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Abstract—Caching at the network edge devices such as wireless
caching stations (WCS) is a key technology in the 5G network.
The spatial-temporal diversity of content popularity requires
different content to be cached in different WCSs and periodically
updated to adapt to temporal changes. In this paper, we study
how the popularity drifting speed affects the number of required
broadcast transmissions by the MBS and then design coded
transmission schemes by leveraging the broadcast advantage
under the index coding framework. The key idea is that files
already cached in WCSs, which although may be currently
unpopular, can serve as side information to facilitate coded
broadcast transmission for cache updating. Our algorithm ex-
tends existing index coding-based schemes from a single-request
scenario to a multiple-request scenario via a “dynamic coloring”
approach. Simulation results indicate that a significant bandwidth
saving can be achieved by adopting our scheme.

I. INTRODUCTION

Proactively caching popular bulky traffic (e.g. videos) in
the network edge devices such as wireless caching stations
(WCSs) or cache-enabled small cells is a promising approach
to alleviate the backhaul bandwidth burden of the mobile
network and reduce content access time [1]]. Since content
popularity among users is, to a certain extent, predictable,
popular content can be pre-cached at the WCSs close to users
before actual requests arrive. In a common scenario illustrated
in Fig. |I} WCSs are deployed in a “drop-and-play” manner
without wired connections along roadside to enhance network
capacity while conventional macro base stations (MBSs) pro-
vide ubiquitous coverage and control signalling [2].

Content popularity varies both spatially and temporally.
On the one hand, WCSs placed in different locations serve
different users who may have different preferences over the
content. Therefore what content to cache is likely to be
different across WCSs. On the other hand, content popularity
evolves over time as new content is being produced and hence,
caches of the WCSs must be periodically refreshed to adapt to
the temporal popularity changes. As more and more WCSs are
being deployed at the network edge to provide ubiquitous and
fast content access, the spatial-temporal diversity of content
popularity begins to impose an increasingly heavy traffic bur-
den on the wireless link between the MBS and the distributed
WCSs, taking up precious wireless bandwidth of the network.

In this paper, we study dynamic proactive caching among a
network of distributed WCSs and design efficient transmission
schemes to minimize the bandwidth usage for pushing popular
content into WCSs from the MBS. Specifically, we design
coded broadcast transmission schemes under the index coding
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Fig. 1: Network architecture with wireless caching stations

framework. Our scheme is developed based on an observa-
tion: as content popularity evolves over time, the previously
cached content, which although may not be popular at the
current time, can serve as side information to facilitate coded
broadcast transmission among several WCSs, thereby saving
wireless backhaul bandwidth. The main contributions are as
follows: We model the popularity drifting of users as a
dynamic process that is characterized by the distance measure
between different rankings. The popularity drifting indicates
that the preference rankings slightly differ between rounds.
We formulate the transmission problem for dynamic proactive
caching among a network of WCSs, and show a consistent
trend that the number of required transmissions increases
with the content popularity drifting speed under both uncoded
transmission schemes and coded transmission schemes. For
uncoded transmissions, we show that in the worst case, the
transmissions needed to refresh the cache is proportional to the
drifting speed parameter. We design MDS codes for proactive
caching with side information and characterize its bandwidth
savings. We further design the optimal transmission schemes
under the framework of index coding.We leverage existing
graph-coloring-based index coding schemes and propose im-
provements tailored to our problem, termed dynamic graph
coloring. Furthermore, we show that our proposed coded
transmission and caching schemes can save a fraction of
m transmissions compared with the uncoded schemes,
where s is the cache size, n is the number of WCSs, and c is
a drifting parameter.

