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Abstract—We present a coded caching framework using line
graphs of bipartite graphs. A clique cover of the line graph
describes the uncached subfiles at users. A clique cover of the
complement of the square of the line graph gives a transmission
scheme that satisfies user demands. We then define a specific
class of such caching line graphs, for which the subpacketiza-
tion, rate, and uncached fraction of the coded caching problem
can be captured via its graph theoretic parameters. We present
a construction of such caching line graphs using projective
geometry. The presented scheme has a rate bounded from
above by a constant with subpacketization level qO((logqK)2)

and uncached fraction Θ( 1√
K

), where K is the number of users
and q is a prime power. We also present a subpacketization-
dependent lower bound on the rate of coded caching schemes
for a given broadcast setup.

I. INTRODUCTION

Wireless data traffic has been growing tremendously in
the last decade and is expected to do so in the future, and
video in particular is expected to comprise of more than
50% of the total traffic [1]. Caching has been in vogue
to lay off the traffic during peak times in the network by
storing part of the information demanded by users (clients)
in local storage known as caches. In this way, during the
peak hours, the server can transmit only the non-cached
information thus reducing the traffic. For instance, consider
the setting taken in [2], consisting of a single-server error-
free broadcast channel with K clients(users), N files at the
server (each file comprised of F subfiles, where F is known
as the subpacketization parameter), with each client capable
of caching MF subfiles. By populating the cache during the
caching phase when the demand requests are not present,
traditional caching can achieve a rate R equal to K(1− M

N )
during the delivery phase when the network is required to
satisfy the demands (the rate R is defined as fraction of the
number of transmitted packets (each of size equal to a subfile)
to F .

The paradigm of Coded Caching, introduced in [2], was
based on the idea of transmitting coded packets during
the peak times to further reduce the network usage. In
contrast to the uncoded caching scenario which required a
rate K(1 − M

N ), the coded caching scheme shown in [2]

achieves a rate K(1−MN )

1+MK
N

, which is constant as K → ∞ for

constant M
N . This is achieved by designing both the caching

phase and the delivery phase carefully. The tremendous rate
advantage shown in [2] were shown in other settings also, for
instance [3], [4]. The scheme in [2] is also shown to be order
optimal, i.e., within a constant multiple of the optimal rate for

the same set of parameters. The scheme of [2] is achieved by
dividing each file into F =

(
K
MK
N

)
subfiles, and caching them

appropriately in the client caches. It was noticed in [6] that
the subpacketization required is exponential for constant M

N

as K grows large (as
(
K
Kp

)
≈ 2KH(p) for constant 0 < p < 1,

where H(p) is the binary entropy). Since then a number of
papers [6]–[11], [13]–[15] have presented new schemes for
coded caching which uses smaller subpacketization at the
cost of having increased rate or cache requirement compared
to [2]. Table I lists the relevant known results in this context
(the references and the techniques used are shown in the
first column). The second column lists the uncached fraction
of any file (a fraction M

N of each file is cached by a user).
Many of the schemes presented in Table I require exponential
subpacketization (in K, for large K), as shown in the fourth
column of Table I to achieve a constant rate (shown in
the last column). The subpacketization of particular schemes
of [9], [14] have been shown to be sub-exponential, while
some schemes of [13] have subpacketization that is linear
or polynomial (in K) at the cost of either requiring larger
cache M or larger rate compared to [2]. Interestingly, a linear
subpacketization scheme (F = K) was shown in [10] using
a graph theoretic construction with near constant rate and
small memory requirement. However the construction in [10]
holds for very large values of K only. In [9], it was shown
that subpacketization linear in K is impossible if we require
constant rate. In [15], the authors consider caching schemes
without file splitting, i.e., the scenario when F = 1.

The contributions and organization of this work are as fol-
lows. After reviewing the work of [7] in Section II, we prove
a lower bound on the peak delivery rates of coded caching
schemes using the properties of the associated bipartite graph
(Section III). We then map the problem of finding a valid
transmission scheme corresponding to a bipartite caching
scheme to a clique cover problem of a graph derived from the
line graph of the bipartite graph (Section IV). In Section IV,
we also show that the existence of a class of such line graphs
of bipartite graphs implies the existence of coded caching
schemes for which there is a nice characterization of the
rate, uncached fraction, and subpacketization. We then give
a coded caching scheme using a construction of such caching
line graphs based on projective geometries over finite fields
(Section V). Analyzing this scheme in Section VI, we get
to add results to Table I, as shown in Table II. The first
row of Table II lists the actual parameters of our scheme.
The other two rows indicate asymptotic results as K → ∞
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Scheme (1− M
N ) Number of Users K F Rate R

large K and constant MN

Ali-Niesen [2] (1− M
N ) for M < N any K c1e

Kd1 K−t
1+t =

K(1−M
N

)

MK
N

+1

such that MKN ∈ Z≥0 (for large K)

Ali-Niesen Scheme with Same as [2] K O(c4e
d4K) (c2, c3 < d4) K

g+1

(
1− 1

d N
M
e

)
, where

Grouping [6] (for large K) g ∈ Z such that K

gd N
M
e
∈ Z.

Yan et al [8] (PDAs) 1− 1
q or 1

q Any K c2e
Kd2 (d2 < c2, for large K)

K(1−M
N

)

MK
N

Shanguan et al [9] For large K R ≈ (2q − 1)2, such that q = λ
2 ,

(PDAs based on hypergraphs) 1− 1
q or 1

q Specific choices c3e
√
Kd3 where λ is such that MN = 2λ−1

λ2

Yan et al [7] (for integers 0 < a, b < m

and λ < min {a, b} based on 1−
(
a
λ

)(
m−a
b−λ

)
(
m
a

) (m
a

) (m
b

) (
m

a+b−2λ

)(
a+b−2λ
a−λ

)
(
m
b

)
strong edge coloring of bipartite graph)

Tang et al [11] based For large K, c5eKd5 , exponent

on resolvable designs 1− 1
q or 1

q nq similar to [7] and [9]
K(1−M

N
)

log(F )−c
(for some constant q) (some schemes) but less than (for some constant c)

some schemes of [9]
Scheme from [10] based on ≤ (1−K−ε) K

induced matchings of a (where ε = k1δe
− k2
δ , (necessarily K Kδ

Rusza Szemeredi graph for δ as in last column) large) (some small δ)
PDA scheme P1 from For integers k, t

