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Abstract—We prove that a class of distance-optimal local re-
construction codes (LRCs), an important family of repair-efficient
codes for distributed storage systems, achieve the maximum
distance separable private information retrieval capacity for the
case of noncolluding nodes. This particular class of codes includes
Pyramid codes and other LRCs proposed in the literature.

I. INTRODUCTION

Private information retrieval (PIR) deals with the scenario
where a user wants to retrieve a data item from a database
without letting the database know the identity of the requested
item. PIR was first introduced in the computer science litera-
ture by Chor et al. in [1], where the authors considered that the
database is replicated across n servers (nodes) and presented a
PIR protocol that efficiently achieves privacy in the presence
of a single spy node. In [1], the efficiency of the PIR protocol
was measured in terms of upload and download cost.

With the advent of distributed storage systems (DSSs),
where data is stored in a distributed fashion over a number of
nodes using a storage code rather than simply replicated, the
concept of PIR has gained traction in the information theory
community. As typically the size of the data items stored is
much larger compared to the size of the queries sent to the
nodes, the upload cost is negligible compared to the download
cost [2]. Thus, under the information-theoretic formulation,
the efficiency of a PIR protocol, referred to as the PIR rate, is
measured in terms of download cost. More precisely, the PIR
rate is defined as the ratio between the requested file size and
the total amount of downloaded data. The maximum PIR rate
over all PIR protocols is the PIR capacity.

The authors in [3] were the first to introduce PIR protocols
for DSSs in the information theory community, assuming
that data is stored using two explicit linear codes. In [2], an
upper bound on the PIR rate for a certain class of linear PIR
protocols was given. For the case of replicated data and a
single spy node, commonly known as the noncolluding case,
Sun and Jafar [4] derived the PIR capacity and presented a PIR
capacity-achieving scheme. Also, for the noncolluding case,
Banawan and Ulukus [5] derived the maximum achievable PIR
rate for the more general scenario where data is stored in the
DSS using a maximum distance separable (MDS) code and
presented a scheme that achieves it. As the underlying storage
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code is an MDS code, such a maximum achievable PIR rate
is usually referred to as the MDS-PIR capacity.

The MDS-PIR capacity depends on the code rate of the
underlying MDS storage code and the number of files stored
in the DSS. In [6], a PIR protocol for MDS-coded data that
achieves the asymptotic MDS-PIR capacity when the number
of files tends to infinity was presented. In [7], the authors
presented a PIR protocol for the case where the underlying
storage code can be an arbitrary linear code and numerically
showed that the proposed protocol can achieve the asymptotic
MDS-PIR capacity even if the underlying storage code is non-
MDS. With some abuse of language, we refer to such codes as
MDS-PIR capacity-achieving codes. While the aformentioned
protocols assume that nodes in the DSS do not collude, [8]–
[11] proposed PIR schemes for the case of colluding nodes.

In a DSS, the storage code is used not just to achieve
reliability against node failures, but also to repair failed nodes.
Although MDS codes are optimal in terms of storage overhead
(for a given rate), they are characterized by a large repair
locality, i.e., the repair of a failed node requires contacting
a large number of nodes. Thus, with focus on repair locality,
several code constructions such as Pyramid codes [12], locally
repairable codes [13], and local reconstruction codes (LRCs)
[14] have been proposed. Such codes follow a similar design
philosophy, and we refer to them globally as LRCs. In [7],
it was shown numerically that, interestingly, the asymptotic
MDS-PIR capacity for the case of noncolluding nodes can be
achieved for some Pyramid codes.

In this paper, we go a step further and formally prove that an
important class of repair-efficient storage codes, namely a class
of distance-optimal LRCs, are MDS-PIR capacity-achieving
codes in the noncolluding case. This implies that one does not
need to sacrifice on the repair locality to achieve the MDS-PIR
capacity.

