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Abstract—Polar codes were introduced in 2009 by Arikan as
the first efficient encoding and decoding scheme that is capac-
ity achieving for symmetric binary-input memoryless channels.
Recently, this code family was extended by replacing the block-
structured polarization step of polar codes by a convolutional
structure. This article presents a numerical exploration of this
so-called convolutional polar codes family to find efficient gener-
alizations of polar codes, both in terms of decoding speed and
decoding error probability. The main conclusion drawn from our
study is that increasing the convolution depth is more efficient
than increasing the polarization kernel’s breadth as previously
explored.

I. INTRODUCTION

Polar codes build on channels polarization to efficiently
achieve the capacity of symmetric channels (refer to [1], [2],
[3], [4] for detailed presentations). Channel polarization is
a method that takes two independent binary-input discrete
memoryless channels W (y|x) to a bad channel and a good
channel, given by

W (y21 |u1) =
∑

u2∈{0,1}

W (y2|u2)W (y1|u1 ⊕ u2), (1)

W (y21 , u1|u2) =W (y2|u2)W (y1|u1 ⊕ u2) (2)

respectively, where xba = (xa, xa+1 . . . xb)
>. These channels

are obtained by combining two copies of W (y|x) with a
CNOT gate (u1, u2) → (u1 ⊕ u2, u2) and then decoding
successively bits u1 and u2. That is, output bit u1 is decoded
first assuming that u2 is erased. Then bit u2 is decoded taking
into account the previously decoded value of u1.

Polar codes are obtained by recursing this process to obtain
2l different channels from the polarization of 2l−1 pair of
channels (Fig. 1a). As the number of polarization steps l
goes to infinity, the fraction of channels for which the error
probability approaches 0 tends to I(W ) and the fraction of
channels for which the error probability approaches 1 tends
to 1 − I(W ), where I(W ) is the mutual information of the
channel with uniform distribution of the inputs [1]. Thus, polar
codes are capacity achieving for those channels.

The above construction can be generalized by replacing the
CNOT transformation by a different polarization kernel [5].
See Sec. III-A for details. The kernel can generally take as
input more than two copies of the channel W (y|x) and the
breadth b of a kernel is define as the number of channels
it combines. An increasing breadth offers the possibility of
a more efficient polarization (i.e. a lower decoding error
probability), but has the drawback of an increased decoding
complexity.

(a) (b)

(c) (d)

Fig. 1. Examples of regular (depth=1) and convolutional (depth> 1) polar
code circuits. The parameters (breadth, depth, polarization steps) are (a)
(2,1,4), (b) (3,1,3), (c) (2,2,4) and (d) (3,3,3).

Another possible generalization of polar codes is to replace
the block-structure polarization procedure by a convolutional
structure. See Sec. III-B for details. Note indeed that each
polarization step of a polar code consists of independent
application of the polarization kernel on distinct blocks of b
bits (pairs of bits in the above example with b = 2). Recently
([6], [7]), this idea was extended to a convolutional structure
(see Fig. 1c and Fig. 1d), where each polarization step does
not factor into a product of independent transformations on
disjoint blocks but instead consists of d layers of shifted block
transformations. We refer to the number of layers d as the
depth of a code. An increasing depth offers the advantage of
faster polarization and the drawback of an increased decoding
complexity.

The focus of the present work is to compare the trade-off
between breadth and depth in terms of the speed at which the
decoding error rate goes to zero and the decoding complexity.
We focus on codes which have practically relevant sizes using
Monte Carlo numerical simulations.

II. DECODING

In this section, the general successive cancellation decoding
scheme is define in terms of tensor networks. This enables a
straightforward extension to convolutional polar codes.

A. Successive cancellation

Define G as the reversible encoding circuit acting on N
input bits and N output bits. K of these input bits take
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Fig. 2. Schematic representation of the successive cancellation decoder. (a)
A composite channel is obtain from an encoding circuit G and N copies of
a channel W . Contracting this tensor network for given yN1 and uN

1 yields
Eq. 3. (b) An effective channel is obtain from the composite channel by
summing over all the values of bits uN

i+1, graphically represented by the
uniform tensor e =

(1
1

)
, when decoding bit ui. Contracting this tensor yields

Eq. 4 up to a normalization factor.

arbitrary values ui while the N −K others are frozen to the
value ui = 0. From this input uN1 , the message xN1 = GuN1 is
transmitted. The channel produces the received message yN1 ,
resulting in a composite channel

WG(y
N
1 |uN1 ) =

N∏

i=1

W (yi|(GuN1 )i). (3)

This composite channel induces a correlated distribution on
the bits ui and is represented graphically on Fig. 2a.