Cheng et al [13] t+1(
k
t

) ( k
t+1

) (k
t

)
k(
k
t

)
PDA scheme P2 from For integers k, t

Cheng et al [13] 1− t
k

(k
t

)
k

(
k
t+1

)
k

Two PDA Schemes from [14] For integers z, q, t
(m
t

)
qt and

(
(q − z)/b q−1

q−z c
)t

(
(q−z)
q

)t
and 1− z

q (m+ 1)q O

q tK 1
t
q

 and (q − z)/b q−1
q−z c

TABLE I: Known results

1 − M
N

K F R
For non-negative integers k,m, t with 1 ≤ m + t ≤ k[
m + t

t

]
q[

k
t

]
q

[
k
t

]
q

[
k

m + t

]
q

[
m + t

t

]
q[

k −m
t

]
q

Limiting behaviors as k grows, for constants t, k −m, q :

≥ q(m+t−k−1)t

[
k
t

]
q

≤ K
k−t−m+1

t ≤ K
q2(k−m−t−1)t

(constant) (O(poly(K)) (Θ(K))
Limiting behaviors as k grows, for constants t, k − 2m, q :

Θ( 1√
K

)

[
k
t

]
q

qO((logqK)2) ≤ q(2m+t−k+1)t

(constant)

TABLE II: Parameters of Scheme in Section V. (proofs of
last two rows in Section VI)

(with constant field size q) respectively. We note that the last
row shows a constant rate with sub-exponential packetization
achieved by the scheme in this paper. We conclude the paper
with a short discussion in Section VII.

Notations and Terminology: For a positive integer n, we
denote by [n] the set {1, . . . , n}. We recall only minimal
facts regarding graph theory. For other standard definitions,
the reader is referred to [16]. A graph G consists of a set
V (G) of vertices and a set E(G) ⊂ {{u, v} : u, v ∈ V (G)}
of edges. For a subset A of vertices of graph G, we denote
N (A) as the set of adjacent vertices of A. A bipartite graph
B is one whose edges can be visualized as being between
two subsets of a partition of the vertex set (called left and
right vertices of B). A subset S ⊆ V is called a clique of

G if all vertices in S are adjacent to each other (we assume
vertices to be cliques of size 1). A b-clique-cover of G is a
collection of cliques Di : i = 1, . . . , b such that ∪iDi = V.

II. BIPARTITE GRAPH BASED CODED CACHING AND
DELIVERY BASED ON [7]

Let K be the set of users(clients) (|K| = K) in a system
consisting of one server having files {Wi : i ∈ [N ]}
connected to the clients via a error-free broadcast channel.
Let F be the subpacketization level, i.e. each file is composed
of F subfiles, each taking values according to a uniform
distribution from some finite abelian group A. The subfiles of
file Wi are denoted as Wi,f : f ∈ F for some set F of size
F . Let MF denote the number of subfiles that can be stored
in the cache of any user. A coded caching scheme consists
of two subschemes (as in [2]), a caching scheme according
to which subfiles of the files are placed in the user caches
during periods when the traffic is low, and a transmission
scheme that consists of broadcast transmissions from the
server satisfying the demands of the clients appearing during
the demand phase. We assume symmetric caching throughout
the paper, i.e., the caches at the users are populated in such a
way that if user k ∈ K caches the subfile f ∈ F of any file,
then it caches the subfile f ∈ F of each file. All the schemes
presented in [6]–[11], [13], [14] employ symmetric caching.
We also assume throughout this work that MF

N is an integer
which is the number of subfiles of any particular file stored
in a user’s cache. In the delivery scheme, the transmissions
(of size equal to subfiles) must be done so that the demands



of the clients are all satisfied. As in [2], the rate R of the
coded caching scheme is defined as

Rate R =
Number of transmissions in the transmission scheme

Number of subfiles in a file
.

We can visualize the symmetric caching scheme (with
fully populated caches) using a bipartite graph, following
[7]. Consider a bipartite graph B with K being the left(user)
vertices and the right(subfile) vertices being F . We then
define the edges of the bipartite graph to denote the uncached
subfiles of the files, i.e, for k ∈ K, f ∈ F , an edge
{k, f} ∈ E(B) exists if and only if user k does not contain
in its cache the subfile f of each file. Clearly, this bipartite
graph is left-regular, with F

(
1− M

N

)
being the degree of any

user vertex. Indeed any left-regular bipartite graph defines a
caching scheme, which we formalize below.

Definition 1 (Bipartite Caching Scheme). Given a bipartite
D-left-regular graph with K left vertices and F right vertices
denoted by B(K,D,F ) (or in short, B), the symmetric
caching scheme defined on K users with subpacketization
F with the edges of B indicating the uncached subfiles at
the users, is called the (K,D,F ) bipartite caching scheme
associated with the bipartite graph B.

Remark 1. We observe that the bipartite caching scheme
associated with the graph B(K,D,F ) has the uncached
fraction 1− M

N = D
F .

Fig. 1 shows a graph describing a (4, 3, 5) bipartite caching
scheme. Note that during the caching phase the user demands
are not available. We now look at the transmission phase
during which the user k ∈ K demands one file Wdk (for some
dk ∈ [N ]), as given in [7]. An induced matching M of a
graph G is a matching such that the induced subgraph of
the vertices of M is M itself. For an induced matching M
of B consisting of edges {{kj , fj} : j ∈ [l]}, consider the
associated transmission

YM =

l∑
j=1

Wdkj ,fj
(1)

As M is an induced matching, Wdkj ,fj
is a subfile unavail-

able but demanded at user kj . By the same reason, each
user kj has all the subfiles in (1) in its cache except for
Wdkj ,fj

, hence user kj can decode Wdkj ,fj
,∀j ∈ [l]. A b-

strong-edge-coloring of a graph is an assignment of a label
(called colors) from a finite set C of size b to each of its
edges such that the set of all edges of any color (called a
color class) form an induced matching. Let {Mj , j ∈ [n]}
be the set of all induced matchings (color classes) arising
from a strong edge coloring of B. It is not difficult to see
that the transmissions YMj

: j ∈ [n] (constructed as in (1))
corresponding to Mj : j ∈ [n] satisfies the demands of all
the users. The rate of this transmission scheme R is then n

F .