II. DEFINITIONS AND PRELIMINARIES

Throughout the paper we use the following notation. We
represent the set of a consecutive integers as Na , {1, . . . , a},
while Na:b , {a, . . . , b} represents the set of integers from a
to b. We use calligraphic upper case, bold upper case, and
bold lower case letters to denote sets, matrices, and vectors,
respectively. As an example, X , X , and x represent a set,
matrix, and a vector, respectively. The identity matrix of order
a is denoted by Ia, and (X1| . . . |Xa) denotes the horizontal



concatenation of matrices X1, . . . ,Xa. A submatrix of X
that is restricted in columns by the set J is denoted by
X|J , and the rank of X is denoted by rank (X). C denotes
an [n, k] linear code of block length n, dimension k, and
minimum Hamming distance dCmin over the Galois field GF(q).
A generator matrix of C is denoted by GC , while HC denotes
a parity-check matrix. C|J is the punctured code obtained
from C by restricting the code coordinates to the indices in
J . A set of coordinates of C, J ⊆ Nn, of size k is said
to be an information set if and only if GC |J is invertible.
With some abuse of language, we sometimes interchangeably
refer to binary vectors as erasure patterns under the implicit
assumption that the ones represent erasures.

We consider a DSS that stores f files X(1), . . . ,X(f),
where X(m) = (x

(m)
i,j ), m ∈ Nf , can be seen as a β × k

matrix over GF(q`), with β, k, ` ∈ N. Let x(m)
i denote the i-th

row of X(m). Each x(m)
i is encoded by an [n, k] code C over

GF(q) into a length-n codeword c(m)
i =

(
c
(m)
i,1 , . . . , c

(m)
i,n

)
,

where c(m)
i,j ∈ GF(q`), j ∈ Nn, is stored on the j-th node. The

symbols are stored in the order of increasing m and secondly
in the order of increasing i (see [10, Sec. III]).

A. MDS-PIR Capacity-Achieving Codes

For a given number of files f stored using an [n, k] MDS
code, the MDS-PIR capacity [5, Thm. 1] is Cf = 1−k/n

1−(k/n)f
.

We refer to Cf as the finite MDS-PIR capacity, as it depends
on the number of files. When the number of files grows very
large, i.e., f → ∞, the MDS-PIR capacity reduces to C∞ =
1− k

n , which we refer to as the asymptotic MDS-PIR capacity.
We denote by Rf (C) the PIR rate of a PIR scheme that

uses code C as the underlying storage code to store f files.
The following theorem gives a condition for the existence of
MDS-PIR capacity-achieving codes (under Protocols 1 and 2
presented by the authors in [10]).1

Theorem 1: Consider a DSS that uses an [n, k] code C to
store f files. If there exists a binary n×n matrix E of row and
column weight n− k such that each row is an erasure pattern
that is correctable by C, then C achieves the finite MDS-PIR
capacity Cf (under Protocol 1 in [10]), i.e., Rf (C) = Cf , and
the asymptotic MDS-PIR capacity C∞ (under Protocol 2 in
[10]), i.e., R∞(C) = C∞.

In Sections III and IV, we prove that for a class of distance-
optimal (r, δ) information locality codes [15], an important
class of LRCs, such an E exists, and hence this class of codes
is MDS-PIR capacity-achieving.

B. Local Reconstruction Codes

LRCs are a family of codes characterized by their low repair
locality, i.e., in order to repair a failed node, only a relatively
low number of nodes need to be contacted. In particular,
we consider information locality codes, which are systematic
codes whose focus is to reduce the repair locality of systematic
nodes (i.e., nodes that store systematic code symbols) [12]–
[15]. Formally, they are defined as follows.

1Protocol 2 in [10] was originally introduced in [7].