II. RELATED WORK

Caching at the network edge has recently attracted lots
of attention. The concept of FemtoCaching was introduced



in [1]] which studies content placement at small cell BSs to
minimize the content access delay. Geographical caching was
investigated in [3] to maximize the probability of serving a
user. Coded caching is an emerging topic recently, especially
in wireless broadcast channels [4], [5] or Device-to-Device
networks [6]. The main coding techniques used in coded
caching stem from the index coding [7]], but focus more on
how to place the cached content. Index coding is shown to be
NP-hard to approximate within a constant factor [7], 8] and
various herustics are proposed to realize the codes [9]]. In [4],
[Sl], [6]], files are separable and the concern is how to place
(fractions of) files in the distributed WCSs so that the number
of coded transmissions by the MBS is minimized when the
actual requests arrive. They seek to uncover the information-
theoretic limits of caching. In our problem, we consider a
more practical setting where files are not separable and con-
tent placement is governed by exogenous content popularity.
Our focus is on how to design coded transmission schemes
to minimize bandwidth usage given the content distribution
pattern and finding the consistent trend of communication cost
with respect to the popularity drifting.

III. SYSTEM MODEL

Consider a wireless network with one macro base station
(MBS) and n wireless caching stations (WCS), denoted by
the set [n] = {1,2,...,n}. The WCSs are distributed over the
network and can receive data from the MBS via a wireless
broadcast channel. For analytical simplicity, we assume that
this broadcast channel is error-free in this paper. Each WCS
i € [n] can proactively cache popular content from the remote
server via the MBS, and deliver the content, when requested,
to the end users in its wireless transmission range. By of-
floading the downlink traffic from MBS to the WCSs, which
are in close proximity to the end users, proactive caching
reduces transmission latency and relieves traffic burdens on the
backhaul network. We consider a pool of m files, denoted by
B = {b1,ba,...,by, }, at the remote server that can be cached
in the WCSs. Without loss of generality, we assume that these
files are of the same size. Files of different sizes can be divided
into file chunks of equal size to satisfy this assumption. Each
WCS has a cache of limited capacity that can store at most
s < m files. In some existing theoretical work [4], [S], [6],
the WCS may only store parts of a file. However, for practical
concerns, such as file management, we consider that the WCS
can only cache an entire file. Because not all files can be
cached in the WCS, which files to cache will be determined
according to the file popularity among the users.

Time is divided into slots. At the beginning of each time
slot ¢, each WCS ¢ estimates the popularity of each file among
users in its coverage area, which may vary across different
WCSs. Due to the limited cache capacity of a WCS, the s-
most popular files have to be cached to maximize the caching
performance. For the purpose of this paper, only the popularity
ranking over the m files is relevant to our problem. Let 7 ; :
B — {1,...,m} be a ranking function with respect to WCS
i in time slot ¢, where m; ;(b) is the position or rank of file

b € B. In addition, let 37 denote the set of top-s files under
a ranking 7.

As file popularity, captured by the popularity ranking m ;,
varies over time, cached files have to be refreshed at the
beginning of every time slot t. However, because the already-
cached files in the previous time slot ¢ — 1 may have overlap
with the predicted top-s popular files in the current time £,
not all files need to be downloaded from the remote server via
the MBS. These already-cached files in a specific time slot
are termed side information in the proactive caching problem.
Moreover, since different WCSs may have different files
cached in the previous time slot ¢ — 1, coding schemes can be
designed to minimize the number of broadcast transmissions,
thereby saving the backhaul bandwidth. We then ask how does
the number of broadcast transmissions depend on the content
popularity drifting speed over time.

IV. UNCODED TRANSMISSION FOR PROACTIVE CACHING

First, we study proactive caching using a straightforward
uncoded broadcast transmission. Let S;; be the set of files
cached in WCS ¢ in time slot ¢, which equals Bfrt’i. For each
WCS i, only the files that are in S; ; but not in S;_; ; need to
be transmitted by the MBS to WCS 1 to update its cached con-
tent. These files are denoted by Sy ;\Si—1. £ Ry ;. Since the
MBS broadcasts files to all WCSs in the network, the files that
need to be broadcasted is Uj¢,] Sti\St—1.i £ R,, and the total
number of broadcast transmissions is | U;cpn) St,i\St—1,4 £
T} un. Clearly, the number of required transmissions depends
on how fast the popularity ranking changes: if there is a
dramatic change in the popularity ranking between consecutive
time slots, then it is likely that more transmissions are needed.

