(1, 1) =

h0(2, 2) = h0(3, 3) = 1 and h2(2, 2) = 1.
For block size k = 3 and b = (1, 2, 1) we can check that a3 = (0, 0, 1) ∈ A3(b). Then the equivalence class pairs under a3

that result in this b can be obtained in the following manner. If (Cl
(v)
1 ,Cl

(w)
2 ) ∈ V12(a3, b), then for each component, using

Table II we have that
• (Cl

(v(1))
1 ,Cl

(w(1))
2 ) ∈ V12(a(1)3 , b(1)) = V12(0, 1) = {(Cl(1)1 ,Cl

(3)
2 ), (Cl

(2)
1 ,Cl

(1)
2 ), (Cl

(3)
1 ,Cl

(2)
2 )},

• (Cl
(v(2))
1 ,Cl

(w(2))
2 ) ∈ V12(a(2)3 , b(2)) = V12(0, 2) = {(Cl(1)1 ,Cl

(2)
2 ), (Cl

(2)
1 ,Cl

(3)
2 ), (Cl

(3)
1 ,Cl

(1)
2 )},

• (Cl
(v(3))
1 ,Cl

(w(3))
2 ) ∈ V12(a(3)3 , b(3)) = V12(1, 1) = {(Cl(2)1 ,Cl

(2)
2 )}.

As (Cl
(v)
1 ,Cl

(w)
2 ) = (×3

i=1
Cl

(v(i))
1 ,×3

i=1
Cl

(w(i))
2 ), we get that |V12(a3, b)| = 9. One of these nine equivalence class pairs is

the pair (Cl((1,1,2))1 ,Cl
((3,2,2))
2 ). Then using equation (8) we have that

h(0,0,1)((1, 1, 2), (3, 2, 2)) = h0(1, 3) · h0(1, 2) · h1(2, 2) = 1 · 1 · 1 = 1.

The proof of the following lemma is similar in spirit to that of Lemma 5.
Lemma 6: For any a3 ∈ A3(b), define the vector

hb,a3
,
[
ha3

((v,w)1) ha3
((v,w)2) · · · ha3

(
(v,w)|V12(a3,b)|

)
0M(a3,b)−|V12(a3,b)|

]>
,
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where 0t indicates a vector of zeros of length t and subscript j in (v,w)j indexes all the equivalence class pairs such that

ha3
((v,w)1) ≥ ha3

((v,w)2) ≥ · · · ≥ ha3

(
(v,w)|V12(a3,b)|

)
.

Then all conditional probability mass functions p ∈ RM(a3,b)
≥0 on M(a3, b) valid (z1, z2)-labels given the value b of the

demand function and the realization a3 of Xk
3 satisfy p ≺ hb,a3

/|A123(b,a3)|.
It will be useful for analysis to define the following index sets of a demand function realization b ∈ Bk and the message

realization a3 ∈ A3(b).
Definition 4: For every p ∈ B, let Ip(b) ⊆ {1, 2, . . . , k} be the index set of components of the demand function realization

b that are equal to p, i.e.,
Ip(b) = {i : b(i) = p, i ∈ {1, 2, . . . , k}}.

We can similarly define the index set Jq(x3) for every q ∈ A.
Illustration 5: We evaluate H(hb,a3

/|A123(b,a3)|) for a general block length k of the example demand function. To specify
hb,a3

, we need to find |V12(a3, b)| and ha3
((v,w)j) for all j ∈ {1, 2, . . . , |V12(a3, b)|}. Suppose the realization b ∈ {0, 1, 2}k

has m1 1’s, m2 2’s and k −m1 −m2 0’s, and the realization of Xk
3 is some a3 ∈ A3(b). Let tp,q for any p ∈ B, q ∈ A be

defined as tp,q , |Ip(b) ∩ Jq(a3)|. Note that t2,1 = t2,2 = 0 for any choice of b and a3.
a) |V12(a3, b)|: We find the number of non-zero components of hb,a3