Definition 1 ((r, δ) information locality code [15, Def. 2]):
An [n, k] code C is said to be an (r, δ) information locality
code if there exist Lc punctured codes Cj , C|Sj of C with
column coordinate set Sj ⊂ Nn for j ∈ NLc . Furthermore,
{C|Sj}j∈NLc

must satisfy the following conditions:
1) |Sj | ≤ r + δ − 1, ∀ j ∈ NLc ,
2) dCjmin ≥ δ, ∀ j ∈ NLc , and
3) rank

(
GC |⋃

j Sj
)

= k.
In other words, Definition 1 says that there are Lc local

codes in C each having a block length of at most r + δ − 1,
minimum Hamming distance at least δ, and the union of all
coordinate sets of the local codes contains an information set.
The overall code C has dCmin ≤ n−k+ 1− (dk/re−1)(δ−1)
and can repair up to δ − 1 systematic nodes by contacting
r storage nodes. Codes that achieve the upper bound on the
dmin are known as distance-optimal (r, δ) information locality
codes and have the following structure.

Definition 2 (Distance-optimal (r, δ) information locality
code [15, Thm. 2.2]): Let r | k such that Lc = k/r. An
(r, δ) information locality code C as defined in Definition 1 is
distance-optimal if:

1) Each local code C|Sj , j ∈ NLc , is an [r + δ − 1, r]

MDS code defined by a parity-check matrix HC|Sj =
(Pj |Iδ−1) of dimensions (δ−1)×(r+δ−1) and minimum

Hamming distance d
C|Sj

min = δ.
2) The sets {Sj}j∈NLc

are disjoint, i.e., Sj ∩Sj′ = ∅ for all
j, j′ ∈ NLc , j 6= j′.

3) The code C has a parity-check matrix of the form

H =


P1 Iδ−1

P2 Iδ−1

. . .
PLc Iδ−1

M1 0 M2 0 · · · MLc 0 Ia


(1)

where the matrices M1, . . . ,MLc are arbitrary matrices in
GF(q) of dimensions (n− Lc(r + δ − 1))× r, and a , n−
Lc(r + δ − 1).

For ease of exposition, we refer to the local parities as the
parity symbols that take part in the local codes, while the parity
symbols that are not part of the Lc local codes are referred to
as global parity symbols. According to Definition 2, there exist
n−Lc(r+ δ− 1) global parities and Lc(δ− 1) local parities.
We partition the coordinates of these parities into L+ 1 sets,
where L ,

⌊
n

r+δ−1

⌋
. For j ∈ NL+1, we have

Pj =


{(j − 1)nc + r + 1, . . . , jnc} if j ∈ NLc ,

{(j − 1)nc + 1, . . . , jnc} if j ∈ NLc+1:L,

{Lnc + 1, . . . , n} if j = L+ 1,

(2)

where nc , r + δ − 1 is the block length of each local
code. The set Pj , j ∈ NLc , represents the coordinates of the
local parities of the j-th local code Cj . The remaining sets
Pj , j ∈ NLc+1:L+1, represent the coordinates of the global
parities of C. As such, the set P =

⋃L+1
j=1 Pj represents the

parity coordinates of C.



III. DISTANCE-OPTIMAL LOCAL RECONSTRUCTION
CODES ARE MDS-PIR CAPACITY-ACHIEVING

Consider an [n, k] distance-optimal (r, δ) information local-
ity code (see Definition 2) for which the (n′− k)× n′ matrix(

P1 P2 · · · PLc In′−kM1 M2 · · · MLc

)
,HMDS (3)

is the parity-check matrix of an [n′, k] MDS code over GF(q),
where n′ = n− (Lc − 1)(δ − 1).2 For such a class of codes,
we give an explicit construction of the matrix E in order to
design the PIR protocol.

Recall that L =
⌊
n
nc

⌋
, nc = r+δ−1, and let r̄ , n mod nc.

We consider

E =

 E1,1 E1,2 . . . E1,L+1

...
...

...
...