We first introduce some concepts regarding popularity rank-
ing. The dissimilarity between two popularity rankings m; and
mo is characterized by their distance, under metrics such as
the Spearman footrule distance and the Kendall tau distance
[10] among others. In this paper, we adopt the Kendall tau
distance metric, which is defined as the number of pair-
wise differences between two rankings. This can be seen as
a “bubble sort” distance, which is the number of pair-wise
adjacent transpositions needed to sort one ranking to another.
Let K(m,m2) denote the Kendall tau distance between two
popularity rankings, which is formally defined as follows

K(’]Tl,’lTQ) = (l)
{01, d2) 2 g1 # das mi(byy) < mi(by,), ma(byy) > m2(bj,) }

Example: Consider 4 files {b1,bs, b3, by }. Assume that the
first popularity ranking is w1 (b1) = 1, m1(ba) = 2, m1(b3) =3,
m1(by) = 4. Hence, file by is the most popular. Assume that
the second popularity ranking is w1 (b1) = 3, m(b2) = 4,
m1(bs) = 1, m1(by) = 2. Hence, file bz is the most popular. In
order to calculate the Kendall tau distance, pair each file with
every other file and count the number of times the values in
ranking w1 are in the opposite order of the values in ranking
. For instance, for the pair (by,bs), w1 and 75 are consistent
because m1(b1) < m1(be) and 7a(b1) < ma(bs). However, for



the pair (b1,bs), the two rankings are inconsistent because
m1(b1) < mi(bs) whereas wa(by) > ma(bs). Among all six
possible pairs, pairs (b1,b3), (b1,bs), (ba,b3), (ba,bs) make
the two rankings inconsistent. Therefore, the Kendall tau
distance between these two rankings is K (w1, m9) = 4.

To characterize the popularity drift over time, we assume
that, for two consecutive time slots ¢ — 1 and ¢, the popularity
ranking differ at most ¢, i.e. K(m_1,,m ) < c for all time
slot ¢ and WCS 1. Therefore, the constant c sets an upper bound
on the speed of popularity drifting. The following theorem
characterizes the relationship between the number of required
transmissions 7T, and the popularity drifting speed c.

Theorem 1. With uncoded transmission, at the beginning of
time slot t, the system needs
1) at least ome transmission, if for some WCS 1,
—1)(m— —s—1
K(mi_1,m0) > s(s=1)(m :)(m s—1)
2) at most min{n+/c,m} transmissions, if for every WCS
i, K(m—14,m) <c

Proof. We first prove the first part of the theorem. Since
using uncoded transmission scheme, for some node i € [n],
if S;i\Si—1,; # 0, then the system will need at least one
transmission. Observe that if the two rankings 7, ; and m;_1 ;
have the same set of top s ranked files, i.e., St ; = S_1+;, then
their distance can be at most (;) (m; S). Therefore, a sufficient
condition for S; ;\S;—1,; # 0 is that the distance between the
two rankings 7, ; and m;_; ; exceeds s(s=1)(m=s)(m=s—1)
Next, we prove the second half of the theorem. It suffices
to show that |.S; ;\Si—1:| < v/c. Let us denote by A, the set
Sti\Si—1,; and by A, the set S;_q ;\S; ;. Note that |A;| =
|As|, then it is not hard to see that the files indexed by A
are ranked higher than the files indexed by Ay according to
the ranking m ;, but the files indexed by A are ranked lower
than the files indexed by A, according to the ranking m_1 ;.
Therefore, the Kendall tau distance K (m;;,m—1,) is at least
|A1||As] = |A1|? < ¢, indicating that [A| = |As] < Ve O

From Theorem 1, we can see that in the worst case,
the number of broadcast transmissions needed may still be
proportional to the number of WCSs due to the diversity in
the files already cached in the WCSs. When there is a large
number of WCSs, proactive caching consumes a significant
amount of wireless backbone bandwidth.