III. LOWER BOUND ON RATE OF DELIVERY SCHEME FOR
SYMMETRIC CACHING

In this section, we show a bound on the rate of the trans-
mission scheme associated with a (K,D = F (1 − M

N ), F )
bipartite caching scheme associated with B. As Wi,f takes

Fig. 1: The left figure is a bipartite caching scheme with 4
users and 5 subfiles with 1 −M/N = 3/5. Edges indicate
missed subfiles. The right figure shows the subgraph induced
by N (1) ∪N (N (1)).

values from A with uniform distribution, taking the base of
logarithm as |A|, we have the Shannon entropy of Wi,f

as H(Wi,f ) = 1,∀i, f . Thus H(Wi) = F . For a given
(K,D,F ) bipartite caching scheme, a rate R is said to be
achievable if there exists some transmission scheme with rate
R that satisfies all client demands. We now prove a lower
bound on the infimum R∗ of all achievable rates for a given
(K,D,F ) bipartite caching scheme.

Theorem 1. Let k be any left-vertex (user vertex) of B and
let H be the subgraph of B induced by the vertices N (k)∪
N (N (k)). Let N ′ = min(N, |N (N (k)|). Let U = {kj : j ∈
[N ′]} be a subset of N ′ vertices of N (N (k)) taken in some
order such that k1 = k. For j ∈ [N ′], let ρj be the set of right
vertices (subfiles) in H which are adjacent to {ki : i ∈ [j]}.
Let R∗ be the infimum of all achievable rates for the bipartite
caching scheme defined by B. Then R∗F ≥

∑N ′

j=1 ρj .
In particular, we must have

R∗F ≥ min
(

(K + F )

(
1− M

N

)
, F

(
1− M

N

)
+N

)
−1.

(2)

Proof: We are given a valid coded caching scheme with
the caching scheme associated with B. Let Y denote the
set of all transmissions in a valid transmission scheme . As
N ′ ≤ N , we can assume a demand scenario in which the
N ′ users all demand different files. Let Wdj be the demand
of kj ∈ U and Zj be the cache content of user kj . Let Sj
denote the set of subfiles of Wdj in the subgraph H missing
from users ki : i ∈ [j]. This corresponds to subfile vertices
adjacent to users ki : i ∈ [j] in H . In our notation, |Sj | = ρj .
Since Wdj s are distinct, thus each subfile in Sj : j ∈ [N ′] is
distinct. We then follow an idea similar to [5]. We construct
a virtual receiver which contains an empty cache at first. In
the jth step, the cache of this virtual user is populated with
all the cache contents of user j except those pertaining to the
files demanded by ki : i ∈ [j − 1]. Let Z̃j = Zj\{Wdi,f :
i < j, ∀f}. Then {Z̃j : j ∈ [N ′]} is the final cache content
of this virtual user. By the given transmission scheme, the
receivers can decode their demands. Hence, we must have

H
(
{Wdj : j ∈ [N ′]} | {Z̃j : j ∈ [N ′]},Y

)
= 0, (3)

as the virtual user must be successively able to decode all
the demands of the N ′ users. Since RF denotes the number



of transmissions, we must have the following inequalities.

R∗F ≥ H(Y )

≥ I
(
Y ; {Wdj : j ∈ [N ′]} | {Z̃j : j ∈ [N ′]}

)
= H

(
{Wdj : j ∈ [N ′]} | {Z̃j : j ∈ [N ′]}

)
(by (3))

≥ H ({Sj : j ∈ [N ′]}) =

N ′∑
j=1

ρj ,

where I(; ) denotes the mutual information, and the last
inequality is obtained by noting the missing subfiles in
{Z̃j : j ∈ [N ′]}.

We finally prove (2). By a pigeon-holing argument, it is
easy to see that there is a subfile vertex having at least
K
(
1− M

N

)
adjacent user vertices. Let k be any user vertex

adjacent to such a subfile vertex with K
(
1− M

N

)
adja-

cent vertices. Consider the subgraph H induced by vertices
N (k) ∪ N (N (k)). Note that |N (N (k))| ≥ K

(
1− M

N

)
.

Let N ′ = min(N, |N (N (k))|). If N ′ = N , consider some
subset of N (N (k)) containing k. Then for any ordering
of the N ′ user vertices starting from k1 = k, we have∑N ′

j=1 ρj ≥ F
(
1− M

N

)
+N − 1. If N ′ = |N (N (k))|, then

by a similar ordering starting with k, we have
∑N ′

j=1 ρj ≥
(K + F )

(
1− M

N

)
− 1. Invoking the result in the first part

completes the proof.

Example 1. The figure on the right in Fig. 1 shows the
subgraph induced by N (1) ∪ N (N (1)) of the bipartite
caching graph B(4, 3, 5) on the left. Assuming the num-
ber of files N ≥ 4, following Theorem 1, we can take
ρ1 = 3, ρ2 = 2, ρ3 = 1, ρ4 = 0 (where the user vertices
are taken in the order 1, 3, 2, 4). We then get the minimum
rate R∗ ≥

∑4
i=1 ρi
5 = 6

5 .

IV. LINE GRAPHS OF BIPARTITE GRAPHS AND CACHING

In this section, we shall map the coded caching problem
to the line graph of the bipartite caching graph B described
in the previous section. The line graph L(G) of a graph G
is a graph in which the vertex set V (L(G)) is the edge set
E(G) of G, and two vertices of V (L(G)) are adjacent if and
only if they share a common vertex in G. The square of a
graph G is a graph G2 having V (G2) = V (G), and an edge
{u, v} ∈ E(G2) if and only if {u, v} ∈ E(G) or there exists
some v1 ∈ V (G) such that {u, v1}, {v1, v} ∈ E(G). The
following result is folklore and easy to prove.

Lemma 1. There exists a b-clique-cover for L2 if and only if
there exists a b-strong-edge-coloring for G , with the cliques
in the clique cover of L2 corresponding to the color classes
(induced matchings) arising from the strong edge coloring of
G.