EL+1,1 EL+1,2 . . . EL+1,L+1


having (L + 1)2 submatrices El,h, l, h ∈ NL+1. For any
l, h ∈ NL, the submatrices El,h have dimensions nc × nc,
El,L+1 has dimensions nc× r̄, EL+1,h has dimensions r̄×nc,
and EL+1,L+1 has dimensions r̄ × r̄. We denote by e

(l)
i ,

l ∈ NL+1, the i-th row of
(
El,1| . . . |El,L+1

)
. The coordinates

of e(l)
i represent the coordinates of the code C defined by its

parity-check matrix in (1). Furthermore, each row vector is
subdivided into L+ 1 subvectors e(l)

i,j , j ∈ NL+1, as

e
(l)
i = (e

(l)
i,1, . . . , e

(l)
i,n) = (e

(l)
i,1, . . . , e

(l)
i,L, e

(l)
i,L+1).

The subvectors e(l)
i,1, . . . , e

(l)
i,L are of length nc, while e(l)

i,L+1

is of length r̄. Correspondingly, we can think about E as
partitioned into L + 1 column partitions, where the first Lc

partitions correspond to the Lc local codes and the remaining
L + 1 − Lc partitions correspond to global parities (see also
(2)). We can write E as

E ,



e
(1)
1
...
e

(1)
nc

...
e

(L)
nc

e
(L+1)
1

...
e

(L+1)
r̄


=



e
(1)
1,1 e

(1)
1,2 · · · e

(1)
1,L e

(1)
1,L+1

...
... · · ·

...
...

e
(1)
nc,1

e
(1)
nc,2

· · · e
(1)
nc,L

e
(1)
nc,L+1

...
... · · ·

...
...

e
(L)
nc,1

e
(L)
nc,2

· · · e
(L)
nc,L

e
(L)
nc,L+1

e
(L+1)
1,1 e

(L+1)
1,2 · · · e

(L+1)
1,L e

(L+1)
1,L+1

...
... · · ·

...
...

e
(L+1)
r̄,1 e

(L+1)
r̄,2 · · · e

(L+1)
r̄,L e

(L+1)
r̄,L+1


.

We refer to the set of rows e(l)
1 , . . . , e

(l)
nc as the l-th row

partition of E.
For convenience, we divide E into four submatrices Ẽ, W ,

Z, and O defined as

Ẽ ,


e

(1)
1,1 e

(1)
1,2 · · · e

(1)
1,L

e
(1)
2,1 e

(1)
2,2 · · · e

(1)
2,L

...
... · · ·

...
e

(L)
nc,1

e
(L)
nc,2

· · · e
(L)
nc,L

,Z ,


e

(1)
1,L+1

e
(1)
2,L+1

...
e

(L)
nc,L+1

,
2Examples of codes that satisfy (3) are Pyramid codes, the LRCs in [14],

and codes from the parity-splitting construction of [15].

W ,


e

(L+1)
1,1 e

(L+1)
1,2 · · · e

(L+1)
1,L

...
... · · ·

...
e

(L+1)
r̄,1 e

(L+1)
r̄,2 · · · e

(L+1)
r̄,L

 ,O ,


e

(L+1)
1,L+1

...
e

(L+1)
r̄,L+1

,
where Ẽ is an ncL×ncL matrix, having L2 submatrices El,h,
l, h ∈ NL.

In the following, we give a systematic construction of E
such that it is (n− k)-regular.3 The construction involves two
steps.

a) Initialize matrices Ẽ, W , Z, and O. Matrix Z is
initialized to the all-zero matrix of dimensions ncL× r̄.
Matrices W and O are initialized by setting e(L+1)

i,j = 1,
i ∈ Nr̄, j ∈ P =

⋃L+1
j′=1 Pj′ , where P corresponds to the

parity coordinates of C and the sets Pj′ are defined in
Section II-B (see (2)). Let m =

⌊
n−k
L

⌋
, m1 = m + 1,

ρ1 = · · · = ρt = m1, and ρt+1 = · · · = ρL = m,
where t = (n − k) mod L. Matrix Ẽ is initialized with
the structure