, i.e. |V12(b,a3)|, as follows. For every (Cl
(v)
1 ,Cl

(w)
2 ) ∈

V12(a3, b), we have from Table II that for the index i,
• if i ∈ (I0(b) ∩ J2(a3)) ∪ (I1(b) ∩ J1(a3)), there is only one possible choice for the scalar equivalence class pair

(Cl
(v(i))
1 ,Cl

(w(i))
2 ),

• else if i is not in the previous index set, then there are three possible choices for the scalar equivalence class pair
(Cl

(v(i))
1 ,Cl

(w(i))
2 ).

Thus the total number of equivalence class pairs for for the choice of b and a3 is |V12(a3, b)| = 3k−t0,2−t1,1 . Next we evaluate
the components of the vector hb,a3 .

b) ha3((v,w)1): Based on the subscript indexing of the pair (v,w) and equation (8), the value of ha3((v,w)1) is
obtained by counting the number of message tuples in the equivalence class pair that has the largest scalar equivalence class
pair for each component. As evaluated in the previous illustration, the largest equivalence class pair for every i ∈ I0(b)∩J1(a3)
has h1(1, 1) = 4 message tuples, and for every i ∈ I1(b)∩J2(a3) the largest equivalence class again has h2(1, 1) = 4 message
tuples. For all other values of i, the largest equivalence class has a single input tuple. Hence we have that ha3

((v,w)1) =
4t0,1+t1,2 . Note that there are three different choices for the largest scalar equivalence class when i belongs to one of the
following sets.
• i ∈ I0(b) ∩ J0(a3): there are t0,0 = k −m1 −m2 − t0,1 − t0,2 such components,
• i ∈ I1(b) ∩ J0(a3): there are t1,0 = m1 − t1,1 − t1,2 such components, and
• i ∈ I2(b) ∩ J0(a3): there are t2,0 = m2 such components.

Thus there are 3k−m1−m2−t0,1−t0,2 · 3m1−t1,1−t1,2 · 3m2 = 3k−t0,1−t0,2−t1,1−t1,2 components of hb,a3 which have the same
value. Let k′ , k − t0,1 − t0,2 − t1,1 − t1,2. Hence we have that

ha3((v,w)1) = ha3((v,w)2) = · · · = ha3((v,w)3k′ ) = 4t0,1+t1,2 .

c) ha3((v,w)c) for c > 3k
′
: Next we consider the case when not every component of a message tuple (x1,x2) ∈

Cl
(v)
1 × Cl

(w)
2 is present in the largest scalar equivalence class pair. Suppose that (Cl(v)1 ,Cl

(w)
2 ) is such that

• at u0 indices from I0(b) ∪ J1(a3), the equivalence class pair is either (Cl(1)1 ,Cl
(2)
2 ) or (Cl(2)1 ,Cl

(1)
2 ), and

• at u1 indices from I1(b) ∪ J2(a3), the equivalence class pair is either (Cl(1)1 ,Cl
(2)
2 ) or (Cl(2)1 ,Cl

(1)
2 ).

Let c > 3k
′

be the index in hb,a3 corresponding to this equivalence class pair. We have that h1(1, 2) = h1(2, 1) = 2 and
h2(1, 2) = h2(2, 1) = 2. Then we get that

h
(c)
b,a3

= ha3((v,w)c) = 4t0,1−u0+t1,2−u1 · 2u0+u1 =
4t0,1+t1,2

2u0+u1
.

Thus the number of components of hb,a3
that have the same value as h(c)b,a3

are(
t0,1
u0

)
2u0

(
t1,2
u1

)
2u13k

′
.