By Lemma 1 and Section II, a valid transmission scheme
corresponding to the caching scheme associated with B can
be obtained by obtaining a clique cover for L2(B). From
the arguments in Section II, such a transmission scheme will
involve one transmission per each clique in a clique cover
of L2. Fig. 2 shows the graph L2 for the line graph of the
bipartite graph shown in Fig. 1. A clique cover consisting

Fig. 2: The graph L2 corresponding to the bipartite graph in
Fig. 1. The same-coloured vertices correspond to cliques.

of 6 cliques is also shown, each containing 2 vertices. Thus
the number of transmissions is 6, and the rate is 6

5 , which is
optimal for this graph as shown in Example 1.

It turns out that the line graph of the left-regular bipartite
graph B is highly structured, and any such structured graph
will serve as a line graph of such a bipartite graph.

Proposition 1. A graph L containing KD vertices is the
line graph of a D-left-regular bipartite graph B(K,D,F ) if
and only if the following conditions are satisfied.

(C1) The vertices of L can be partitioned into K disjoint
cliques containing D vertices each. We denote these
cliques by Uk : k ∈ [K] and call them as the
user-cliques. We label the vertices of Uk as ek,i : i ∈
[D].

(C2) Consider distinct k1, k2 ∈ [K]. For any ek1,i ∈ Uk1 ,
there exists at most one vertex ek2,j ∈ Uk2 such that
{ek1,i, ek2,j} ∈ E(L).

(C3) For any k and any vertex ek,i ∈ Uk, the set
{ek,i ∪N (ek,i)\Uk} containing ek,i and all adjacent
vertices of ek,i except those in Uk, forms a clique. We
refer to these cliques as the subfile-cliques. Let r be the
number of subfile-cliques in L and the subfile-cliques
be denoted as Si : i ∈ [r].

(C4) The number of right vertices of B is

F = KD −
r∑
i=1

(|Si| − 1). (4)

Proof: We prove the If part. The Only If part can be
inferred easily. We are given a graph L satisfying properties
(C1)-(C4). To prove the If part, we first create a bipartite
graph B0 with K left vertices and KD right vertices.
Partitioning the right vertices into K subsets of size D each,
we initialize the edge set of B0 by assuming that the kth

subset of right vertices in the partition are all adjacent to the
kth left vertex. We also label the adjacent right vertices of
k as k(i), i ∈ [D]. Note that the line graph L(B0) contains
K cliques of size D each and no other edges. Thus L(B0)
is a subgraph of L as (C1) holds. Furthermore, we note that



by conditions (C1)-(C3), E(L) = E(L(B0))∪E , where E is
the set of all edges in all the subfile cliques Sj : j ∈ [r].

The proof proceeds by updating the graph B0 by iden-
tifying right-vertices according to the subfile-cliques of the
given graph L so that at any step j, the updated graph Bj
is such that L(Bj) will be a subgraph of B. Finally we will
have L(Br) = L, where r is the number of subfile cliques.

We proceed by induction. Assume that for i ≤ j − 1,
L(Bi) is a subgraph of L. We now explain how the graph
Bj is obtained from Bj−1, and show that L(Bj) is a
subgraph of L. Consider the jth subfile clique of L, given as
Sj =

{
ek1,ii , ..., ek|Sj |,i|Sj |

}
. To obtain Bj , we identify the

right vertices
{
k1(i1), ..., k|Sj |

(
i|Sj |

)}
in Bj−1 as a single

right vertex. Note that these vertices in Bj−1 are well-
defined, as the subfile-cliques partition the vertices of the
graph L by Condition (C3). Furthermore, as (C2) holds,
the vertices ki : i = 1, ..., |Sj | are all distinct. Hence
Bj continues to be D-left-regular, moreover with the same
number of edges as Bj−1. With all these facts, we can see
that E(L(Bj)) = E(L(Bj−1)) ∪ E′, where E′ is the set of
edges in the clique Sj . It follows that L(Bj) is a subgraph
of L. After the rth step, after going through all the subfile
cliques, we have E(L(Br)) = E(L) and hence L(Br) = L.

We claim that the required bipartite graph is then B = Br.
It remains to check that the number of right vertices of B
is KD −

∑r
i=1(|Si| − 1). This is seen by noting that the

number of right vertices of B0 is KD, and the number of
right vertices of Bj is (|Sj | − 1) less than that of Bj−1,
∀1 ≤ j ≤ r. This completes the proof.

By Proposition 1, if we construct a graph L satisfying
conditions (C1)-(C3), then we have constructed a caching
scheme based on a bipartite graph B such that L(B) = L
with subpacketization F as in (4). We therefore give the
following definition.

Definition 2. A graph L is called a caching line graph if
it satisfies conditions (C1)-(C3) of Proposition 1 for some
parameters K and D.

Henceforth all our line graphs are caching line graphs.
By Lemma 1, any clique cover of L2 (the complement
of the square of L) gives us a transmission scheme (one
transmission per clique) that satisfies all receiver demands.
In order to obtain a clique cover of L2, we have to understand
the behaviour of the cliques of L2.

Lemma 2. A subset of vertices C ⊂ V (L2) is a clique of L2

if and only if the following condition is true.
• For any two vertices ek1,i1 , ek2,i2 ∈ C, there exists no

vertex in Uk2 adjacent to ek1,i1 in L.
Furthermore, any clique of L2 contains at most one vertex
from each of the user-cliques of L.

Proof: Recall that V (L2) = V (L). We prove the only if
part of the first claim. Let C be a clique of L2. Now, suppose
there are vertices ek1,i1 , ek2,i2 ∈ C such that there is some
vertex in Uk2 adjacent to ek1,i1 in L. Then by definition of
L2, ek1,i1 and ek2,i2 will be adjacent in L2, and hence non-
adjacent in L2. This contradicts our assumption that C is a
clique of L2.

Now the if part. Suppose the condition of the lemma is
satisfied for some subset C ⊂ V (L), but there are two vertices
ek1,i1 , ek2,i2 ∈ C which are non-adjacent in L2, and hence
adjacent in L2. By definition of L2, this means that either
{ek1,i1 , ek2,i2} ∈ E(L), or there exists some vertex ek,i
such that {ek1,i1 , ek,i} ∈ E(L) and {ek,i, ek2,i2} ∈ E(L).
In the former case, there is a clear contradiction of the
condition of the lemma statement. In the latter case, we have
{ek1,i1 , ek2,i2} ∈ N (ek,i). The case of k1 = k2 is already
handled by the former case. If no two of {k1, k2, k} are equal
to each other, this means {ek1,i1 , ek2,i2 , ek,i} must be in a
clique of L by (C3) of Proposition 1, which violates the con-
dition of lemma. Thus, WLOG, we can assume k = k2 6= k1,
in which case we see that the vertex ek,i = ek2,i contradicts
the assumed condition. This completes the proof of the first
claim.