Ẽ =


π1 π2 · · · πL
πL π1 · · · πL−1

...
... · · ·

...
π2 π3 · · · π1

 , (4)

where each matrix entry πl, l ∈ NL, is a ρl-regular
square matrix of order nc. Notice that due to the structure
in (4), Ẽ has row and column weight equal to n−k, and
subsequently each row of E has weight n−k. Note also
that the columns of E with coordinates in Pj , j ∈ NL,
have column weight n − k + r̄, while the columns with
coordinates in PL+1 have weight r̄.

b) Swapping elements between Ẽ and Z. The swapping
of elements is performed iteratively with r̄ iterations.
For each iteration, in the i-th row partition and j-th
column partition, we consider a set of row coordinates
R(i)
j of size |Pj | from which s

(i)
j ∈ {0, 1} ones from

columns with coordinates in Pj , j ∈ NL, are swapped
with zeroes in the corresponding rows of Z. For con-
venience, we define s(i) = (s

(i)
1 , . . . , s

(i)
L ) and require

that
∑L
j=1 s

(i)
j = 1. Note that R(i)

j and s(i) depend
on the iteration number. We describe the procedure for
iteration j′ ∈ Nr̄. For the first row partition, select s(1)

with s
(1)
j = 1 and s

(1)
z = 0, ∀ z ∈ NL\{j}, for some

j ∈ NL, such that if j ∈ NLc there exist δ − 1 rows
in the first row partition and j-th column partition such
that their individual weight is strictly larger than δ − 1,
and otherwise if j ∈ NLc+1:L, all rows in the first row
partition and j-th column partition must have weight
larger than or equal to max(1,m − (δ − 1)). This will
ensure that the resulting erasure patterns after the swap
(as described next) are correctable by C (see Section IV).
Such an s(1) will also always exist for all r̄ iterations as
shown in Section IV below. Next, for all i′ ∈ R(1)

j and

3For ease of notation, we will refer to a matrix with constant row weight,
constant column weight, and constant row and column weight equal to a as
an a-row regular, a-column regular, and a-regular matrix, respectively.



p ∈ Pj (where different p’s are chosen for different i′’s,
and index j is such that s(1)

j = 1) the one at coordinate
(i′, p) of Ẽ is swapped with a zero at coordinate (i′, j′)
of Z (this corresponds to coordinate (i′, ncL + j′) of
E). Then, for the remaining row partitions i = 2, . . . , L,
consider s(i) to be the (i − 1)-th right cyclic shift of
s(1) and repeat the swapping procedure for the first
row partition. Due to the specific selection of s(1), the
corresponding erasure patterns for all row partitions after
the swaps are correctable by C (see Section IV). Note that
we have performed

∑L
j=1 |Pj | = n − k − r̄ swaps from

the columns of Ẽ with coordinates in the set ∪Lj=1Pj to
the j′-th column of Z. Thus, each column in ∪Lj=1Pj
has column weight n− k + r̄ − 1 and the (ncL+ j′)-th
column has column weight n−k− r̄+ r̄ = n−k. Letting
j′ = j′ + 1 and repeating the above procedure r̄ times
ensures E to be (n− k)-regular.

This completes the construction of E, which has row and
column weight n − k. In the following theorem, we show
that each row of E (considered as an erasure pattern) can be
corrected by any code from the class of distance-optimal (r, δ)
information locality codes whose parity-check matrices are as
in (1) and are compliant with (3). Thus, this class of codes is
MDS-PIR capacity-achieving.

Theorem 2: An [n, k] distance-optimal (r, δ) information
locality code C with parity-check matrix as in (1) and satisfy-
ing (3) is an MDS-PIR capacity-achieving code.