Thus, the vector hb,a3
is as follows, where u0 and u1 are indices satisfying 1 ≤ u0 ≤ t0,1 and 1 ≤ u1 ≤ t1,2.

hb,a3 =
[
4t0,1+t1,2 · · · 4t0,1+t1,2︸ ︷︷ ︸

3k′

· · · 4t0,1+t1,2

2u0+u1
· · · 4t0,1+t1,2

2u0+u1︸ ︷︷ ︸
(t0,1u0

)2u0(t1,2u1
)2u13k′

· · · 4t0,1+t1,2

2t0,1+t1,2
· · · 4t0,1+t1,2

2t0,1+t1,2︸ ︷︷ ︸
2t0,12t1,23k′

]>
. (9)
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Using Table I, the cardinality of the pre-image set |A123(b,a3)| = 3t0,08t0,11t0,23t1,01t1,18t1,23t2,0 = 3k
′
8t0,1+t1,2 . Using this,

we can find the value of the entropy as follows.

H|Z|(hb,a3
/|A123(b,a3)|)

=

t0,1∑
u0=0

t1,2∑
u1=0

(
t0,1
u0

)
2u0

(
t1,2
u1

)
2u13k

′ 4t0,1+t1,2

2u0+u13k′8t0,1+t1,2
log|Z|

(
2u0+u13k

′
8t0,1+t1,2

4t0,1+t1,2

)

=
(t0,1 + t1,2) log|Z| 2 + k′ log|Z| 3

2t0,1+t1,2

t0,1∑
u0=0

t1,2∑
u1=0

(
t0,1
u0

)(
t1,2
u1

)
+

log|Z| 2

2t0,1+t1,2

t0,1∑
u0=0

t1,2∑
u1=0

(
t0,1
u0

)
u0

(
t1,2
u1

)

+
log|Z| 2

2t0,1+t1,2

t0,1∑
u0=0

t1,2∑
u1=0

(
t0,1
u0

)
u1

(
t1,2
u1

)
= k′ log|Z| 3 + 1.5(t0,1 + t1,2) log|Z| 2

= k log|Z| 3 + (1.5 log|Z| 2− log|Z| 3)(t0,1 + t1,2)− (t0,2 + t1,1) log|Z| 3. (10)

B. Value of α

Having evaluated H(hb,a3/|A123(b,a3)|), we can find the value of α as used in equation (2) in the following manner.

H(Z1,Z2|f(Xk
1 , X

k
2 , X

k
3 ), X

k
3 )

=
∑
b

Pr{f(Xk
1 , X

k
2 , X

k
3 ) = b}

∑
x3

Pr{Xk
3 = x3|f(Xk

1 , X
k
2 , X

k
3 ) = b}H(Z1,Z2|f(Xk

1 , X
k
2 , X

k
3 ) = b, Xk

3 = x3)

≥
∑
b

Pr{f(Xk
1 , X

k
2 , X

k
3 ) = b}

∑
x3

Pr{Xk
3 = x3|f(Xk

1 , X
k
2 , X

k
3 ) = b}H(hb,a3

/|A123(b,a3)|) , αk. (11)

The value of Pr{f(Xk
1 , X

k
2 , X

k
3 ) = b} can be found from Table I and the i.i.d. uniform assumption on the message tuples.

The value of Pr{Xk
3 = x3|f(Xk

1 , X
k
2 , X

k
3 ) = b} can be evaluated by finding the ratio of the cardinalities of two pre-image

sets, i.e., |A123(b,x3)|/|A123(b)|. We carry out this computation for the illustrated demand function below.
Illustration 6: Consider a realization b with m1 1’s, m2 2’s and k−m1−m2 0’s. Then we have that Pr{f(Xk

1 , X
k
2 , X

k
3 ) =

b} = (12/27)m1(3/27)m2(12/27)k−m1−m2 . The number of different demand function realizations which have the same
number of 1’s, 2’s and 0’s is

(
k

m1,m2,k−m1−m2

)
. Consider a realization a3 ∈ A3(b) of the message Xk

3 . The number of
message tuples that result in the demand function value b and have their Xk

