
ar
X

iv
:1

90
1.

02
39

9v
1

 [
cs

.I
T

]
 8

 J
an

 2
01

9

Service Rate Region of Content Access from

Erasure Coded Storage

Sarah E. Anderson∗, Ann Johnston†, Gauri Joshi¶, Gretchen L. Matthews‡, Carolyn Mayer§, and Emina Soljanin‖

∗University of St. Thomas, St. Paul, Minnesota, USA, ande1298@stthomas.edu
†Penn State University, University Park, Pennsylvania, USA, abj5162@psu.edu
¶Carnegie Mellon University, Pittsburgh, PA, USA, gaurij@andrew.cmu.edu
‡Clemson University, Clemson, South Carolina, USA, gmatthe@clemson.edu

§Worcester Polytechnic Institute, Worcester, Massachusetts, USA, cdmayer@wpi.edu
‖Rutgers University, New Brunswick, NJ, USA, emina.soljanin@rutgers.edu

Abstract—We consider storage systems in which K files are
stored over N nodes. A node may be systematic for a particular
file in the sense that access to it gives access to the file.
Alternatively, a node may be coded, meaning that it gives access
to a particular file only when combined with other nodes (which
may be coded or systematic). Requests for file fk arrive at rate
λk, and we are interested in the rate that can be served by a
particular system. In this paper, we determine the set of request
arrival rates for the a 3-file coded storage system. We also provide
an algorithm to maximize the rate of requests served for file K
given λ1, . . . , λK−1 in a general K-file case.

I. INTRODUCTION

The explosive growth in the amount of data stored in the

cloud calls for new techniques to make cloud infrastructure

fast, reliable, and efficient. Moreover, applications that access

this data from the cloud are becoming increasingly interactive.

Thus, in addition to providing reliability against node failures,

service providers must be able to serve a large number of users

simultaneously.

Content files are typically replicated at multiple nodes to

cope with node failures. These replicas can also be used

to serve a larger volume of users. To adapt to changes in

popularity of content files, service providers can increase or

decrease the number of replicates for each file, a strategy

that has been widely used in content delivery networks [1].

The use of erasure coding, instead of replication, to improve

the availability of content is not yet fully understood. Using

erasure codes has been shown to be effective in reducing the

delay in accessing a file stored on multiple servers [2]–[4].

However, only a few works have studied their use to store

multiple files. Some recent works [5] have proposed new

classes of erasure codes to store multiple files that allow a

file to be read from from disjoint sets of nodes. Other works

[6], [7] study the delay reduction achieved using these codes.

Besides download latency, it has recently been recognized

that another important metric for the availability of stored data

is the service rate [8]–[10]. Maximizing the service rate (or

the throughput) of a distributed system helps support a large

number of simultaneous system users. Rate-optimal strategies

are also latency-optimal in high traffic. Thus, maximizing the

service rate also reduces the latency experienced by users,

particularly in highly contending scenarios.

This paper is one of the first to analyze the service rate

region of a coded storage system. We consider distributed

storage systems in which data for K files is to be stored across

N nodes. A request for one of the files can be either sent to

a systematic node or to one of the repair groups. We seek to

maximize such systems’ service rate region, that is, the set of

request arrival rates for the K files that can be supported by

a coded storage system.

The problem addressed in this paper should not be confused

with the related problem of caching and pre-fetching of

popular content at edge devices [11]. Caching benefits for the

network are measured in reduction in the backhaul traffic it

enables. Quality of service to the user measures include cache

hit ratio and cache hit distance. Rather than with the backhaul,

this paper is concerned with the access part of the network,

namely, with potential service rate increase through work pro-

vided, jointly and possibly redundantly, by multiple network

edge devices. Consequently, instead of measuring e.g., content

download performance by the likelihood of an individual cache

hit or cache memory and bandwidth usage, we strive to ensure

that multiple caches are jointly in possession of content and

can deliver it fast to multiple simultaneous users.