V. CODED TRANSMISSIONS FOR PROACTIVE CACHING

We study the bandwidth-drifting relationship for coded
broadcast transmission for proactive caching update, we first
show this relationship for the Maximum Distance Separable
(MDS) code and then for the index code.

A. MDS Coding based Proactive Caching

Using a [v, k] MDS code, we can encode « original files
b1, ...,b. into v encoded files x1, ..., x,, then we can decode
the original x files by receiving any s encoded files among
the v encoded ones.

Denote by SI_M the set of cached files of WCS 4 in time
slot ¢ — 1 that are also in the request file set Ry, i.e., Sj_l,i =
R N Si—1,;. The following theorem characterizes the number
of broadcast transmissions needed to refresh the cache at the
beginning of time slot ¢ using the MDS code.

Theorem 2. With MDS codes, the number of broadcast
transmissions needed to refresh the cached content at the
beginning of time round t is at most T ., —Min; [y { \SLLA}.

Proof. We will use a constructive proof method by designing
the MDS coding scheme to refresh the cached content. We
consider the following general encoded broadcast transmission
scheme for time round ¢.

ai; a2 1m b1 x1
a1 a2 a2m ba T2

= N P )
ary ars aTm bm x7

where A = {a,;} is the coding coefficient matrix; T" is the
number of broadcast transmissions; and the 7-th transmission
is x, = a,;1b1 +ar2bo+. ..+ armb,y,. This can also be written
in the matrix form as Ab = x, where b collects all the original
files and x collects all the encoded transmissions. Obviously,
we only need to transmit the files in R;. Therefore, we can set
the coding coefficients to 0 corresponding to files j € [m]\ R,
without losing any transmission efficiency. This is equivalently
to design a coding coefficient matrix A with only columns
of A corresponding to files in R;. Thus we can write the
encoding process as A'bT = a, where b’ collects the original
files indexed by R:.

Now, we select the coding coefficient matrix At with T =
Tun — minie[n]{|52r_17i|} such that any 7" columns of all the
Tyn columns are linearly independent. This can be obtained
by the generator matrix of a [T,,,T] MDS code. After the
coefficient matrix AT is designed, it is commonly among the
server and all caching stations. For WCS 4, it can remove
from the transmissions the part corresponds to files StT_Li,
- Ejesj—l,i aijj -
Zj er\S! ., a;b;. Therefore, the WCS 7 knows the vector
(Tun—18]_1 ;1)

. . . A
i.e., for the 7’s transmission, =/ = z,

x’ that collects all 2/ and a matrix AI € IFqTX
that collects all columns corresponding to files in Rt\Sj_Li;
and then needs to solve the equation A;-be =z’ to get bf. By
our design of the transmission scheme, we have that any 7'
columns of the matrix AT are linearly independent, and thus,
having any T, — |SLM| < Tun — minie[n]{|SLLi| =T
columns linearly independent. Therefore, caching node ¢ can
solve the equation AIbJr = a’ (note that the variable is b’ and
the constant is ) to get a unique solution of bf. This is the
case for all ¢ and then the cached content can be refreshed
using at most T, — minie[n]ﬂSLl’i\} number of broadcast
transmissions. O

Theorem 2 shows that we can save at least a number
of minie[n]{\SLMH broadcast transmissions by using the



MDS coding scheme compared to the uncoded transmission
scheme. In particular, minie[n]{|5g71’i|} is bigger if the side
information diversity is larger and hence, more savings can be
achieved.

B. Index Coding Based Proactive Caching

We cast this problem as an index coding problem with
side information where the side information is the already-
cached files. In our problem, one feature is that each WCSs
in each time slot may request multiple files whereas in the
conventional index coding problem, the schemes are designed
often for single request. In this sense, we need to find
algorithms that are efficient for multiple requests in order to
achieve higher bandwidth efficiency.