3 realization as a3 is |A123(b,a3)| = 3k
′
8t0,1+t1,2 ,

as evaluated in the previous illustration. The number of message tuples in the pre-image set A123(b) can be evaluated using
Table I as |A123(b)| = 12m13m212k−m1−m2 = 3k4k−m2 . Because of the uniform i.i.d. assumption, we have that

Pr{Xk
3 = a3|f(Xk

1 , X
k
2 , X

k
3 ) = b} = |A123(b,a3)|

|A123(b)|
=

3k
′
8t0,1+t1,2

3k4k−m2

= (1/4)k−m1−m2−t0,1−t0,2(2/3)t0,1(1/12)t0,2(1/4)m1−t1,1−t1,2(2/3)t1,2(1/12)t1,1 .

Using equations (11), (10) and the probabilities computed above, the value of α is found in Appendix C to be

α =
8

9
log|Z| 2 +

4

12
log|Z| 3. (12)

Using this value of α in equation (2), we get that

R1 +R2

2
+ ε ≥

α+
(
log|Z| 9− 8

9 log|Z| 4
)

2 log|Z| |A|
=

8
9 log|A| 2 +

1
3 log|A| 3 + 2 log|A| 3− 16

9 log|A| 2

2
≈ 1.7725

2
.

C. Example demand function: sum over GF (2)

Suppose the messages X1, X2, X3 ∈ {0, 1} and the terminal wants to compute their finite field sum over GF (2). For
this demand function, we demonstrate that the outer bound to the rate region is tight. We assume that the alphabet used for
communication is Z = {0, 1}. For X3 we have that 0 6≡ 1, and thus for a function g(Xk

3 ) that returns the equivalence class
that Xk

3 belongs to, we have that H(g(Xk
3 )) = k. Thus from Lemma 2 we get that R31 +R32 ≥ 1.

For Xu, u = 1 or 2, using the values of the finite field sum, we obtain the following partitions
0≡ |u : {0} ∪ {1} and

1≡ |u : {0} ∪ {1}.
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Thus, for a GF (2)-sum realization b and a3 ∈ A3(b), the equivalence classes satisfy |Cl(v)1 (a3)| = |Cl(w)
2 (x3)| = 1 for

any class index v or w and V1(a3) = V2(a3) = 2k. Thus the vector du(a3) defined in Lemma 5 is 12k , and hence
H(du(a3)/2

k) = k, giving us the value of γ as

γ = 1 =⇒ Ru + ε ≥ 1.

For any value of Xk
1 , X

k
3 and f(Xk

1 , X
k
2 , X

k
3 ) the value of Xk

2 is fixed by Xk
2 = f(Xk

1 , X
k
2 , X

k
3 ) − Xk

1 − Xk
3 , where the

subtraction operations are also over GF (2). Hence we have that

ha3
(v,w) = 1 for every a3 ∈ A3(b) and every (Cl

(v)
1 ,Cl

(w)
2 ) ∈ V12(a3, b).

We enumerate the different (X1, X2) pairs that result in b(i) for the realization a(i)3 in different cases as below.
• If i ∈ I0(b) ∩ J0(a3): (X1, X2) ∈ {(0, 0), (1, 1)}.
• If i ∈ I0(b) ∩ J1(a3): (X1, X2) ∈ {(0, 1), (1, 0)}.
• If i ∈ I1(b) ∩ J0(a3): (X1, X2) ∈ {(0, 1), (1, 0)}.
• If i ∈ I1(b) ∩ J1(a3): (X1, X2) ∈ {(0, 0), (1, 1)}.

Since there are two choices in each case, we have that |A123(b,a3)| = 2k. Thus we have that hb,a3
/|A123(b,a3)| = 12k/2

k

which gives the value of α as

α = 1 =⇒ (R1 +R2)/2 + ε ≥ (1 +H(f(Xk
1 , X

k
2 , X

k
3 ))/k)/2 = (1 + k/k)/2 = 1.