In [9], the achievable service rate region was found for

some common classes of codes, such as maximum-distance-

separable (MDS) codes and simplex codes. That paper also

determined the service rate region when K = 2, with arbitrary

numbers of systematic and coded nodes. We generalize this

service rate region result from K = 2 files to K = 3 files and

provide an algorithm to maximize the requests served for a

given file with general K . The paper begins with preliminary

notions given in Sec. II. Sec. III addresses the general K case

where all nodes are coded, and Sec. IV addresses the K = 3
case. We return to the general case in Sec. V.c©2018 IEEE

http://arxiv.org/abs/1901.02399v1

a

1

a

2

a+ b

3

b

4

Fig. 1. A possible way to store two files on N = 4 nodes.

II. PRELIMINARIES

Suppose files f1, . . . , fK are stored across a system

that consists of N nodes labeled 1, . . . , N . For k ∈
[K] := {1, . . . ,K}, there is a collection of minimal sets

Rk1, . . . , Rkγk
⊆ [N] that each correspond to a set of nodes

that gives access to file fk. Each such minimal set of nodes

is called an fk–repair group.

Example 1. Fig. 1 shows one possible way to store two files,

a and b, across four nodes. In this system, the a-repair groups

are {1}, {2}, and {3, 4}. The b-repair groups are {4}, {1, 3},
and {2, 3}.

For (i, j) ∈ [γk]× [N], define the function

δk(i, j) :=

{

1, if node j is in the fk–repair group Rki,

0, else.
(1)

Suppose that when a request for file fk is received, that

request is sent at random to an fk–repair group according

to a splitting strategy with αki ≥ 0 denoting the fraction of

requests sent to repair group Rki, so that for each k ∈ [K],
∑

i∈[γk]

αki = 1. (2)

Let the demand for file fk be λk, so the arrival of requests for

file fk to the storage system queue is Poisson with rate λk , and

let λ = (λ1, . . . , λK) record the demand for files f1, . . . , fK .

The average rate that file requests arrive at a storage system

node depends both on the splitting strategy for file requests

and on the demand λ. More precisely, the average rate that

file requests are received at node j ∈ [N] is
∑

k∈[K]

∑

i∈[γk]

αikδk(i, j)λk. (3)

Let µj denote the average rate of resolving received file

requests at node j. Whenever demand is such that at least one

node j of the storage system receives requests at an average

rate in excess of its µj , the storage system queue will have a

tendency to grow. With this in mind, it is appropriate to call µj

the service rate of node j. We will consider uniform systems

for which µj = 1 for j = 1, . . . , N . If, at demand λ, there

exists a splitting strategy under which no storage system node

receives requests at a rate in excess of its service rate, then λ

is said to be in the achievable service rate region of the storage

system. More formally, the storage system’s achievable service

rate region S is the set of all λ ∈ R
K
≥0 such that there exists a

splitting strategy with
∑

k∈[K]

∑

i∈[γk]

αkiδk(i, j)λk ≤ µj , for all j ∈ [N]. (4)

For any λ = (λ1, . . . , λK) ∈ R
K
≥0, denote by λ

k̂
the (K − 1)-

tuple (λ1, . . . , λk−1, λk+1, . . . λK), and for x ∈ R≥0 let λ
k̂
×

{x} := (λ1, . . . , λk−1, x, λk+1, . . . λK). If λ ∈ S , then the same

splitting strategy whose existence is guaranteed by (4) is also

sufficient to give λ
′ ∈ S for every λ

′ satisfying for all k ∈ [K],
λ′
k ≤ λk. Thus, given any pair λ

k̂
×{0} ∈ S and λ

k̂
× {λk} ∈

S , the entire interval λ
k̂
× [0, λk] is in S. Moreover, for any

storage system (regardless of its coding), if λ is such that the

demand for any file fk is in excess of N · maxj∈[N]{µj},
then under all possible assignment strategies (4) is violated

for at least one node j, and so λ
k̂
× {x} is not in S for any

x > N · maxj∈[N]{µj} and λ
k̂
∈ R

K−1

≥0
. In this way, S is

a non-empty, closed, and bounded subset of R
K
≥0. Therefore,

given any λ
k̂
× {0} ∈ S , there exists a maximal value of λk

such that λ
k̂
× [0, λk] ⊂ S and λ

k̂
×{λ′

k} 6∈ S for any λ′
k > λk .