The index coding problem has been shown to be NP-hard
[7]. The literature has shown that the index coding problem
is hard to approximate within a constant ratio [8] and the
existing algorithms are heuristics with either no theoretical
bound of the approximation ratio or very loose upper bound
[0, [L1]. In [7], the idea that the optimal linear index coding is
upper bounded by the chromatic number of specifically defined
“conflict” graph provides a good thread for designing index
coding algorithms based on graph coloring. In this paper, we
design our algorithms using graph theory based approach.

Recall that we can reduce the multiple request case as
multiple WCSs with single request who have the same side
information [7]. We explore the standard greedy coloring
heuristics to find the chromatic number of the conflict graph
for the obtained single-request index coding problem. The
conflict graph G = (V,E) [1], for this reduced single-
request index coding problem is constructed as follows. Each
vertex on this graph represents a virtual WCS, namely a
WCS with one requested file. Therefore, there are totally
Zie[n] |R;.+| vertices. Consider any two vertices v; and va,
where vq = (i1, bj, ) represents WCS 4, requesting file b;, and
vy = (i2,bj,) represents WCS iy requesting file b;,. There
is an edge between vy and vy if and only if j; # jo and
J1 € Rjy i Vij2 & Ry

To construct the broadcasting transmission scheme, we
perform coloring on the conflict graph G. Each color will
then correspond to a coded broadcast transmission. Indeed,
it is not hard to see that if two vertices v1 = (i1,b;,) and
ve = (i2,b;,) have the same color, then either j; = jo or
J1 € Ry, N ja € R;,. Therefore, by transmitting either
bj, = bj, (for the case j; = j2) or b;, + b;, (for the case
J1 € Ri,t Nj2 € R;), WCS 4y (or i2) can decode j;
(or j2). We consider a greedy coloring method. Given an
order of vertices v1,v2,...,v)y| of a graph G, the greedy
coloring operates across vertices: assign to vertex v; color
1; assign to vertex vy color 1 if vertex v, is not connected
with vertex vy and color 2 otherwise; for the remaining vertex
v = v3, ..., V|y|, assign the first available color. Let order(v)
be the ordered number of vertex v. In particular, there are two
commonly used heuristic ordering methods.

« Random ordering. Vertices are randomly ordered.

o Degeneracy ordering. Repeatedly removing a vertex of
minimum degree in the remaining subgraph. The later
removed vertex is ordered with a smaller number.

We next propose an improvement of the coloring algorithm,
termed dynamic coloring. In particular, the conflict graph will
vary during the coloring process by deleting some of the
existing edges based on the fact that a successfully decoded
file by a WCS can be used as additional side information for
later broadcast transmission in the same time slot. This results
in a coloring scheme that may not be a proper coloring of the
original graph but is sufficient for the transmissions to satisfy
all WCS’s requests.

The algorithm works as follows. Initially, we construct a
conflict graph G = (V, E) and order the vertices in the same
way as in the single request approach. Given an ordering
of vertices v1,v2, ..., vy of graph G, the dynamic greedy
coloring operates across vertices as follows.

1) We start with a graph G; = G. Assign to the first vertex
vy = (i1, 41) color 1.

2) Consider the subgraph G induced by removing v; (and
associated edges) from G. In addition, add file j; into WCS
11’s side information set .S;, . Note that although v; is removed
from the graph, there may be other vertices representing 7;
(with different requested files).

3) Update G| to a new conflict graph G2 by removing edges
due to the expanded side information set S;,. In particular,
it is sufficient to check edges between vertices v/ = (i1,]’)
and v"” = (i", j1), namely vertices with either common WCS
or common requested file with v;. If file j' is in the side
information set of ¢”/, then we can remove the edge between
vertices v’ and v”.