Proof: A sketch of the proof is given in Section IV.
In the following, we present an example to illustrate the

construction of the matrix E.
Example 1: Consider an [n = 7, k = 4] Pyramid code C

that is constructed from an [n′ = 6, 4] Reed-Solomon code
over GF(23) with parity-check matrices

HC =

z3 1 1 0 0 0 0
0 0 0 z3 z 1 0
z4 1 0 z5 z5 0 1


and

HMDS =

(
z3 1 z3 z 1 0
z4 1 z5 z5 0 1

)
,

respectively, where z denotes a primitive element of GF(23).
It is easy to see that C is a distance-optimal (r = 2, δ = 2)
information locality code. We have nc = 3, L = Lc = 2, and
r̄ , n mod nc = 1. Since ρ1 = 2 and ρ2 = 1, we get

Ẽ =

(
π1 π2

π2 π1

)
=


1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

 , Z =


0
0
0
0
0
0

 ,

where π1 is a 2-regular 3× 3 matrix and π2 is picked as the
identity matrix. The set of parity coordinates is P = {3, 6, 7},
and we set e(3)

1,3 = e
(3)
1,6 = e

(3)
1,7 = 1. As such, we get

W =
(
0 0 1 0 0 1

)
and O =

(
1
)
.

This completes Step a) of the construction above. Note that
each row of E has now weight 3. The second step of the
procedure (Step b)) is as follows. Consider the first iteration,
j′ = 1. In the first row partition we choose s(1) = (s

(1)
1 =

1, s
(1)
2 = 0). Taking R(1)

1 = {2}, we do the swap between
the coordinates (i′ = 2, p = 3 ∈ P1) and (i′, 6 + j′). For
the second row partition we have s(2) = (0, 1) which is a
right cyclic shift of s(1). Taking R(2)

2 = {6}, we do the swap
between the coordinates (i′ = 6, p = 6 ∈ P2) and (i′, 6 + j′).
Thus, we have

e
(1)
2,3 = 0, e

(1)
2,7 = 1,

e
(2)
3,6 = 0, e

(2)
3,7 = 1.

Since r̄ = 1, this completes Step b), which results in

E =



1 1 0 1 0 0 0
0 1 0 0 1 0 1
1 0 1 0 0 1 0
1 0 0 1 1 0 0
0 1 0 0 1 1 0
0 0 1 1 0 0 1
0 0 1 0 0 1 1


.

The entries in red indicate the swapped values within each
row. It can easily be verified that each row of E is an erasure
pattern that is correctable by code C.

IV. SKETCH OF PROOF OF THEOREM 2

In the following, we give a sketch of the proof of Theorem 2.
A more detailed proof is presented in [10, App. F]. According
to Theorem 1, to prove that a distance-optimal (r, δ) infor-
mation locality code C is MDS-PIR capacity-achieving, it is
sufficient to prove that there exists an (n− k)-regular matrix
E whose rows represent erasure patterns that are correctable
by C. The construction of such a matrix E, provided in
Section III, involves two steps as follows.

a) The submatrices Ẽ, W , Z, and O are systematically
constructed such that the row weight constraint is satis-
fied.

b) Swap elements in certain rows of matrices Ẽ and Z in
order to meet the column weight constraint of E.

The proof is a two-step procedure. First, we prove that all
rows in E after Step a) are correctable by C. Secondly, we
prove that the swaps in certain rows in Step b) ensure that the
resulting rows are correctable erasure patterns. We will make
use of the following lemma.

Lemma 1: Let C be an [n, k] distance-optimal (r, δ) infor-
mation locality code consisting of Lc local codes and with
parity-check matrix as in (1). Additionally, it adheres to the
condition in (3). Then, C can simultaneously correct δ−1+νj
erasures, νj ≥ 0, in each local code C|Sj provided that the
number of global parities available is at least ν1 + · · ·+ νLc .