The last claim of the lemma follows from the first claim,
since if some clique of L2 contains two vertices from the
same user-clique of L then the condition in the lemma is
violated.

We now define a specific class of caching line graphs
called (c, d)-caching line graphs. The reason for considering
(c, d)-caching line graphs is because they yield easily to the
computation of the rate and the subpacketization, as Theorem
2 will show.

Definition 3. A caching line graph L such that L has a clique
cover consisting of c-sized disjoint subfile cliques and L2 has
a clique cover consisting of d-sized disjoint cliques, for some
positive integers c, d, is called a (c, d)-caching line graph.

Theorem 2. Consider a (c, d)-caching line graph L. Then
there is a coded caching scheme consisting of the caching
scheme given by L with F = KD

c (and thus M
N = 1 − c

K ),
and the associated transmission scheme based on a clique
cover of L2 having rate R = c

d . Furthermore, if the number
of files N ≥ K, the rate R of this scheme satisfies

R ≤
R∗ + 1

F

d
(
1
F + 1

K

) . (5)

where R∗ is the infimum of all achievable rates for L with
subpacketization F = KD

c .

Proof: Since there is a clique cover of L (which satisfies
(C1)-(C3)) with c-sized disjoint subfile cliques, by Proposi-
tion 1, there exists a caching scheme with

F = KD −
KD
c∑
i=1

(c− 1) =
KD

c
.

Clearly, we also have M
N = 1− D

F = 1− c
K .

Since there is a clique cover of L2 with d-sized cliques, by
Lemma 1 and Section II, there exists a transmission scheme
for the caching scheme defined by L, which consists of KD

d
transmissions, each transmission being a sum of d subfiles.
Thus the rate

R =
KD
d

F
=
c

d
.



Finally we should (5). By Theorem 1, as N ≥ K, we have

R∗ ≥
(
K

F
+ 1

)(
1− M

N

)
− 1

F
=

(
K

F
+ 1

)
c

K
− 1

F

≥ c− 1

F
+

c

K
= Rd

(
1

F
+

1

K

)
− 1

F
. (6)

Thus we have proved

R ≤
R∗ + 1

F

d
(
1
F + 1

K

) .
Remark 2. We observe that (5) indicates that if the subpack-
etization F is large compared to K in a bipartite caching
scheme, then a clique cover of L2 with cliques of size Θ(K)
makes the rate R of the transmission scheme based on the
clique cover of L2 close to the optimal rate R∗. Similarly if
K is much larger than F , a clique cover of L2 with size d
being Θ(F ) brings R close to optimal.

In the rest of this section, we reinterpret some priorly
known coded caching schemes as schemes based on caching
line graphs. In both these examples, it may be observed that
the situation is similar to that of Remark 2; we have F
growing exponentially in K as K → ∞, but d = Θ(K)
and hence we can keep the rate close to optimal.

Example 2. For given parameters M,K,N , let t = MK
N .

We will now construct a (K − t, t + 1)-caching line graph,
which corresponds to the coded caching scheme of [2]. The
caching line graph L is initialized with K cliques of size
D =

(
K−1
t

)
, indexed using [K]. For each user i ∈ [K],

denote the D vertices of the ith user-clique as {(i, A) : A ⊂
[K]\i, |A| = t}.

For each A ⊆ [K] such that |A| = t, we create a clique
CA of size K − t in L consisting of the vertices {(i, A) : i ∈
[K], i /∈ A} by defining edges between all these vertices. It
is easy to see that ⋃

A⊂[K]:|A|=t

CA = V (L).

For some (t+1)-sized B ⊂ [K], consider the set of vertices
of L given by

C′B = {(i, B\i) : i ∈ B}

consisting of t+ 1 vertices of L. It is not difficult to see that
for any distinct i1, i2 ∈ B, there exists no edge in L from the
vertex (i1, B\i1) to any vertex in the ith2 user-clique. Thus,
by Lemma 2, C′B forms a clique in L2 of size (t + 1). Also
note that ⋃

B⊂[K]:|B|=t+1

C′B = V (L) = V (L2).

Thus, the caching line graph L is a (K − t, t + 1)-caching
line graph. Hence by Theorem 2, the subpacketization for
this graph is

F =
KD

K − t
=

K

K − t

(
K − 1

t

)
=

(
K

t

)
.

And the rate corresponding to the clique cover scheme on
L2 is

R =
K − t
t+ 1

=
K(1− M

N )
MK
N + 1

.

We have thus recovered the coded caching scheme of [2]
using L.

Example 3. We now recover a special case of the coded
caching scheme based on resolvable deisgns from [11] which
first appeared in [12]. Let C be a (k−1) dimensional linear
single parity check code of length k over a finite field Fq . We
initialize the caching line graph L with K = kq user-cliques,
each consisting of D = qk−1 − qk−2 vertices. We index the
user-cliques as Ui,l, where i ∈ [k], and l ∈ Fq . The vertices
of the user-clique Ui,l are indexed as follows.

Ui,l = {(v, i, l) : v = (v1, . . . , vk) ∈ C and vi 6= l}.

It is not difficult to see that

|C\Ui,l| = |{v = (v1, . . . , vk) ∈ C : vi = l}| = qk−2,

since we can think of C\Ui,l as a coset of the subcode C\Ui,0
within C. For a formal proof, we refer the reader to [12].
Thus, |Ui,l| = |C| − |C\Ui,l| = qk−1 − qk−2 = D.

We now construct the subfile cliques as follows. For each
vector v ∈ C, we construct the clique

Cv = {(v, i, l) : ∀i ∈ [K],∀l ∈ Fq}

by creating the edges between all the vertices in Cv . Again, it
is not difficult to see that ∪v∈CCv = V (L). Thus the cliques
{Cv : v ∈ C} form a disjoint clique cover of L. Furthermore
|Cv| = kq − k, since by definition, an user-clique Ui,l does
not contain (v, i, l) if and only if vi = l and thus |{Ui,l :
∀i, l s.t (v, i, l) /∈ Ui,l}| = k.