4) Assign the first available color to vertex ve = (i2, j2) and
repeat the process as in steps 1), 2) and 3) by adding file js to
WCS i2’s side information set S;, and update the remaining
graph. Then color all remaining vertices by repeating the
process for vertices v and vy, until all vertices are colored.

We add the following remarks on the performance of the
proposed algorithm.

Remark 1. Given an order of vertices vi,...,vy| of a
conflict graph G, the number of transmissions is at most
d + 1, where d = max{d,} and d, = |(v,w) €
E(QG), where order(w) < order(v)|. This follows the fact that
when we color vertex v, there are at most d,, of its neighbors
that have been colored so far.

Remark 2. Given the same ordering of vertices, the proposed
dynamic coloring method often performs better than the simple
reduction method. It is not hard to see that in our proposed
dynamic graph coloring scheme, we may not necessary achieve
a proper coloring for the original conflict graph. Indeed,
we notice that two vertices corresponding to the same client
with different requests are always connected, but the edge
between two vertices corresponding to different clients may
disappear. When we make broadcast transmissions, we still
encode the files corresponding to the same color as a trans-
mission. Therefore, if client © can decode some file j during
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the transmission process, let us say corresponding to color
k1, then this file j can be put into i’s side information set
and create coding opportunity for future transmissions, for
example, corresponding to some color ko > kj.

Example: To illustrate the idea of dynamic coloring and
the difference between the reduction method, here we pro-
vide a simple example. Consider three WCSs and three files
{b1,b2,b3}. WCS I requests by and has side information by;
WCS 2 requests by,bs and has side information bs; WCS 3
requests by and has side information by. Using the graph
coloring method, a conflict graph is constructed where vq
represents WCS 1, vo and vs represent WCS 2, and v4
represents WCS 3. The corresponding file requests and side
information are annotated in the figure using the (-|-) notation
where the first entry is the requested files and the second
entry is the side information. We consider a coloring order
vy — v3 — V4 — v1. For the simple reduction method,
the coloring result is illustrated in the middle figure in Fig.
which requires three colors. In the actual transmission
phase, the MBS first broadcasts by ® bs. With their own side
information, WCS 1 and WCS 3 can then obtain files bs and
b1, respectively. Next the MBS broadcasts by so WCS 2 obtains
file bs. Finally the MBS broadcasts by so WCS 1 obtains
file by. In fact, the simple reduction method does not save
bandwidth compared to broadcasting each of the three files
in three broadcast transmissions. Now consider the dynamic
coloring method. We first assign color 1 to va. Then file
b1 is added into vs’s side information set because vy and
vs actually represents the same WCS. Due to this change,
the edge between vy and vs is removed because now their
requested files are in each other’s side information set. We
continue the coloring procedure and will eventually have color
1 assigned to vy and color 2 assigned to vs and vi. As can
been seen, the dynamic coloring method requires only two
colors and hence two broadcast transmissions by the MBS.
In the first transmission, the MBS broadcasts by @ bs. In the
second transmission, the MBS broadcasts by & bs.

We have the following theorem to characterize the worst
case performance of using index coding.

Theorem 3. If users coming to WCSs have randomly and
independently distributed preference rankings across WCSs
at the initial round and their preference rankings evolve
independently and randomly (according to some drifting speed
c) over rounds, then with high probability (i.e., 1 — o(1), as
m,n, s tend to infinity), the number of transmissions achieved
by the greedy coloring method at each round is upper bounded
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For details of the proof, refer to the Appendix [A] From
this theorem, we can see that the number of transmissions at
each round is proportional to the drifting speed parameter +/c.
We also see that there is a fraction of —=">—— transmission
. . : . n/clog(s)
savings using the index coding compared with uncoded trans-
missions.

VI. SIMULATION

The simulation setup is as follows. Each file starts with a
popularity value randomly chosen in the range [0, 1]. The file
popularity evolves over time. In each time slot, the popularity
differs by a value randomly chosen in the range [—p/2,p/2]
compared to the popularity in the previous time slot. We call
p the drifting parameter, which will result in different Kendall
tau distances. To capture the spatial popularity diversity, for
each WCS, a ¢ € [0,1] fraction of randomly selected files
follow a separate popularity dynamics. Therefore, if ¢ = 0,
then the popularity dynamics of all files are the same for all
WCSs and if ¢ = 1, the popularity dynamics of all files are
different for all WCSs.