When k = K , we call this maximal value L(λ
K̂
). In this

notation, the service rate region of any storage system can be

described as:

S = {λ
K̂
× [0, L(λ

K̂
)] : (λ1, . . . , λK−1, 0) ∈ S}. (5)

Example 2. Three examples of how two files, a and b may be

stored across three nodes are shown on the below on the left.

The resulting service service rate regions for each system are

shown below on the right.

a b b

a a+ b b

a a b
λa

λb

0
µ 2µ

µ

2µ

Coding schemes that use a mixture of replication and MDS

coding are not conventional. However, if the service rate region

is used as a performance metric, then a combination of coded

and systematic nodes has been shown to be beneficial [6], [9].

In this paper, we consider storage systems for K files whose

coded nodes satisfy the following three conditions:

1) Each K–subset of coded nodes forms an fk–repair group

for every k ∈ [K].
2) No subset of k < K coded nodes forms an fk–repair

group, for any k ∈ [K].
3) With addition of systematic nodes for any n distinct files

(naturally, n < K) every (K−n)–subset of coded nodes

from the core completes these systematic nodes to form

an fk–repair group for every k ∈ [K].

We say that such a system has an MDS core. We consider

situations with uniform node capacities µ = µ1 = · · · = µN .

For convenience, we use C to denote the number of coded

nodes in such a core. When systematic nodes are also present,

we use Nk to denote the number of systematic nodes for file

fk. In this way, the total number of nodes in a storage system

for K files that has an MDS core is N = C +
∑K

k=1 Nk.

III. ALL CODED NODES

We begin by considering an MDS K-file core where there

are no systematic nodes in the system. In this situation, all

nodes form a repair group for each file, and K nodes are

required to recover any file.

Theorem 1. Assume N1 = · · · = NK = 0. If there are

C > K − 1 coded nodes, then the achievable service rate

region S is the set of all λ with
∑K

i=1 λi ≤
C
K
µ, and so

L(λ1, . . . , λK−1) =
C
K
µ−

∑K−1
i=1 λi. If there are C ≤ K − 1

coded nodes, then S is the point (0, . . . , 0).

Proof. If C ≤ K − 1, then no file can be recovered and the

service rate region is the point (0, . . . , 0).
Assume C > K − 1. Note that since every repair group

requires K nodes, the total demand that can be served is

bounded above by Cµ
K

. For each file, there are a total of
(

C
K

)

repair groups, and each node is in
(

C−1
K−1

)

repair groups.

By sending demand µ

(C−1
K−1)

to each repair group, requests to

each node occur at the service rate and the system can serve

demand
(CK)
(C−1
K−1)

µ = C
K
µ . Since this demand can be for any

file, the service rate region is
∑K

i=1 λi ≤
C
K
µ. Therefore, the

maximum achievable λK is

λK = L(λ1, . . . , λK−1) =
C

K
µ−

K−1
∑

i=1

λi.

The two file case is considered in [9]. The situation becomes

increasingly complex depending on the number of files K in

the system. In the next section, we consider K = 3.

IV. THREE FILES

In this section, we consider the service rate region of storage

systems for 3 files with MDS cores. As a corollary to Theorem

1, we obtain the service rate region for the case when there

are no systematic nodes, which is represented in Fig. 2. Note

that when the demand for one file is zero, then this may be

considered a system with only two files. For example, if λ3 =
0, then the maximum achievable λ2 is λ2 = C

3 µ− λ1, which

is the region shaded in Fig. 2.

C
2 µ

0

C
2 µ

λ1

λ2

λ1λ3

λ2

C
3 µ

C
3 µ

0

C
3 µ

Fig. 2. Achievable service rate regions of all-coded-node systems with 2

files (left) or 3 files (right).