From the above construction of the subfile-clique cover for
L we have from Theorem 2 that F = KD

k(q−1) = qk−1. We now
construct a clique cover of L2. For l = (l1, . . . , lk) ∈ Fkq\C,
let l(i) be the codeword in C such that l(i) is equal to l at
the coordinates [k]\i but not at the ith coordinate. Note that
a unique such codeword does exist in C by definition of C
and l. Now consider the set of vertices of L given by

C′l = {(l(i), i, li) : i ∈ [k]} .

Note that (l(i), i, li) ∈ Ui,li ,∀i ∈ [k]. Also, for i 6= j, there
exists no edge from (l(i), i, li) to any vertex in Uj,lj because
in l(i), the jth coordinate is precisely lj . Thus C′l forms a
clique of size k in L2. Furthermore, it is not hard to see that⋃

l∈Fkq\C

C′l = V (L) = V (L2),

where the above union is a disjoint union. Thus the k-sized
disjoint cliques C′ls cover the vertices of L2. We have thus
got a (kq − k, k)-caching line graph L. By Theorem 2, the
coded caching scheme on L has rate k(q−1)

k = q − 1. We
have hence recovered the scheme from [12].

Remark 3. In the examples given so far in this section,
we have essentially reverse engineered the schemes given in
prior works and demonstrated how they can be intrepreted
according to the line graph framework we have presented in



this current work. We also remark that the caching schemes
based on PDAs (placement delivery arrays) discussed in
[8] and subsequent works can be seen in the framework
of caching line graphs as well. However the special class
of (c, d)-caching line graphs seem to offer some advantages
in terms of tracking the subpacketization and rate using the
graph characteristics. In the forthcoming section, we present
a new explicit construction of a caching scheme based on
(c, d)-caching line graphs.

V. A LINE GRAPH BASED CODED CACHING SCHEME
BASED ON PROJECTIVE GEOMETRY

We recollect some basic ideas of projective geometries
over finite fields. The reader is referred to [17] for more
details. For positive integers k, let PGq(k − 1) denote the
(k−1)-dimensional projective space over Fq . The elements of
PG(k−1, q) are called the points of PGq(k−1). The points
of PGq(k−1) can be considered as the representative vectors
of one-dimensional subspaces of Fkq . For m ≥ 1, 1 ≤ m ≤ k,
let PGq(k − 1,m − 1) denote the set of m-dimensional
subspaces of Fkq . It is known that |PGq(k−1,m−1)| is equal

to the Gaussian binomial coefficient
[
k
m

]
q

, where
[
k
m

]
q

is

given by [
k
m

]
q

=
(qk − 1) . . . (qk−m+1 − 1)

(qm − 1) . . . (q − 1)
.

In any Gaussian binomial coefficient
[
a
b

]
q

given in this paper

we assume that 1 ≤ b ≤ a. The following is known about
the Gaussian binomial coefficients (see [17], for example).

Lemma 3.

• The Gaussian binomial coefficient
[
k
m

]
q

is the number

of subspaces of dimension m of any k-dimensional

subspace over Fq . Also,
[
k
m

]
q

=

[
k

k −m

]
q

.

• The number of elements of PGq(k − 1,m − 1) that
contain a given t-dimensional subspace (1 ≤ t ≤ m) is

(qk−t − 1) . . . (qk−m+1 − 1)

(qm−t − 1) . . . (q − 1)
=

[
k − t
m− t

]
q

.

In the following subsection, we give a construction of a
coded caching scheme based on projective geometry. The
scheme we present can be thought of a q-analogue of a
generalization of the original scheme of [2]. As in Examples
2 and 3, we first give the caching line graph L by describing
its user-cliques and subfile-cliques (each of same size), and
then show that there is a clique cover of L2 containing cliques
of the same size.

A. Coded Caching Scheme Construction

Consider positive integers k,m, t such that m + t ≤ k.

Let K =

[
k
t

]
q

. We first initialize L by its user-cliques. The

user-cliques are identified by t-dimensional subspaces of Fkq .

For each t-dimensional subspace V of Fkq , create the vertices
corresponding to the user-clique identified by V ,

CV = {(V,X),∀X ∈ PGq(k − 1,m+ t− 1) : V ⊆ X}.

Thus, D = |CV | =
[

k − t
(m+ t)− t

]
q

=

[
k − t
m

]
q

by Lemma 3.

For each (m+t)-dimensional subspace X of Fkq , we construct
the subfile clique of L associated with X as

CX = {(V,X) ∈ V (L) : ∀V such that V ⊆ X}.

It’s not difficult to see that the cliques {CX : X ∈ PGq(k−
1,m+ t− 1)} partition V (L).

In order to decide on the transmission scheme, we have
to obtain a clique cover of L2. The clique cover of L2 that
we wish to obtain is based on a relabelling of the vertices
of L based on m-dimensional subspaces of Fkq . Towards that
end, we first require the following lemmas(Lemma 4 and
Lemma 5) using which we can find ‘matching’ labels to the
t-dimensional and m-dimensional subspaces of some X ∈
PGq(k − 1,m + t − 1). Subsequently, using Lemma 6 and
Lemma 7, we show the clique cover of L2.

Lemma 4. Consider some element X ∈ PGq(k−1,m+ t−

1). Let

{
Vi, i = 1, . . . ,

[
m+ t
t

]
q

}
denote the t-dimensional

subspaces of X taken in some fixed order. Then the set of
m-dimensional subspaces of X can be written as an ordered

set as

{
Ti, i = 1, . . . ,

[
m+ t
m

]
q

}
such that Ti⊕Vi = X,∀i

(where ⊕ denotes direct sum). Moreover such an ordering

can be found in operations polynomial in
[
m+ t
t

]
q

.

Proof: See Appendix A.
For a t-dimensional space Vi contained in a (m + t)-

dimensional space X, let Ti (the m-dimensional subspace
as obtained in Lemma 4 such that Ti ⊕ Vi = X) be called
the matching subspace of Vi in X . Using these matching
subspaces, we can obtain an alternate labeling scheme for
the vertices of our caching line graph L. The alternate labels
are given as follows.
• Let the alternate label for (V,X) be (V, TV,X), where
TV,X is the m-dimensional matching subspace of V in
X obtained using Lemma 4.