Figs. [3| and 4| compare the performance of various trans-
mission schemes when s = 20, p = 0.1 and ¢ = 0.2. Fig. 3]
investigates the impact of the number files by varying m and
fixing n = 10. Fig. 4 investigates the impact of the number of
WCSs by varying n and fixing m = 100. Each point is gener-
ated by running 200 time slots. As shown, coded transmission
significantly reduces the number of transmissions compared
to uncoded transmission: the proposed index coding-based
scheme with degeneracy ordering performs the best, achieving
up to 30% bandwidth saving.

Figs. [5] and [6] illustrate the impact of popularity drifting on
the system performance. Fig. [5] shows the mean and standard
deviation of the Kendall tau distance achieved under different
drifting parameters p. Clearly, a larger p results in a larger
Kendall tau distance. Fig. [6] shows the average number of
transmissions by varying p. When p is larger, popularity varies
faster and hence more transmissions are needed to replace
old files with new files. Again, the proposed index coding-
based scheme with degeneracy ordering outperforms all other
schemes in almost all cases.
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APPENDIX A
PROOF OF THEOREM 3

In this appendix, we prove the relationship of the number
of transmissions 7" and the drifting speed c. Before describing
the theorem and the proof, we first introduce two (implicit)
assumptions.

We first describe a set of relationships between the param-
eters m, n, ¢, and s. Note that then notation o(-), O(-), ()
and O(-) are associated with the above variables. For example,
f(m) = O(m) means that f(m)/m — C < oo, as m — 0.

e Assumption 1: we assume that the number of files m
and the number of total possible requests n+/c have the same
order of magnitude. Formally, we assume m = (in./c for
1 < 81 = ©(1). This is a reasonable assumption, because if
the total possible requests is too small, say n\/c = o(m), then
this requires only a o(m) number of transmissions, even if we
just use uncoded transmissions.

e Assumption 2: we assume that the number of files m
and the size of the caches are in the same order of magnitude.
Formally, we assume that m = fas for 1 < 5 = ©(1). This
assumption indicates that a fraction 1/85 of files are cached
in each WCS.

We thus reiterate Theorem 3 as follows.

Theorem. If users coming to WCSs have randomly and
independently distributed preference rankings across WCSs
at the initial round and their preference rankings evolve
independently and randomly (according to some drifting speed
¢) over rounds, then with high probability (i.e., 1 — o(1), as
m,n, s tend to infinity), the number of transmissions achieved
by the greedy coloring method at each round is upper bounded

by n\/E(l — m)

Proof. To prove this theorem, we need to calculate that any
of the vertices have degree at most n+/c(1 — m) with
high probability (WHP) i.e., 1 —o(1) (in random graph theory,
this is also called almost surely).

Let us denote by V the set of vertices and |V| < ny/c,
since the number of vertices is at most the maximum possible
requests of all WCSs. Let us denote by d(, j) the degree of
vertex (i,j) € V that corresponds to WCS i requesting file j.
We next would like to show that

Pr{d(i,j) 2 nve(l = =), V(0. 4) € V)

=o(1). ®)



Due to symmetry, we can bound the above probability by

Pr{d(%]) > n\ﬁ(l - m)av(laj) € V}
< [VIPr{d(1,j11) 2 nv/e(l = i)}

Hence, we only need to calculate the probability that the
degree of a specified vertex d(1,ji1) is above ny/c(1 —
m) Or equivalently, we denote by L the non-
connection degree of vertex d(1,j11) with respect to the
maximum possible n./c vertices. Formally, we count L =
L1+ Lo + L3 in the following three cases:

o If the number of vertices |V| is less than the maximum
possible number of n+/c, we count the difference as L, i.e.,
Ly =nyec—|V|.

o If a vertex (i,7) € V requests the same file as (1,711),
i.e., j = ji1, then we count these number of vertices as
Ls. Obviously, there is no edge between such a vertex (i, j)
and (1,711) according to our index coding conflict graph
construction.

o If a vertex (i,7) € V and the vertex (1,7j11) have the
following caching pattern: j € S; and ji;; € S;, then we
count these number of vertices (4, j) as L.