We now consider storage systems that have both coded

nodes and systematic nodes. Suppose that a coded storage

system has C coded nodes and Ni systematic file fi nodes,

i = 1, 2, 3. Note that a systematic repair node may be in a

repair group with a single node (serving requests for the file

it stores) or three nodes (serving requests for any other file).

Any repair group using a coded node contains three nodes.

For i = 1, 2, if ri ≤ Niµ requests for file fi are served using

systematic fi nodes (and any other demand for file fi is served

using a repair group of three nodes), then the total demand that

can be served is bounded above by

D := r1 + r2 +
(N1µ− r1) + (N2µ− r2) + Cµ

3
+N3µ.

Given demand λ1 for file f1 and λ2 for file f2, the rate of

requests that may be served for file f3 is bounded above

by max{D − λ1 − λ2, 0}. This is maximized when ri =
min{λi, Niµ} for i = 1, 2. The splitting strategy in the proof

of the following theorem meets this bound.

Theorem 2. Assume there are N1, N2, and N3 systematic

nodes for files f1, f2, and f3, respectively, and C coded

nodes. Assume λ1 + λ2 ≤ µN1 + µN2 + C
3 µ and C ≥

max
(

3, N1 −
λ1

µ
, N2 −

λ2

µ

)

. Then S has L(λ1, λ2) =

(C
3
+ N1

3
+ N2

3
+N3)µ− λ1

3
− λ2

3
, 0 ≤ λi

µ
≤ Ni, i = 1, 2

(C
3
+N1 +

N2
3

+N3)µ− λ1 −
λ2
3
, N1 < λ1

µ
≤ N1 +N2 +

C
3
,

0 ≤ λ2
µ

≤ N2

(C
3
+ N1

3
+N2 +N3)µ− λ1

3
− λ2, 0 ≤ λ1

µ
≤ N1,

N2 < λ2
µ

≤ N1 +N2 +
C
3

(C
3
+N1 +N2 +N3)µ− λ1 − λ2, N1 < λ1

µ
≤ N1 +N2 +

C
3
,

N2 < λ2
µ

≤ N1 +N2 +
C
3

Proof. Consider a system with N1, N2, and N3 systematic

nodes for files f1, f2, and f3 and C coded nodes.

Step 1: Send requests to systematic nodes at the service

rate to serve demand for files f1 and f2, as possible. If any

fi (i = 1, 2) systematic nodes remain available, distribute

remaining file fi demand uniformly across those nodes.

Example 3. Consider a 3-file system with N1 = 3, N2 = 1,

N3 = 1, and C = 3.

f1 f1 f1 f2 f3 c c c

If λ1 = 3
2µ and λ2 = 2µ then µ requests for f1 will be

served by one of the f1 systematic nodes, and the remaining
1
2µ requests for f1 will be split between the other 2 systematic

nodes. Also, µ requests for f2 will be served by the f2
systematic node. After Step 1, the remaining demand for f1 is

0 and the remaining demand for file f2 is µ. In the system,

there are now two systematic f1 nodes that can handle an

additional 3
4µ requests as well as one systematic f3 node and

three coded nodes each with available service rate µ.

f1 f1 f1 f2 f3 c c c

At the end of Step 1, if λi ≤ µNi for i = 1 or 2, then there

will be N ′
i = Ni−⌊

λi

µ
⌋ systematic nodes remaining available

for fi, each with service rate reduced to µ′
i = µ−

λi−⌊
λi
µ
⌋·µ

N ′
i

.

Since λi ≤ µNi, the remaining demand for file fi is λ′
i = 0.

If λi ≥ µNi for i = 1 or 2, we exhaust every fi systematic

node. The remaining demand for file fi is then λ′
i = λi−µNi,

and N ′
i = 0 systematic fi nodes remain.

Step 2: Serve any remaining demand for files f1 and f2.

Finally, serve demand for file f3.