Proof: The proof is given in [10, App. F].
Consider the erasure patterns in the first row partition of E

after Step a). Each of these patterns has νj = ρj−(δ−1), j ∈
NLc , erasures occurring in the coordinates corresponding to the



local code C|Sj that cannot be corrected locally. Furthermore,
the number of nonerased global parities is equal to γtot +
r̄, where γtot is the total number of nonerased global parity
coordinates present in the column partitions Lc + 1, . . . , L.
It can be shown that

∑Lc

j=1 νj ≤ γtot + r̄ (see [10, proof of
Lem. 8]). From Lemma 1, all erasures in the Lc local codes
are correctable. This enables the code to correct the remaining
erasures at the coordinates of C in the set ∪Lj=Lc+1Pj . Thus,
the erasure patterns in the first row partition of E after Step
a) are correctable. Through induction, one can prove that the
erasure patterns in the remaining L−1 row partitions are also
correctable. The erasure patterns in (W |O) are correctable by
C as they pertain to the local and global parity symbols. This
completes the first part of the proof.

We now address the second part of the proof. Note that
the columns with coordinates in Pj , j ∈ NL, have column
weight n− k+ r̄ after Step a). Step b) involves the swapping
of one entries from these coordinates with zero entries in the
column coordinates of Z. The swapping is done to ensure that
the column weight of the columns indexed by Pj , j ∈ NL, is
reduced to n−k, while those of the columns of Z are increased
to n− k− r̄. Since O is an all-one matrix, the columns of E
with indices in PL+1 have also weight n− k. It is possible to
show that such a swapping always exists. Overall, the resulting
matrix E is (n−k)-column regular. To ensure that the erasure
patterns are correctable, we use Lemma 1. For each row,

Lc∑
j=1

νj ≤ γtot + γL+1, (5)

where γL+1 is number of nonerased parity coordinates in
column partition L + 1, must hold. Clearly, if for a certain
row of (Ẽ | Z) a one from a column from a column partition
in NLc+1:L (corresponding to Ẽ) is swapped with a zero in a
column from partition L + 1 (corresponding to Z), then the
resulting erasure pattern is still correctable by C as (5) is still
valid. On the other hand, for j ∈ NLc , if for a certain row of
(Ẽ | Z) a one from the j-th column partition is swapped with
a zero in the (L+1)-th column partition, then such a row is still
a correctable erasure pattern provided that νj > 0 before the
swap. This is easy to see as the swapping procedure reduces
νj and γL+1 by one. Thus, (5) is still satisfied. From the
aforementioned arguments and the fact that each row of any
row partition of (Ẽ | Z) has at most r̄ swaps of ones occurring
from the set of NL column partitions and zeroes from the
(L + 1)-th partition, it follows that the swaps according to
Step b) are valid over all r̄ iterations (valid in the sense that
the resulting erasure patterns are correctable by C) if

Lc∑
j=1

νj +

L∑
j=Lc+1

(m− (δ − 1)) ≥ r̄. (6)

This is a counting argument, where according to Step b) for
each row we restrict swapping νj coordinates in the j-th
column partition, j ∈ NLc , and m − (δ − 1) coordinates in
the column partitions NLc+1:L to make sure (following the
arguments above) that the resulting erasure pattern after the

swap is correctable by C. Using that νj = ρj − (δ − 1) and
t = n−k−mL, it can be shown that the left hand side of (6)
can be lowerbounded by n−k−L(δ−1) when t ≤ Lc. Setting
n = r̄+L(r+ δ− 1) and k = Lcr, it follows that (6) reduces
to L ≥ Lc. By definition, this is always true. When t > Lc,
the left hand side of (6) is equal to n−k−L(δ− 1) +Lc− t,
and it can be shown that this is always larger than or equal
to r̄, since t ≤ L (details omitted for brevity). It follows that
for all r̄ iterations and for all row partitions in the systematic
procedure in Step b) there exists a valid swap such that the
resulting erasure patterns are still correctable by C.

V. CONCLUSION

We formally proved that a class of distance-optimal LRCs,
an important class of codes used in DSSs, are MDS-PIR
capacity-achieving codes. The considered class of codes in-
cludes Pyramid codes and other constructions of LRCs given
in the literature.
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