We describe simple network code that allows t to compute the GF (2)-sum by carrying out the componentwise addition
Z1(X

k
1 ,Z31(X

k
3 )) +Z2(X

k
2 ,Z32(X

k
3 )). The codewords used, for any c ∈ Z≥0 such that c ≤ k, are

Z31(X
k
3 ) = (X

(1)
3 , X

(2)
3 , . . . , X

(c)
3 ), Z32(X

k
3 ) = (X

(c+1)
3 , X

(c+2)
3 , . . . , X

(k)
3 ),

Z1(X
k
1 ,Z31(X

k
3 )) = (X

(1)
1 +X

(1)
3 , . . . , X

(c)
1 +X

(c)
3 , X

(c+1)
1 , . . . , X

(k)
1 ),

Z2(X
k
2 ,Z32(X

k
3 )) = (X

(1)
2 , . . . , X

(c)
2 , X

(c+1)
2 +X

(c+1)
3 , . . . , X

(k)
2 +X

(k)
3 ).

All operations above are over GF (2). Then E`(Z31) = c,E`(Z32) = k−c. If X1, X3 ∼ Unif{0, 1} then X1+X3 ∼ Unif{0, 1}
and similarly for X2 +X3. Hence E`(Z1) = E`(Z2) = k. These imply that the rate tuple achieved is

(R31, R32, R1, R2) = (c/k, 1− c/k, 1, 1),

which matches the lower bounds derived above.

D. Example demand function: arithmetic sum

Suppose the message alphabet is A = {0, 1}, such that the messages X1, X2, X3 are independent bits each equally likely
to be 0 or 1. The demand function f(X1, X2, X3) = X1 +X2 +X3 is the sum of the messages over the integers, such that
B = {0, 1, 2, 3}. We use the codeword alphabet Z = {0, 1}. This case of arithmetic sum computation in the variable-length
network code framework was considered in [21] and we recover the results there in our general framework. For a given value
of the arithmetic sum b ∈ {0, 1, 2, 3}k the set A3(b) of valid realizations for Xk

3 can be described as

A3(b) = {a3 ∈ {0, 1}k : a
(i)
3 = 0 if b(i) = 0 and a(j)3 = 1 if b(j) = 3 for all i, j ∈ {1, 2, . . . , k}}.

We consider the equivalence relation
a3≡ |1 for the arithmetic sum demand function. Then

x1
a3≡ y1|1 ⇔ x1 = y1,

because if x1 6= y1 then for all x2 ∈ {0, 1}k we have that x1 + x2 + a3 6= y1 + x2 + a3. A similar conclusion also holds
true for the

a3≡ |2 relation. Thus for both u = 1 and 2, we have that |Cl(v)u (a3)| = 1 for any class index v and Vu(a3) = 2k.
We use the alphabet Z = {0, 1} for communication. The vector du(a3) defined in Lemma 5 satisfies du(a3) = 12k in this
case, where 1t indicates a vector of ones with length t. Using this in equation (5), we obtain the value of γ as

γ =
1

k

∑
a3∈Ak

Pr{Xk
3 = a3}H|Z|

(du(a3)

