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Abstract—The goal of metagenomics is to study the composi-
tion of microbial communities, typically using high-throughput
shotgun sequencing. In the metagenomic binning problem, we
observe random substrings (called contigs) from a mixture of
genomes and want to cluster them according to their genome
of origin. Based on the empirical observation that genomes of
different bacterial species can be distinguished based on their
tetranucleotide frequencies, we model this task as the problem
of clustering N sequences generated by M distinct Markov
processes, where M � N . Utilizing the large-deviation principle
for Markov processes, we establish the information-theoretic limit
for perfect binning. Specifically, we show that the length of the
contigs must scale with the inverse of the Chernoff Information
between the two most similar species. Our result also implies that
contigs should be binned using the conditional relative entropy
as a measure of distance, as opposed to the Euclidean distance
often used in practice.

I. INTRODUCTION

In the last decade, advances in high-throughput DNA se-
quencing technologies have allowed a vast amount of genomic
data to be generated. Countless tasks such as genome assem-
bly, RNA quantification, and genome-wide association studies
have become a reality, opening up exciting new research
directions within biology and medicine [1].

Significant attention has recently been given to the anal-
ysis of the human microbiome through metagenomics [2].
In metagenomics, a sample is taken from a microbial com-
munity, such as the human gut. The genetic material in the
sample is then sequenced and analyzed to determine the
microbial composition of the community [3]. Recent research,
including the Human Microbiome Project [4], has shown
that the composition of the microbiome is a “snapshot” into
an individual’s overall health, providing great potential for
personalized medicine.

Full reconstruction of the genomes in a metagenomic sam-
ple is generally infeasible due to insufficient coverage and high
similarity across species [5]. In the typical analysis pipeline,
the millions of reads obtained via high-throughput sequencing
are used to create a much smaller number of contiguous
sequences, known as contigs, by merging reads with large
overlaps [6]. The set of resulting contigs typically make up
only a small fraction of the full genomes of all species present
in the sample and have no significant overlaps with each other.

Metagenomic binning is concerned with the following
question: is it possible to group the resulting contigs based

on the genome from which they were derived? Somewhat
surprisingly, it has been shown that contigs belonging to the
same species typically have similar sequence compositions.
Specfically, it was empirically verified that the distribution of
four-letter strings (e.g. AGCG) remains relatively constant
across an entire bacterial genome [7], [8]. Hence one can
compute for each contig the tetranucleotide frequency (TNF)
vector, and group together contigs with “similar” TNF vectors.
Provided that the underlying TNF distributions are distinct
enough, metagenomic binning can thus be performed. Based
on this idea1, many different algorithms and software packages
have been proposed to perform metagenomic binning [5], [6],
[9]. Other algorithms use a supervised learning approach by
comparing the sequence composition of reads to a database
of known bacterial genomes [10]–[13], or through direct
alignment to said database [14], [15].

The fact that the distribution of four-symbol strings is
consistent throughout a given genome motivates the modeling
of each genome as a third-order Markov process. Hence we
assume that a contig is generated by one out of M distinct,
unknown Markov processes p1, . . . , pM with equal probability,
where each pk corresponds to a certain species. In order to
study the fundamental limits of this problem, we assume all
N contigs have length L, and consider an asymptotic regime
where N → ∞ and the contig length grows slowly with the
number of contigs (specifically we set L = L̄ logN ). Our goal
is to characterize how large L̄ needs to be in order to allow
perfect binning with high probability.

To obtain our main result, we establish the equivalent
of the Chernoff Information [16, Chapter 11.9] for Markov
processes, which gives the error exponent for the Bayesian
error probability when testing between two known Markov
processes. This result, combined with a scheme to estimate
the M Markov distributions, allows us to show that perfect
binning is possible if and only if

L̄ >
1

mink,` C(pk, p`)
,

where C(pk, p`) is the Chernoff Information between pk and
p`. To estimate the unknown distributions, we consider build-

1Usually, in addition to the TNF vector, the read coverage of each contig
is used as another feature to help with the clustering. However, in this paper,
we focus on using the TNF alone.
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ing a graph where contigs whose empirical distributions are
close are connected. We then show that, with high probability,
M large cliques can be found, which can be used to find
estimates p̃k, k = 1, ...,M , of the Markov distributions. Each
contig x is then then placed in bin k given by

arg min
k∈{1,...,M}

Dc (p̂x‖p̃k)

where p̂x is the empirical 4-symbol distribution of x and
Dc(·‖·) is the conditional relative entropy [16, Definition
2.65].

Our main result suggests that the optimal way to bin metage-
nomic contigs is to estimate the underlying TNF distributions
and then bin contigs using the conditional relative entropy as a
metric, as opposed to the commonly used Euclidean distance.
By simulating contigs from real bacterial genomes, we show
that this metric can lead to lower binning error probabilities.