Example 4. Consider the system in Example 3. In Step 2

we want to serve the remaining requests for file f2 in a way

that maximizes the requests that can be handled for f3. In

particular, we will reserve the use of systematic f3 nodes for

accessing file f3. Note that there are 2 ·
(

3
2

)

= 6 repair groups

for file f2 that involve one systematic f1 node and two coded

nodes. If we send µ
6 requests for file f2 to each of these repair

groups, then all the requests for file f2 are served, each f1
systematic node can serve

µ
4 more requests (as each f1 node

is in 3 repair groups) and each coded node can serve µ
3 more

requests (as each coded node is in 4 repair groups).

f1 f1 f1 f2 f3 c c c

Finally, requests for f3 may be served. Sending µ
12 requests

to each of the 6 repair groups with one f1 node and two coded

nodes exhausts each f1 node and each coded node. The full

service rate of the systematic f3 node may also be used to

serve requests for f3. Thus a total of 6 · µ12 +µ = 3
2µ requests

for f3 may be served.

f1 f1 f1 f2 f3 c c c

How requests are served in Step 2 depends on the demand

and number of systematic nodes for files f1 and f2. Let λ be

the total demand for files f1 and f2 that remains after Step 1;

that is, λ = λ′
1 + λ′

2.

Case 1 (0 ≤ λ1 ≤ µN1, 0 ≤ λ2 ≤ µN2): In this case,

λ = 0, so all available system resources may be used to serve

f3 demand. The full service rate of file f3 systematic nodes

may be used, serving demand µN3 for file f3. Let σ be a

permutation on {1, 2} such that
µ′
σ(1)

N ′
σ(2)
≤

µ′
σ(2)

N ′
σ(1)

.

There are N ′
1N

′
2C f3–repair groups with a systematic node

for each of f1 and f2, and one coded node. Recall, C ≥

max
(

3, N1 −
λ1

µ
, N2 −

λ2

µ

)

. Since C ≥ Nσ(1) −
λσ(1)

µ
,

µ′
σ(1)N

′
σ(1) = µ

(

Nσ(1) −
λσ(1)

µ

)

demand for f3 can be served by sending
µ′
σ(1)

N ′
σ(2)

C
demand to

each of these repair groups. The service rate of each fσ(1)
is reduced to 0, while fσ(2) systematic nodes have µ′′

σ(2) =

µ′
σ(2)−

µ′
σ(1)

N ′
σ(2)

C
N ′

σ(1)C = µ′
σ(2)−

µ′
σ(1)

N ′
σ(2)

N ′
σ(1), and coded nodes

have µ′
C = µ−

µ′
σ(1)

N ′
σ(2)

C
N ′

σ(1)N
′
σ(2) = µ−

µ′
σ(1)

C
N ′

σ(1).

There are N ′
σ(2)

(

C
2

)

f3–repair groups with one of the

remaining systematic file fσ(2) nodes and 2 coded nodes. Since

C ≥ Nσ(2) −
λσ(2)

µ
, similarly to before, we can serve

µ′′
σ(2)N

′
σ(2) = µ

((

Nσ(2) −
λσ(2)

µ

)

−

(

Nσ(1) −
λσ(1)

µ

))

demand for file f3 by sending demand equally to each of these

f3–repair groups. Each coded node has remaining service rate

µ′′
C = µ′

C−
µ′′
σ(2)

(C2)
(C−1)N ′

σ(2), and no systematic f1, f2 nodes

remain available.

Since C ≥ 3, as in the case in Theorem 1 with C coded

nodes and no systematic nodes, the service rate µ′′
C of these

coded nodes can be used to serve C
3 µ

′′
C demand for file f3.

Thus, the maximum achievable λ3 is L(λ1, λ2)

=
C

3
µ′′
C + µ′′

σ(2)N
′
σ(2) + µ′

σ(1)N
′
σ(1) + µN3

=
1

3

(

Cµ+ µNσ(2) − λσ(2) + µNσ(1) − λσ(1)

)

+ µN3.

Similar arguments can be used for Case 2: µN1 < λ1 ≤
µN1+µN2+

C
3 µ, 0 ≤ λ2 ≤ µN2 and Case 3: 0 ≤ λ1 ≤ µN1,

µN2 < λ2 ≤ µN1 + µN2 +
C
3 µ (see Example 4).