Obviously, the degree of (1,711) is ny/c — L, then we only
need to show that L > s/log(s) WHP. And it suffices for us
to show that L < s/log(s) with probability o(1).

To see this, we define the following events Fo £ {ji1 €
Sy}, By 2 {j11 € S5}, ..., By 2 {j11 € S,}. We also
define the random variables X £ I(p,y, X3 £ Iip,y, - ..
X, £ I(g,y, where Iy is the indicator function. We let X =
X9+ X3+ ...+ X,. Because of the independent preference
rankings across WCSs, we can see that the random variables
X;,1=2,3,...,n, are linearly independent. We thus calculate
the expectation of X as follows.

EX =(n—1)Pr{E>} =(n—1)s/m. (5)

“4)

Using Chernoff bound, we can bound the probability that X <
EX/2.

_(1/2%(n-1)s
PI‘{X < ]EX/Q} <e 2m

(n—1)s

—e mmo.  (6)

Let us denote by V7 the subset of vertices that correspond
to WCSs with X; = 1, ie., V3 = {(i,7) € V|X; = 1,1 €
[2 : n]}, where [2 : n] denotes the set {2,3,...,n}. We then
need some manipulation of V;. If [V1| < X /¢, then we can
add some dummy vertices into V; and these dummy vertices
count for L; based on our counting of L. If some (7,7) € V}
has the same request as (1,711), i.e.,, j = j11, we can also
replace these vertices by dummy vertices, since these vertices
also counts for L. Hence, we can see that the worst case is

that |V3| = X+/c and the requested files are different, i.e.,
{jl(i,j) € Vifor some i}| = |Vi|. Define n; = %ﬁ
and ny = m — r1 — ni. Then we can see that
Pr{d(1,j11) 2 nv/e(1 = =)} -
(" 1)3 s/ log(s ; :2
<e” + Z / g( ((nBJ(rnQ];)a

where the first term in the last expression corresponds to

the probability that X < EX/2 and the second term corre-
sponds to the worst case (ie., |[Vi| = X+v/c = |[{j|(i,7) €
Vifor some i}|) probability that for the V7 vertices, the non-
connection degree of (1,j11) is below s/log(s).

We then calculate that

s/log(s) (i) (22)
k=0 (nlfrnz
< s/log(s (S ¥ g1
k=0 RGBT
4n2 s/ log(s) ( )
= (n1+n2)s k=0 k
4"; ( es
(n1+n2)® \s/log(s)
< 4eslog(1—nlnfln2)+®(l+loglog(s))

—o(1))

IN

)s/ log(s)

< e~ (57

where the first inequality comes from %’ < (7) < Zp; the

4 y u' ;
second 1nequa11ty follows from that n; = % < ”S‘[
5 /31 5 < < (n1 4+ n2)/2 < ng; the third inequality follows from
that ZZ:O (3) < (es/d)%; and the last inequality follows from
that log(1 — z) < —1z for z < 0.2.
We then use the union bound to bound the probability that

no vertices have degree larger than n./c(1 — m)‘
Pr{d(i. ) > nv/e(l = 17ty V() € V}
< n\/a[e ” 1)5 4 4e” ‘5(8/‘3152 0(1))] (9)
< e o)y o=s(emm —o) — 4(1).

Then the result follows from that the number of colors
in greedy coloring method is upper bounded by n./c(1 —

nflog(s ) +1= n\[( - n\/Eiqog(s))' N
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