|A|k
)
=

1

k
· k = 1,

and thus Ru + ε ≥ 1/ log|Z| |A| = 1.
For any value of Xk

1 , X
k
3 and f(Xk

1 , X
k
2 , X

k
3 ) the value of Xk

2 is fixed by Xk
2 = f(Xk

1 , X
k
2 , X

k
3 )−Xk

1 −Xk
3 . Hence, for

every (Cl
(v)
1 ,Cl

(w)
2 ) ∈ V12(a3, b) there is exactly one message tuple whose Xk

1 and Xk
2 belong to the equivalence classes

Cl
(v)
1 (a3) and Cl

(w)
2 (a3) respectively. Thus we have that

ha3
(v,w) = 1 for every a3 ∈ A3(b) and every (Cl

(v)
1 ,Cl

(w)
2 ) ∈ V12(a3, b).
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Consider an arithmetic sum realization b with m0 0’s, m1 1’s, m2 2’s and k−m0−m1−m2 3’s. Define tp,q , |Ip(b)∩Jq(a3)|
for every p ∈ {0, 1, 2, 3} and q ∈ {0, 1}. Then for any choice of b and a3 ∈ A3(b), t0,1 = t3,0 = 0. The cardinality of the
pre-image set |A123(b,a3)| = 2t1,0+t2,1 = 2t1,0+m2−t2,0 . The value of the entropy H(hb,a3/|A123(b,a3)|) = t1,0+m2− t2,0.
From the function definition, we can check that |A123(b)| = 3m1+m2 . Thus we have that

Pr{Xk
3 = x3|f(Xk

1 , X
k
2 , X

k
3 ) = b} = |A123(b,a3)|

|A123(b)|
=

2t1,0+m2−t2,0

3m1+m2
.

Then the value of α can be found as follows.

αk =
∑
b

Pr{f(Xk
1 , X

k
2 , X

k
3 ) = b}

∑
a3∈A3(b)

Pr{Xk
3 = a3|f(Xk

1 , X
k
2 , X

k
3 ) = b}H(hb,a3

/A123(b,a3))

=
∑
b

Pr{f(Xk
1 , X

k
2 , X

k
3 ) = b}

m1∑
t1,0=0

m2∑
t2,0=0

m1!(2/3)
t1,0(1/3)m1−t1,0

t1,0!(m1 − t1,0)!
m2!(2/3)

m2−t2,0(1/3)t2,0

t2,0!(m2 − t2,0)!
(t1,0 +m2 − t2,0)

=

k∑
m1=0

k−m1∑
m2=0

k!2k−m1−m2

m1!m2!(k −m1 −m2)!

(
1

8

)k−m1−m2
(
3

8

)m1+m2 2(m1 +m2)

3

=
2/3

4k

k∑
m1=0

k−m1∑
m2=0

k!(m1 +m2)

m1!m2!(k −m1 −m2)!

(
3

2

)m1+m2

=
2/3

4k
2 · 3

2
k4k−1 = 0.5k.

Putting this value of α in equation (2), we get that

R1 +R2

2
+ ε ≥ 0.5 + 3− 0.75 log 3

2
≈ 2.31128

2
.

Remark 1: We note that the lower bound for the sum rate shown above is tighter than the bound R1+R2 > 2.25 obtained in
[21] for the same problem. The inequalities considered there were similar to those used in arriving at the sum rate lower bound
in equation (2), however, in [21] they did not include Xk

3 in the conditioning while lower bounding H(Z1,Z2|f(Xk
1 , X

k
2 , X

k
3 ))

as done here. Instead, they directly lower bounded H(Z1,Z2|f(Xk
1 , X

k
2 , X

k
3 )) using a so-called clumpy distribution, which is

a p.m.f. that majorizes any valid conditional p.m.f. of the pair (Z1,Z2) given f(Xk
1 , X

k
2 , X

k
3 ). Since only a lower bound to

the entropy of the clumpy distribution was obtained in [21], the corresponding lower bound for the sum rate ends up being
looser than the value we obtain here.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a procedure to obtain an outer bound for the rate region (in the setup of [22]) for computing
a function with zero-error over a simple DAG network. The demand function can be an arbitrary discrete-valued function and
only needs to be specified as a function table. For computing the arithmetic sum, we show that the outer bound obtained is
tighter than the one in [21]. For computing the GF (2)-sum, we show that the lower bounds for the rate tuple obtained using
our procedure can also be achieved by a simple network code. Our method uses the equivalence relations defined in [19] as
adapted to the specific DAG network considered here. Assuming a independent, uniform probability distribution for each of the
messages, we compute the probability that the messages belong to a particular equivalence class. These are used in obtaining
a lower bound to the conditional entropy of the descriptions transmitted on the edges, which imply an outer bound to the rate
region.