The paper is organized as follows. In Section II we describe
the problem formulation in detail and state our main result.
In Section III we describe our achievability scheme and the
main technical ingredients used to prove it, and in Section IV
we describe the converse argument. In Section V we provide
preliminary simulation results, and we conclude the paper with
a discussion in Section VI.

II. PROBLEM STATEMENT

As shown in [7], the distribution of tetranucleotides (four-
letter strings), tends to be stationary across an individual
bacterial genome. Hence, it is natural to assume that each of
the species in our sample corresponds to a distribution over
all possible tetranucleotides2 {AAAA,AAAC, ..., TTTT}.

Let P be the |X |4-dimensional simplex, where
X = {A,C,G, T}. Notice that not all distributions in P are
valid tetranucleotide distributions, as the tetranucleotides in
a sequence overlap with each other. Let P̃ be the set of all
p ∈ P with p(c) > 0, ∀ c ∈ X 4, which, in addition, satisfy
for all a ∈ X 3 ∑

b∈X

p(ab) =
∑
b∈X

p(ba). (1)

Condition (1) ensures that a given p ∈ P̃ corresponds to the
tetranucleotide distribution of a specific, stationary, irreducible
(due to p(c) > 0), third-order Markov chain. More precisely,
we can let the induced distribution over 3-letter strings be

p(a) =
∑
b∈X

p(ab). (2)

This uniquely determines a stationary Markov process with
initial state distributed as (2) and transition probabilities (i.e.
conditional distribution)

p(b|a) =
p(ab)

p(a)
. (3)

Hence we will model each species in the sample using a
distribution pk ∈ P̃ .

2In practical approaches, reverse-complementary tetranuclotides such as
ACAG and CTGT are treated as the same tetranucleotide, but we ignore
that fact for the sake of simplicity.

A. Metagenomic Binning Problem

We assume that we have M species in our sample (for a
known M ). Each species is modeled by a stationary third-
order Markov process defined by pk ∈ P̃ , for k = 1, ...,M .
From this genomic mixture, we observe a set of N realizations
C = {xi}Ni=1, which we call contigs. Each x ∈ C is generated
independently by first choosing a species k ∈ {1, ...,M} with
uniform prior probabilities 1

M , and then generating a length-
L sequence according to pk. For each k, let Ck be the set
of contigs generated according to pk. We wish to reconstruct
Ck, k = 1, . . . ,M , by determining which contigs originated
from the same genome.

We point out that in real metagenomic experiments, the cov-
erage depth, that is, the expected number of contigs containing
a specific nucleotide from one of the M genomes, is low [17].
Hence, contigs will have no overlap with high probability,
allowing us to model them as independent realizations of the
different Markov processes in the sample.

B. Perfect Binning

The goal of the metagenomic binning problem is to cluster
the N contigs into M “bins”, where each bin k corresponds
to a unique species with distribution pk. More precisely, the
goal is to find a decision rule δ : XL → {1, . . . ,M} (using
notation from [18]) which correctly maps each contig to its
respective genome bin.

Perfect binning would be achieved if for every contig x,
δ(x) chooses the label of the distribution from which it was
generated. However, we have the added difficulty that the
distributions are unknown. As a result, we can only require
the decision rule to be correct up to a consistent relabeling of
species indices. Hence the error event for a decision rule δ is

Eδ = {∃x ∈ Ck,y ∈ C`, k 6= ` : δ(x) = δ(y)}. (4)

We would like to know under what circumstances we can
perfectly bin all N contigs. In order to study the information-
theoretic limits of this problem, we analyze an asymptotic
regime, similar to [19], in which N →∞ and

L = L̄ logN (5)

where L̄ is the “normalized contig length”. Intuitively, a larger
value of L̄ should allow one to bin a contig with higher
accuracy. This scaling forces the contig length to be small
compared to the number of contigs and, as we will show, is a
meaningful scaling for the asymptotic problem we consider.

This asymptotic regime allows us to define when species
are resolvable as follows:

Definition 1. The M species with distributions {pk}Mk=1 are
resolvable if there exists a sequence of decision rules {δN}
such that Pr(EδN )→ 0 as N →∞.

C. Main Result

Interestingly, the fundamental limit of resolvability relies on
the Chernoff Information, which we define next.



Definition 2. For two Markov processes pk and p`, the
Chernoff Information between pk and p` is given by

C(pk, p`) = Dc (p∗‖pk) = Dc (p∗‖p`) (6)

where Dc is the conditional relative entropy [16, Def. 2.65],
and p∗ is the solution to the following minimization problem.

p∗ = arg min
p∈P̃

Dc (p‖pk)

s.t. Dc (p‖pk) = Dc (p‖p`) (7)

The Chernoff Information can be thought of as a measure of
distance between the distributions. Our main result establishes
that the minimum normalized contig length, L̄, required for
resolvability depends exclusively on the minimum Chernoff
Information between species distributions.