Successive cancellation decoding converts this composite
channel into N different channels given by

W
(i)
G (yN1 , u

i−1
1 |ui) =

∑

ui+1,...uN

WG(y
N
1 |uN1 ), (4)

for i = 1, 2, . . . N . Those channels are obtain by decoding
successively symbols u1 through uN (i.e., from right to left
on Fig. 2) by summing over all the bits that are not yet decoded
and fixing the value of all the bits ui−11 . Either to their frozen
value, if the corresponding original input bit was frozen, or
to their previously decoded value. This effective channel is
represented graphically on Fig. 2b.

Given W (i)
G , ui is decoded by maximizing the likelihood of

the acquired information:

ui = argmax
ũi∈{0,1}

W
(i)
G (yN1 , u

i−1
1 |ũi). (5)

Applying this procedure for all bits from right to left yield the
so-called successive cancellation decoder.

Equation 5 can be generalized straightforwardly by decod-
ing not a single bit ui at the time but instead a w-bit sequence
ui+w−1i jointly, collectively viewed as a single symbol from
a larger alphabet of size 2w. To this effect, the decoding
width w is defined as the number of bits that are decoded
simultaneously.

B. Decoding with tensor networks

Convolutional polar codes were largely inspired by tensor
network methods used in quantum many-body physics (see e.g.
[8] and [9] for an introduction). Akin of the graphical tools
used in information theory (Tanner graph, factor graph, etc.),

tensor networks were introduced as compact graphical repre-
sentation of probability distributions (or amplitudes in quan-
tum mechanics) involving a large number of correlated vari-
ables. Moreover, certain computational procedures are more
easily cast using these graphical representations. It is the case
of the successive cancellation decoding problem described
above, where the goal is to compute W (i)

G (yN1 , u
i−1
1 |ui) given

fixed values of yN1 , u
i−1
1 .

While G is a FN2 linear transformation, it is sometime
convenient to view it as a linear transformation on the space
of probability over N -bit sequences, i.e., the linear space
R2N whose basis vectors are labeled by all possible N -bit
strings. On this space, G acts as a permutation matrix mapping
basis vector uN1 to basis vector xN1 = GuN1 . A single bit is
represented in the state 0 by u =

(
1
0

)
, in the state 1 by u =

(
0
1

)

and a bit string uN1 is represented by the 2N dimensional
vector uN1 = u1 ⊗ u2 ⊗ . . . ⊗ uN . A single bit channel is
a 2× 2 stochastic matrix and a CNOT gate is given by

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 , (6)

because it permutes the inputs 10 and 11 while leaving the
other inputs 00 and 01 unchanged.

In this representation

W
(i)
G (yN1 , u

i−1
1 |ui) =

1

Z
[u1 ⊗ . . .⊗ ui−1 ⊗ ui ⊗ e⊗(N−i)]TGW⊗NyN1 , (7)

where e =
(
1
1

)
and Z =

∑
ui∈{0,1}W

(i)
G (yN1 , u

i−1
1 |ui) is a

normalization factor. Ignoring normalization, this quantity can
be represented graphically as a tensor network (see Fig. 2b),
where each element of the network is a rank-r tensor, i.e., an
element of R2r . Specifically, a bit ui is a rank-one tensor, a
channel W is a rank-two tensor, and a two-bit gate is a rank-
four tensor (two input bits and two output bits). The CNOT
gate is obtained by reshaping Eq. 6 into a (2 × 2 × 2 × 2)
tensor.

In this graphical representation, a rank-r tensor Aµ1,µ2,...µr

is represented by a degree-r vertex, with one edge associated
to each index µk. An edge connecting two vertices means that
the shared index is summed over

= Cµ1µ2...⌫1⌫2... =

A B

C

⌫1 ⌫2
µ2

µ1

↵

...

⌫1
⌫2

µ2
µ1

...

... ...

=
X

↵

A↵µ1µ2...B↵⌫1⌫2...