There are several opportunities for future work. Our investigation reveals that the analysis of even very simple, non-tree
networks require the usage of fairly nontrivial techniques. Nevertheless, it is evident that taking into account the compressibility
of the sources allows for higher computation rates. It would be interesting to consider the application of our techniques (or
simplifications thereof) to more complicated topologies. It may also be fruitful to consider specific functions of interest for
which the equivalence classes (used extensively in Section III) have a simpler characterization.
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APPENDIX A
PROOF OF LEMMA 1

Proof: Let l1 ≤ l2 ≤ · · · ≤ lmax be the lengths over Z of the best non-singular code for Z. We demonstrate a
function g such that the set of lengths {g(li) : i = 1, 2, . . .} satisfy Kraft’s inequality, i.e.,

∑∞
i=1 |Z|−g(li) ≤ 1. Choose

g(li) , li+2blog|Z|(li+ |Z|− 1)c. Since there are |Z|li different non-singular codewords with length li and if lmax > li then
all of them must have been used in the best non-singular code, we have that∑

i

|Z|−li−2blog|Z|(li+|Z|−1)c =
lmax∑
l1

|Z|li |Z|−li−2blog|Z|(li+|Z|−1)c ≤
∞∑
l=1

|Z|−(2blog|Z|(l+|Z|−1)c)

=

|Z|2−|Z|∑
l=1

1

|Z|2
+

|Z|3−|Z|∑
l=|Z|2−|Z|+1

1

|Z|4
+

|Z|4−|Z|∑
l=|Z|3−|Z|+1

1

|Z|6
+ · · ·

=
|Z| − 1

|Z|
+
|Z| − 1

|Z|2
+
|Z| − 1

|Z|3
+ · · · = 1.

The above is also true if lmax → ∞. Thus there exists an uniquely decodable code for Z whose codeword lengths are
{dg(li)e : i = 1, 2, . . .}. Using random variable ` to denote the lengths of the codewords in the best non-singular code for Z,
we have that

H|Z|(Z) ≤ E(`+ 2blog|Z|(`+ |Z| − 1)c) ≤ E `+ 2E log|Z|(`+ |Z| − 1)
(i)
≤ E `+ 2 log|Z|(E `+ |Z| − 1)

≤ E `+ 2 log|Z|(1 +H|Z| + |Z| − 1) =⇒ E ` ≥ H|Z|(Z)− 2 log|Z|(|Z|+H|Z|(Z)),

where inequality (i) above is true due to Jensen’s inequality.

http://arxiv.org/abs/1710.02252
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APPENDIX B
PROOF OF LEMMA 4

Proof: We use the same argument for u = 1 and 2. Partition the set Ak into
∏k
i=1 Vu(a

(i)
3 ) disjoint subsets based on the

equivalence relation
a
(i)
3≡ |u in each component i ∈ {1, 2, . . . , k}. Every element (x(1)u , x

(2)
u , . . . , x

(k)
u ) ∈ Ak belongs to a subset

in the partition. Suppose the number of distinct Zu-labels transmitted on (su, t) is strictly less than
∏k
i=1 Vu(a

(i)
3 ). Then by

the pigeon-hole principle, there exist two elements xu , (x
(1)
u , x

(2)
u , . . . , x

(k)
u ) and yu , (y

(1)
u , y

(2)
u , . . . , y

(k)
u ) that belong to

different equivalence relation subsets of Ak but are given the same Zu-label. Let J ⊆ {1, 2, . . . , k} be the index set collecting

all indices j such that x(j)u
a
(j)
3

6≡ y
(j)
u |u Since xu and yu belong to different equivalence relation partitions, J 6= ∅ and for every

j ∈ J there exists, by definition, a a(j)v ∈ A, v ∈ {1, 2} \ u such that

f
(
x(j)u , a(j)v , a

(j)
3

)
6= f

(
y(j)u , a(j)v , a

(j)
3

)
.

Then consider the following two different scenarios of k independent message realizations.