Case 4 (µN1 < λ1 ≤ µN1 + µN2 + C
3 µ, µN2 < λ2 ≤

µN1 + µN2 +
C
3 µ): In this case, all available repair groups

consist entirely of coded nodes. Since demand µNi for file fi
(i = 1, 2) was satisfied in Step 1, the remaining total demand

for files f1 and f2 is λ < C
3 µ. Since C ≥ 3, this can be served

by sending demand equally to every coded repair group. The

coded nodes’ remaining ability to service can be used for file

f3. Thus, the maximum achievable λ3 is

L(λ1, λ2) =
C

3
µ− λ+ µN3

=
C

3
µ− (λ1 − µN1 + λ2 − µN2) + µN3.

Note that L(λ1, λ2) can be found for systems with C < 3
coded nodes in a similar way. When C < 3, all repair groups

must contain systematic nodes for at least 3−C distinct files.

V. MDS K -FILE CORES

Theorem 2 may be generalized to provide an algorithm for

maximizing λk for the general K-file case. Assume we have

an MDS K-file core with N1, N2, . . . , NK systematic nodes

for files f1, f2, . . . , fK , respectively, and C coded nodes, with

demand λ1, λ2, . . . , λK−1 for files f1, f2, . . . , fK−1. As in

Theorem 2, we again assume λ1 + . . . + λK−1 ≤ µN1 +
. . .+ µNK−1 +

C
K
µ. Our goal is to identify the maximal file

fK request rate that can be served.

We can first serve file f1, f2, . . . , fK−1 demand using their

respective systematic nodes. This process is analogous to Step

1 in Theorem 2. Note, in this algorithm, the same demand is

sent to every file fi systematic node, and also to every coded

node, so we can let µi and µC represent the updated service

rate of systematic file fi nodes and coded nodes, respectively.

We can then serve any remaining total demand λ =
λ1 + . . . + λK−1 using K-tuples of coded and systematic

nodes. This is analogous to Step 2 in Theorem 2. Let K ′ :=
∑K−1

i=1 sgn(Ni) denote the number of files (excluding file fK)

for which the system contains systematic nodes. There are
(

∏K−1
{i=1 | Ni>0} Ni

)

(

C
K−K′

)

repair groups with K ′ systematic

nodes and K − K ′ coded nodes. Letting m be the index

minimizing Niµi for positive Niµi, we can serve demand

µmNm by sending µm(∏K−1
{i=1 | Ni>0 and i6=m}

Ni

)
(C

K−K′)
demand to

each of these repair groups. This exhausts file fm systematic

nodes, while file fj systematic nodes (j 6= m, Nj > 0,

1 ≤ j ≤ K − 1) have reduced service rate

µj −
µm

(

∏K−1
{i=1 | Ni>0 and i6=j} Ni

)

(

C
K−K′

)

(

∏K−1
{i=1 | Ni>0 and i6=m} Ni

)

(

C
K−K′

)

, (6)

which is µj−
µmNm

Nj
. The remaining coded nodes have reduced

service rate

µC −
µm

(

∏K−1
{i=1 | Ni>0} Ni

)

(

C−1
K−K′−1

)

(

∏K−1
{i=1 | Ni>0 and i6=m} Ni

)

(

C
K−K′

)

, (7)

which is µj−
µm(K−K′)

C
. We can continue in this way until the

systematic node service rate is met for all but file fK . Then,

we can use repair groups that consist entirely of coded nodes,

applying Theorem 1. Once all demand for files f1, . . . , fK−1

has been satisfied, we can follow a similar process to utilize

any remaining system resources to serve demand for file fK .

Note, once the coded nodes have been exhausted, or if there

are too few coded nodes to form a K-tuple, no demand may be

satisfied using only coded nodes. We may then serve demand

for file fK using systematic file fK nodes.

ACKNOWLEDGMENT

The initial stages of this work were performed at ICERM

(Institute for Computational and Experimental Research in

Mathematics) in Providence, RI. We are indebted to the

organizers of the ICERM 2017 Women in Data Science and

Mathematics Research Collaboration Workshop.