The following lemma ensures that the alternative labeling
given above is indeed a valid labelling, i.e., it uniquely
identifies the vertices of L.

Lemma 5. No two vertices of V (L) have the same alternate
label, i.e., if (V1, X1), (V2, X2) ∈ V (L) have the same
alternate label (V, TV,X), then (V1, X1) = (V2, X2).

Proof: If (V1, X1), (V2, X2) ∈ V (L) have the same
alternate label (V, TV,X), then clearly V1 = V2 = V .
Moreover we should also, by definition of the alternate labels,
have that X1 = TV,X ⊕ V = X2. Hence proved.

We are now in a position to present the clique-cover of L2.
Our cliques are represented in terms of the alternate labels
given to the vertices of L. We first show the structure of one
such clique.



Lemma 6. For a m-dimensional subspace T of Fkq , consider
the set of vertices of L2 (identified by their alternate labels)
as follows.

CT = {(V, T ) ∈ V (L) : V ∈ PGq(k − 1, t− 1)}.

Then CT is a
[
k −m
t

]
q

-sized clique of L2.

Proof: Firstly, we observe that CT is a well-defined set
because the T is an m-dimensional subspace of precisely[

k −m
(m+ t)−m

]
q

(m+ t)-dimensional subspaces by Lemma

3.
Note that (V, T ) is the alternate label for (V, T ⊕V ) ∈ CV

(the user-clique indexed by V ). Also we can observe that for
distinct (V1, T ), (V2, T ) ∈ CT , we must have V1⊕T 6= V2⊕
T . This is due to the fact that each m-dimensional subspace
within a (m + t)-dimensional subspace X is matched to a
unique t-dimensional subspace of X . Hence, by Lemma 4
and our alternate labeling scheme, we should have |CT | =[

k −m
(m+ t)−m

]
q

=

[
k −m
t

]
q

.

We now show that for any distinct (V1, T ), (V2, T ) ∈ CT ,
there exists no edge in L between (V1, T ) and any vertex in
CV2

. Invoking Lemma 2 completes the proof.
Note that by our construction of L, suppose an edge exists

in L between (V1, T ) and some vertex (say (V2, T
′)) in CV2 ,

then the vertices (V1, T ), (V2, T
′) would be part of the subfile

clique CT⊕V1
. Thus, we would have V2 ⊂ T⊕V1. This would

mean that T ⊕ V1 = T ⊕ V2, which is a contradiction. This
completes the proof.

We now show that the cliques
{CT : T ∈ PGq(k − 1,m− 1)} partition V (L).

Lemma 7. ⋃
T∈PGq(k−1,m−1)

CT = V (L),

where the above union is a disjoint union.

Proof: It should be clear from our alternate labeling
scheme and the definition of CT that any vertex (V,X) ∈ CV
(which gets some alternate label (V, TV,X)) appears at least in
one clique of L2, i.e., CTV,X . Furthermore, by definition CT1

and CT2
are disjoint for any two T1 and T2. This completes

the proof.

Theorem 3. The caching line graph L constructed in Section

V-A is a

([
m+ t
t

]
q

,

[
k −m
t

]
q

)
-caching line graph and

defines a coded caching scheme with K =

[
k
t

]
q

, F =

[
k

m+ t

]
q

, MN = 1−

m+ t
t


qk

t


q

, and R =

m+ t
t


qk −m

t


q

.

Proof: By our construction, K =

[
k
t

]
q

. For any

X ∈ PGq(k − 1,m + t − 1), the size of the subfile-

clique |CX | =

[
m+ t
t

]
q

. The size of each user-clique

D =

[
k − t
m

]
q

. By our construction, the size of the cliques

of L2 is
[
k −m
t

]
q

and they partition the vertices. Hence L

is a

([
m+ t
t

]
q

,

[
k −m
t

]
q

)
-caching line graph. Thus, we

have by Theorem 2,

F =

[
k
t

]
q

[
k − t
m

]
q[

m+ t
t

]
q

=

[
k

m+ t

]
q

.

And also, by Theorem 2, we have M
N = 1−

m+ t
t


qk

t


q

. The

rate calculation follows similarly.

VI. ANALYSIS OF THE SCHEME

In this section, we analyse the coded caching scheme in
Section V. We are essentially interested in finding out some
asymptotic results about the scheme. For this reason, we use
the following simple upper and lower bounds on Gaussian
binomial coefficients and their relationships.

Lemma 8. For non-negative integers a, b, f , for q being some
prime power,

q(a−b)b ≤
[
a
b

]
q

≤ q(a−b+1)b (7)

q(a−f−1)b ≤

[
a
b

]
q[

f
b

]
q

≤ q(a−f+1)b (8)

q(a−f−b−1)δ ≤

[
a
b

]
q[

a
f

]
q

≤ q(a−f−b+1)δ, (9)

where δ = max(b, f)−min(b, f).

Proof: The first lower bound for
[
a
b

]
q

is well known

from combinatorics literature (see for instance, [19]). All
the other bounds are proved by definition of the Gaussian
binomial coefficient and by noting that qa− 1 ≥ qa−1 (since
q ≥ 2), and qa − 1 ≤ qa.

Using the above bounds, we provide a simple analysis
of our scheme. Throughout we assume q is constant. We

have K =

[
k
t

]
q

. We analyse our scheme as k grows large.

Consider

1− M

N
=

[
m+ t
t

]
q[

k
t

]
q

(8)

≥ q(m+t−k−1)t. (10)



Suppose the choice of t,m are such that q(m+t−k−1)t is
constant, i.e., t and k − m are constants for this purpose.
We then have the following.

F =

[
k

m+ t

]
q

(9)

≤ q(k−t−m−t+1)m

[
k
t

]
q

≤ q(k−t)(k−2t−m+1)

[
k
t

]
q

(since k ≥ m+ t)

(11)

≤ K
k−2t−m+1

t K, (since K ≥ qt(k−t) by (7))

≤ K
k−t−m+1

t (12)

which is clearly O(poly(K)) because of our choice of
constants.