, (8)

generalizing the notion of vector and matrix product to higher
rank tensors. Tensors can be assembled into a network where
edges represent input-output relations just like in an ordinary
logical circuit representation. Evaluating Eq. 7 then amounts
to summing over edge values.

This computational task, named tensor contraction, gen-
erally scales exponentially with the tree-width of the tensor



=
...

...

(a)

=
...

...

(b)

Fig. 3. Circuit identities. (a) Any permutation acting on the uniform distri-
bution return the uniform distribution. (b) Any contraction of a permutation
and basis vector xt

1 gives another basis vector yt1.

network [10]. The graphical calculus becomes valuable when
using circuit identities that simplify the tensor network. Specif-
ically, these identities encode two simple facts illustrated on
Fig. 3: a permutation G acting on the uniform distribution
returns the uniform distribution Ge⊗t = e⊗t, and a permu-
tation acting on a basis vector returns another basis vector
GxN1 = yN1 .

Once these circuit identities are applied to the evaluation
of Eq. 7 in the specific case of polar codes, it was shown
in [6], [7] that the resulting tensor network is a tree, so it
can be efficiently evaluated. Convolutional polar codes were
introduced based on the observation that Eq. 7 produces a
tensor network of constant tree-width despite not being a
tree (see Fig. 4), an observation first made in the context of
quantum many-body physics [11], so they can also be decoded
efficiently.

III. POLAR CODE GENERALIZATIONS

In this section, two possible generalizations of polar codes
are described and their decoding complexity is analyzed.

A. Breadth

Channel polarization can be achieved using various kernels.
In fact, as long as a kernel is not a permutation matrix on Fb2, it
achieves a non-trivial polarization transform [5]. The CNOT
gate is one such example that acts on two bits. However, a
general kernel of breadth b can act on b bits, (see Fig. 1b
for an illustration with b = 3). An increasing breadth can
produce faster polarization, i.e. a decoding error probability
which decreases faster with the number of polarization steps.

Indeed, in the asymptotic regime, Arikan [1] showed that
provided the code rate is below the symmetric channel capacity
and that the location of the frozen bits are chosen optimally,
the asymptotic decoding error probability of the polar code
under successive cancellation decoding is Pe ∈ O

(
2N

−1/2
)

.

A different error scaling exponent Pe ∈ O
(
2N

−β
)

can be
achieved from a broader kernel, but breadth 16 is required to
asymptotically surpass β = 1

2 [5].
Such a broad polarization kernel has the drawback of a sub-

stantially increased decoding complexity. Arikan [1] showed
that the decoding complexity of polar codes is O(N log2N).
From a tensor network perspective, this complexity can be
understood [7] by counting the number of elementary con-
tractions required to evaluate Eq. 7 and by noting that the
tensor network corresponding to Eq. 7 for ui and for ui+1

differ only on a fraction 1/ log2N of locations, so most inter-
mediate calculations can be recycled and incur no additional
complexity.

As discussed previously, a breadth-b polarization kernel can
also be represented as a 2b×2b permutation matrix that act on
R2b . Applying such a matrix to a b-bit probability distribution
has complexity 2b, and this dominates the complexity of each
elementary tensor operation of the successive cancellation
decoding algorithm. On the other hand, the total number of bits
after l polarization steps with a breadth-b polarization kernel
is N = bl, so the overall decoding complexity in this setting
is O

(
2bN logbN

)
.

B. Depth

The previous section described a natural generalization of
polar codes which use a broader polarization kernel. A further
generalization, first explored in [6], [7], is to use a polarization
step whose circuit is composed of b-local gates and has
depth d > 1 (see Fig. 1c), which results in a convolutional
transformation. A CPb,d code, that is, a convolutional polar
code with kernel breadth b and circuit depth d, is define
similarly to a polar code with a kernel of size b where each
polarization step is replace by a stack of d polarization layers
each shifted relative to the previous layer. Fig. 1c and Fig. 1d
illustrates two realizations of convolutional polar codes.

To analyze the decoding complexity, it is useful to introduce
the concept of a causal cone. Given a circuit and a w-bit input
sequence ui+w−1i , the associated causal cone is defined as the
set of gates together with the set of edges of this circuit whose
bit value depends on the value of ui+w−1i . Figure 4 illustrates
the causal cone of the sequence u1311 for the code CP2,2.