(I) Xk
u = xu, X

k
v = xv, X

k
3 = a3

(II) Xk
u = yu, X

k
v = xv, X

k
3 = a3,

where xv is such that x(j)v = a
(j)
v for every j ∈ J . Note that the realizations of Xk

v and Xk
3 are the same in both cases, and

hence so is the label transmitted on the (sv, t) edge. On the other hand, by assumption we have that the label transmitted on
the edge (su, t) is the same in both cases as well. Then the terminal cannot recover the correct value of the demand function
for the components in the set J , as the (Z1,Z2)-labels received are the same but the function values at the components in
J are different by choice of xu,yu. This contradicts the fact that the network code allows t to recover f(Xk

1 , X
k
2 , X

k
3 ) with

zero error. The two scenarios considered above have xu
a3

6≡ yu|u and thus also give a proof for the second statement of the
lemma.

APPENDIX C
CALCULATION FOR EQUATION (12)

Using equations (11), (10) and the probabilities computed in illustration 6, we can find the value of α as follows.

αk

=
∑
b

Pr{f(Xk
1 , X

k
2 , X

k
3 ) = b}

∑
x3∈A3(b)

Pr{Xk
3 = x3|f(Xk

1 , X
k
2 , X

k
3 )=b}

(
k log|Z| 3− (t0,2 + t1,1) log|Z| 3

+(1.5 log|Z| 2− log|Z| 3)(t0,1 + t1,2)
)

=
∑
b

Pr{f(Xk
1 , X

k
2 , X

k
3 ) = b}

[
k log|Z| 3

+

m1∑
t1,1=0

m1−t1,1∑
t1,2=0

(
m1

t1,1, t1,2,m1 − t1,1 − t1,2

)
(
1

4
)m1−t1,1−t1,2(

2

3
)t1,2(

1

12
)t1,1((log|Z|

21.5

3
)t1,2 − t1,1 log|Z| 3)

·
k−m1−m2∑
t0,1=0

k−m1−m2−t0,1∑
t0,2=0

(
k −m1 −m2

t0,1, t0,2, k −m1 −m2 − t0,1 − t0,2

)
(
1

4
)k−m1−m2−t0,1−t0,2(

2

3
)t0,1(

1

12
)t0,2

+

k−m1−m2∑
t0,1=0

k−m1−m2−t0,1∑
t0,2=0

(
k −m1 −m2

t0,1, t0,2,m1 − t0,1 − t0,2

)
(
1

4
)k−m1−m2−t0,1−t0,2(

2

3
)t0,1(

1

12
)t0,2

·((log|Z|
21.5

3
)t0,1 − t0,2 log|Z| 3)

·
m1∑

t1,1=0

m1−t1,1∑
t1,2=0

(
m1

t1,1,t1,2,m1−t1,1−t1,2

)
(
1

4
)m1−t1,1−t1,2(

2

3
)t1,2(

1

12
)t1,1

]

=
∑
b

Pr{f(Xk
1 , X

k
2 , X

k
3 ) = b}

[
k

(
log|Z| 2 +

log|Z| 3

4

)
+m2

(
− log|Z| 2 +

9

12
log 3

)]

=

k∑
m1=0

k−m1∑
m2=0

(
k

m1,m2, k −m1 −m2

)(4
9

)k−m1−m2
(4
9

)m1
(1
9

)m2

[
k

(
log|Z| 2 +

log|Z| 3

4

)
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+m2

(
− log|Z| 2 +

9

12
log|Z| 3

)]

= k

(
log|Z| 2 +

log|Z| 3

4

)
+

(
− log|Z| 2 +

9

12
log|Z| 3

) k∑
m1=0

k−m1∑
m2=0

(
k

m1,m2, k −m1 −m2

)
m2

(1
9

)m2
(4
9

)k−m2

= k

(
log|Z| 2 +

log|Z| 3

4

)
+

(
− log|Z| 2 +

9

12
log|Z| 3

)
k

9
.
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