We have to still determine the behavior of the rate with
respect to our choice of parameters. We have,

R =

[
m+ t
t

]
q[

k −m
t

]
q

(7)

≥
K(1− M

N )

q(k−m−t+1)t

(10)

≥ Kq(m+t−k−1)t

q(k−m−t+1)t

≥ K

q2(k−m−t+1)t
.

By a similar process, we can obtain

R ≤ K

q2(k−m−t−1)t
.

Thus it is clear that R = Θ(K), similar to the uncoded case,
due to our choice of constants.

On the other hand, suppose we want to make the rate upper
bounded by a constant. We have

R
(8)

≤ q(m+t−k+m+1)t.

Thus we keep t and k − 2m as constants and continue.
We once again have by (11)

F ≤ q(k−2t−m+1)(k−t)K = q(k−t)(
k
2+

k−2m
2 −2t+1)K

≤ q( 1
t logqK)(( 1

2t logqK+ t
2 )+

k−2m
2 −2t+1)qlogqK ,

where the last inequality follows since K ≥ qt(k−t) by (7).
Hence we have F = qO((logqK)2). Finally we focus on the
uncached fraction 1− M

N . We have by (10),

1− M

N
≥ q(m+t−k−1)t = q(m−

k
2−

k
2+t−1)t

≥ q(m− k2+t−1)t 1√
K
q−

t2

2 (since K ≥ qt(k−t) by (7))

Thus we have 1 − M
N ≥ 1√

K
q(m−

(k−t)
2 −1)t. By a similar

technique, we can obtain that 1 − M
N ≤

1√
K
q(m−

(k−t)
2 +1)t.

Hence 1− M
N = Θ( 1√

K
).

In Table III, we also give a comparison of the actual
quantities between our scheme and that of [2] for some
particular choice of users and the uncached fraction (as
defined by our scheme).

K 1 − M
N

F F [2] R R [2]
(this work) (this work)[

k
t

]
q

[
m + t
t

]
q[

k
t

]
q

[
k

m + t

]
q

( K
KM
N

) [
m + t
t

]
q[

k −m
t

]
q

K(1−M
N

)
MK
N

+1

(k = 6 (m = 3)

t = 2) 5
21

63
(651
496

)
155
7

155
497

651
(k = 6 (m = 3)
t = 1) 5

21
651

(63
48

)
15
7

15
49

63
(k = 8 (m = 6)
t = 1) 1

17
200787

(255
240

)
15
31

15
241

255
(k = 8 (m = 4)
t = 1) 31

197
2667

(127
96

)
31
7

31
97

127

TABLE III: For some specific values of K, 1 − M
N , we

compare the results of [2] with this work.

VII. CONCLUSION

In this work, we have presented a framework for con-
structing coded caching schemes for broadcast networks via
line graphs of bipartite graphs, building on results from [7].
Firstly a subpacketization-dependent lower bound on the rate
is derived using the bipartite graph framework for caching.
The existence of (c, d)-caching line graphs enables us to
nicely characterize the three important quantities, fractional
cache requirement (MN ), the subpacketization level (F ) and
the rate R based on graph theoretic parameters. We then
present one explicit construction of such a (c, d)-caching line
graph using projective geometry. For the uncached fraction
(1− M

N ) lower bounded by a constant, this scheme achieves
subpacketization F = O(poly(K)), however rate R is O(K).
In another regime of operation where the rate remains below
a constant, we get F = qO(logqK)2 while the uncached
fraction 1− M

N is O( 1√
K

). Unfortunately it appears that the
scheme in this paper can hold only one parameter (among
R, MN , F ) bounded by a constant, with the other two vary
with K. Other schemes based on (c, d)-caching line graphs
could prove to be useful in arriving at coded caching schemes
with more interesting and useful parameters.
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APPENDIX A
PROOF OF LEMMA 4

Construct a bipartite graph with left vertices as{
Vi, i = 1, . . . ,

[
m+ t
t

]
q

}
and right vertices as

{T : T is a m− dimensional subspace of X}. By Lemma

3, the number of right-vertices is
[
m+ t
m

]
q

=

[
m+ t
t

]
q

, the

number of left vertices. For a left vertex V , let the adjacent
right-vertices in the bipartite graph be {T : V ∩ T = φ}.
Thus the left-degree is

[
m+ t
t

]
q

− |{T : T ∩ V 6= φ}|.

Now, T ∩ V is a subspace. It is known (for instance,
see Chapter 3, Theorem 3.3, in [17]) that the number of
m-dimensional subspaces of X which intersect with a given
t-dimensional subspace in some subspace of dimension i
(1 ≤ i ≤ min(t,m)) is

q((m−1)−(i−1))((t−1)−(i−1))
[
(m+ t− 1)− (t− 1)

(m− 1)− (i− 1)

]
q

[
t
i

]
q

= q(m−i)(t−i)
[
m
i

]
q

[
t
i

]
q

.

Thus the left-degree in this bipartite graph is[
m+ t
t

]
q

−
min(m,t)∑
i=1

q(m−i)(t−i)
[
m
i

]
q

[
t
i

]
q

,

where the second term above is precisely |{T : T ∩V 6= φ}|.
Similarly, the number of t-dimensional subspaces which

intersect with a given m-dimensional subspace in some
subspace of dimension i is known [17] as

q(t−i)(m−i)
[
(m+ t− 1)− (m− 1)

(t− 1)− (i− 1)

]
q

[
m
i

]
q

(13)

= q(t−i)(m−i)
[
t
i

]
q

[
m
i

]
q

. (14)

And hence the right degree is equal to the left-degree. Hence
the bipartite graph we have constructed is regular.

A perfect matching of a graph G is a matching of G
such that every vertex of G is incident on some edge of
the matching. It should be clear that what we are looking
for is a perfect matching of the regular bipartite graph we
have constructed. The reason is as follows. Let Ti be the m-
dimensional subspace adjacent to Vi in the perfect matching.
Since for given Vi, any T adjacent to Vi in our bipartite graph
is such that T ⊕ Vi = X , thus we have Ti ⊕ Vi = X . Thus
the ordering of the right-vertices that we desire as per the
lemma statement can be obtained from the perfect matching.

Now, for a regular bipartite graph with n left-vertices, algo-
rithms are known to find a perfect matching with complexity
as small as O(nlogn) [18]. This completes the proof.
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