Given a convolutional code’s breadth b and depth d, define
m(d, b, w) to be the maximum number of gates in the causal
cone of any w-bit input sequence of a single polarization step.
Because a single convolutional step counts d layers, define
ms(d, b, w) as the number of those gates in the causal cone
which are in the s-th layer (counting from the top) of the
convolution. For the first layer, have m1(d, b, w) = dw−1b e+1.
This number can at most increase by one for each layer, i.e.,
ms+1(d, b, w) ≤ ms(d, b, w)+1, leading to a total number of
gates in the causal cone of a single polarization step

m(d, b, w) =

d∑

s=1

ms(d, b, w) ≤ dm1(d, b, w) +
d(d− 1)

2

= d

⌈
w − 1

b

⌉
+
d(d+ 1)

2
. (9)

Similarly, define the optimal decoding width w∗(b, d) as the
smallest value of w for which the causal cone of any w bit
sequence after one step of polarization contains at most bw
output bits. Figure 4 illustrates that w∗ = 3 for a CP2,2 code
since any 3 consecutive input bits affect at most 6 consecutive
bits after one polarization step. Choosing a decoding width
w∗(b, d) thus leads to a recursive decoding procedure which
is identical at all polarization steps. Since the bottom layer
counts md(d, b, w) ≤ dw−1b e+ d gates, each acting on b bits,



Fig. 4. Graphical representation of the causal cone of u13
11 in the CP2,2

code. Only the gates in the shaded region receive inputs that depend on the
sequence u13

11. Similarly, the edges contained in the shaded region represent
bits at intermediate polarization steps whose value depends on sequence u13

11.
This shows that decoding a CP2,2 code amouts to contracting a constant tree-
width graph. The optimal width w∗ = 3 and at most m(2, 2, w∗) = 5 gates
are involved per polarization step.

we see that there are at most bdw−1b e+db ≤ w+db output bits
in the causal cone of a single polarization step. The optimal
decoding width w∗ is chosen such that this number does not
exceed bw∗, thus

w∗(b, d) ≤ b

b− 1
d. (10)

Using this optimal value in Eq. 9 bounds the number of
rank-b tensors that are contracted at each polarization layer,
and each contraction has complexity 2b. Here again, only a
fraction 1/ logbN of these contractions differ at each step
of successive cancellation decoding, leading to an overall
decoding complexity

Cb,d(N) = 2b
m(b, d, w∗)

w∗
N logbN ∈ O(2bdN logbN).

(11)

Ref. [7] provides analytical arguments that the resulting convo-
lutional polar codes have a larger asymptotic error exponent
β > 1

2 , and present numerical results showing clear perfor-
mance improvement over standard polar codes at finite code
lengths. These advantages come at the cost of a small constant
increased decoding complexity

IV. SIMULATION RESULTS

Numerical simulations were performed to analyze the per-
formance of codes breadth and depth up to 4. The breadth-2
kernel used was the CNOT, while the breadth-3 and breadth-4
kernels were

G3 =



1 0 0
1 1 0
0 1 1


 , G4 =




1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1


 ,

where these are given as representations over Fb2. It can easily
be verified that these transformations are not permutations, so
they can in principle be used to polarize [5]. Also, we choose
a convolutional structure where each layer of gates is identical
but shifted by one bit to the right (from top to bottom), c.f.

Fig. 1d. Many others kernel and convolutional structures have
been simulated, but those gave the best empirical results.

The encoding circuit G is used to define the code, but the
complete definition of a polar code must also specify the set
of frozen bits F , i.e. the set of bits that are fixed to ui = 0
at the input of the encoding circuit G. In general, for a given
encoding circuit G, the set F will depend on the channel and
is chosen to minimize the error probability under successive
cancellation decoding. Here, a simplified channel selection
procedure which uses an error detection criteria described in
the next section was used. All the simulations presented focus
on the binary symmetric memoryless channel.