REFERENCES

[1] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. IEEE INFOCOM, Mar. 2010,
pp. 1–9.

[2] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off in
content download from coded distributed storage systems,” IEEE JSAC,
vol. 32, no. 5, pp. 989–997, May 2014.

[3] N. Shah, K. Lee, and K. Ramachandran, “The MDS queue: Analyzing
the Latency Performance of Erasure Codes,” in Proc. IEEE Int. Symp.

Inform. Theory, Jul. 2014.
[4] G. Joshi, E. Soljanin, and G. Wornell, “Efficient redundancy techniques

for latency reduction in cloud systems,” ACM Trans. Modeling and

Performance Evaluation of Computing Systems, May 2017.
[5] A. Rawat, D. Papailiopoulos, A. Dimakis, and S. Vishwanath, “Locality

and availability in distributed storage,” in Proc. IEEE Int. Symp. Inform.
Theory, June 2014, pp. 681–685.

[6] S. Kadhe, E. Soljanin, and A. Sprintson, “When do the availability codes
make the stored data more available?” in 2015 53rd Annu. Allerton Conf.
Commun., Control, and Computing, Sept 2015, pp. 956–963.

[7] M. F. Aktas, E. Najm, and E. Soljanin, “Simplex queues for hot-data
download,” in Proc. 2017 ACM SIGMETRICS/Int. Conf. Measurement

and Modeling of Computer Systems. ACM, 2017, pp. 35–36.
[8] M. Noori, E. Soljanin, and M. Ardakani, “On storage allocation for

maximum service rate in distributed storage systems,” in Proc. IEEE

Int. Symp. Inform. Theory (ISIT), July 2016, pp. 240–244.
[9] M. Aktas, S. E. Anderson, A. Johnston, G. Joshi, S. Kadhe, G. L.

Matthews, C. Mayer, and E. Soljanin, “On the service capacity of
accessing erasure coded content,” in Proc. Allerton Conf. Commun.,

Control and Computing, Oct. 2017.
[10] G. Joshi, “Synergy via redundancy: Boosting service capacity with

adaptive replication,” in Proc. IFIP Performance, Nov. 2017.
[11] M. A. Maddah-Ali and U. Niesen, “Coding for caching: fundamental

limits and practical challenges,” IEEE Commun. Mag., vol. 54, no. 8,
pp. 23–29, 2016.

Algorithm 1 Maximize λK

INPUT: λ1, λ2, . . . , λK−1, N1, N2, . . . , NK , C, µ

OUTPUT: λK

λK ← 0
µC , µi ← µ for i from 1 to K

Step 1:

for i from 1 to K − 1 do

if λi ≤ µNi then

λi ← 0

Ni ← Ni −
⌊

λi

Ni

⌋

µi ← µ−
λi−

⌊
λi
µ

⌋
µ

Ni

else

λi ← λi − µNi

Ni, µi ← 0
end if

end for

Step 2:

λ←
∑K−1

i=1 λi

K ′ ←
∑K−1

i=1 sgn(Ni)
while C > 0 and C ≥ K −K ′ do

if K ′ > 0 then

m← the index i minimizing Niµi, Niµi > 0
l ← min(µmNm, µCC)
if λ > 0 then

if λ ≥ l then

λ← λ− l

else

λK ← λK + (l − λ)
λ← 0

end if

else

λK ← λK + l

end if

if l = λmNm then

µC ← apply Equation 7

Nm, µm ← 0
K ′ ← K ′ − 1

else

µC , C ← 0
end if

µj ← apply Equation 6 if Nj > 0 for 1 ≤ j ≤ K − 1
else

if λ > 0 then

µC ← µC −
λ

(CK)

(

C−1
K−1

)

λ← 0
end if

λK ← λK + C
K
µC

C ← 0
end if

end while

λK ← λK + µKNK

	I Introduction
	II Preliminaries
	III All coded nodes
	IV Three files
	V MDS K-file cores
	References