A. Error detection

Considering an error detection setting enables an important
simplification in which the channel selection and code sim-
ulation can be performed simultaneously without sampling.
In this setting, it is consider that a transmission error xN1 →
yN1 = xN1 + e is not detected if there exists a non-frozen bit
ui, i ∈ Fc which is flipped while none of the frozen bits
to its right uj , j < i, j ∈ F have been flipped. In other
words, an error is considered not detected if its first error
location (starting from the right) occurs on a non-frozen bit.
Note that this does not correspond to the usual definition of
an undetectable error which would be conventionally defined
as an error which affects no frozen locations. By considering
only frozen bits to the right of a given location, the notion used
is tailored to the context of a sequential decoder. Empirically,
it was observed that this simple notion is a good proxy to
compare the performance of different coding schemes under
more common settings.

Denote PU (i) the probability that the symbol ui is the first
such undetected error. Then, given a frozen bit set F , the
probability of an undetected error is PU =

∑
i∈Fc PU (i). This

can be evaluated efficiently using the representation of the
encoding matrix over R2N as above. For e ∈ FN2 , denote
P(e) the probability of a bit-flip pattern e, viewed as a vector
on R2N . At the output of the symmetric channels with error
probability p, PT = (1− p, p)⊗N . Then

PU (i) = (1− p, p)⊗NG
(
1

0

)⊗i−1
⊗
(
0

1

)
⊗ e⊗(i−1), (12)

where here again e =
(
1
1

)
. In terms of tensor networks, this

corresponds to the evaluation of the network of Fig. 2b with
ui = 1 and all uj = 0 for all j < i. Thus, this can be
accomplished with complexity given by Eq. 11.

Because the evaluation of Eq. 12 is independent of the set
of frozen bits, it can be evaluate for all positions i, selecting
the frozen locations as the N −K locations i with the largest
value of PU (i). Then, the total undetected error probability
is the sum of the PU (i) over the remaining locations. This is
equivalently the sum of the K smallest values of PU (i).

The results are shown on Fig. 5a for various combinations
of kernel breadths b and convolutional depth d. The code rate
was 1

3 , meaning that the plotted quantity is the sum of the
N/3 smallest values of PU (i). Fig. 5b presents a subset of
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Fig. 5. Numerical simulation results. (a) Undetected error probability under successive cancellation decoding for polar codes (d = 1) and convolutional polar
codes (d > 1) for various kernel breadths b, plotted as a function of code size N = bl by varying the number of polarization steps l. The channel is BSC(1/4)
and the encoding rate is 1/3. (b) Same thing as (a) but plotted as a function of their decoding complexity, c.f. Eq. 11. The number of polarization steps l is
chosen in such a way that all codes are roughly of equal size N(b, l) = bl ≈ 103. The dots connected by a line all have the same kernel breadth b but show
a progression of depth d = 1, 2, 3, 4, with d = 1 appears on the left and corresponds to regular polar codes. (c) The bit error rate for a BSC(1/20) with an
1/3 encoding rate plotted as a function of the decoding complexity. The depth is specify similarly to (b) by the connected dots. The number of polarization
steps is chosen to have roughly N ≈ 250 bits.

the same data with parameters b and l resulting in codes of
roughly equal size N = bl ≈ 103. This implies that codes with
larger breadth use fewer polarization steps. The undetected
error probability PU is then plotted against the decoding
complexity, compute from Eq. 11. Notice that increasing the
depth is a very efficient way of suppressing errors with a
modest complexity increase. In contrast, increasing the breadth
actually deteriorates the performance of these finite-size code
and increases the decoding complexity.

B. Error correction

For the symmetric channel, the frozen bits were chosen
using the error detection procedure describe in the previous
section. This is not optimal, but it is sufficient for the sake
of comparing different code constructions. Then, standard
Monte Carlo simulations were done by transmitting the all
0 codeword sampling errors, using successive cancellation
decoding and comparing the decoded message. The results are
presented in Fig. 5c. The conclusions drawn from the error
detection simulations all carry over to this more practically
relevant setting.

V. CONCLUSION

We numerically explored a generalization of the polar code
family based on a convoluted polarization kernel given by a
finite-depth local circuit. On practically relevant code sizes, it
was found that these convoluted kernel offer a very interesting
error-suppression vs decoding complexity trade-off compare to
previously proposed polar code generalizations using broad
kernels. Empirically, no incentive were found to consider
increasing both the breadth and the depth: an increasing
depth alone offers a greater noise suppression at comparable
complexity increase. It will be interesting to see what further
gains can be achieved, for instance, from list decoding of
convolutional polar codes.
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