Theorem 1. Let Cmin = mink 6=` C(pk, p`). The species’
distributions {pk}Mk=1 are resolvable if and only if

L̄ >
1

Cmin
(8)

Intuitively, this means that the contig length must be large
enough to distinguish between the two closest distributions.

III. ACHIEVABILITY

The achievability proof of Theorem 1 is described in the
form of an algorithm so as to highlight the algorithmic
nature of metagenomic binning. Given a contig x ∈ C,
we define the empirical fourth-order distribution of x as p̂x
and we use d as the `1 distance between distributions, i.e.
d(p, q) =

∑
c∈X 4 |p(c)− q(c)|.

Algorithm 1: Binning Contigs
Result: Decision Rule δ(x)
Input: Contigs C, Parameter α ∈ (0, 1)
begin
D ←− sort in ascending order {d(p̂x, p̂y),∀x,y ∈ C}
for ε in D
Gε ←− (V = C, Eε = {(x,y) : d(p̂x, p̂y) ≤ ε})
if Gε has cliques {Kk}Mk=1, |Kk| ≥ (1− α)NM

for k ←− 1 to M
p̃k ←− 1

|Kk|
∑

x∈Kk p̂x
break

for x ∈ C
δ(x)←− arg mink∈{1,...,M}Dc (p̂x‖p̃k)

The algorithm first estimates the species distributions by
averaging the empirical distributions of the contigs in each
clique, then it bins the contigs based on the estimates. Note
that the algorithm as described is not computationally effi-
cient (specifically, finding large cliques), and is used only to
establish the achievability of Theorem 1.

A. Estimating Distributions
Recall that Ck is the set of contigs generated by pk. We

expect the empirical distribution of the majority of contigs in
Ck to be near pk. To identify those “good” contigs, let

Ck,ε = {x ∈ Ck : d(p̂x, pk) ≤ ε}.
To prove that the distribution estimates {p̃k}Mk=1 are close to
the true distributions {pk}Mk=1 (after proper reindexing), we
will first show that each clique the algorithm identifies is
“pure” in the sense that it contains “good” contigs from only
a single species. We will let dmin , mink 6=` d(pk, p`) be
the minimum `1 distance between any pair of the M species
distributions.

Lemma 1. If Kk is a clique in Gε for ε < dmin

2 , then
M∑
`=1

1{Kk ∩ C`,ε/2 6= ∅} ≤ 1, (9)

Lemma 1 establishes that, if Algorithm 1 finds M cliques
of size (1 − α)NM in Gε for ε < dmin

2 , then each clique
contains contigs from at most one C`,ε/2, ` = 1, . . . ,M .
In order to establish that these M cliques will exist in Gε,
we use the following lemma, which essentially says that a
large fraction of the contigs will be close to their respective
generating distributions.

Lemma 2. For ε > 0, k ∈ {1, ...,M}, and N large enough,

Pr

(
|Ck,ε/2| < (1− α)

N

M

)
≤ 2

α
e−γα

2L, (10)

where γ is a positive constant.

Fixing ε < dmin

2 , Lemma 2 guarantees that for a reasonably
chosen α, as long as N is large enough, we will have
|Ck,ε/2| ≥ (1 − α)NM for all k = 1, ...,M . Moreover, by
the triangle inequality, any two contigs x, y ∈ Ck,ε/2 will
be at a distance ε or less of each other and will thus have an
edge between them. Hence, Ck,ε/2 forms a clique in Gε.

Notice that dmin is not known, so the algorithm cannot
restrict its search to ε < dmin

2 . However, since the algorithm
considers different values of ε in increasing order, for some
ε < dmin

2 , M cliques of size (1 − α)NM will exist with
probability 1 − o(1). Lemma 1 will then guarantee that any
cliques K1, ...,KM that are found will be pure.

Consider a clique Kk and let ` be such that Kk∩C`,ε/2 6= ∅.
By Lemma 2, the fraction of “good” contigs in Kk will be

|Kk ∩ C`,ε/2|
|Kk|

≥ 1−
N −M · (1− α)NM

(1− α)NM
= 1− αM

1− α
(11)

with probability 1 − o(1). The lower bound results from
dividing the maximum number of contigs not in any clique by
the minimum number of contigs in Kk. If we set α = 1

logL ,
(11) converges to 1 and (10) converges to 0 as N → ∞.
Thus, with high probability, a vanishing fraction of the contigs
in Kk does not belong to C`,ε/2. Since distribution vectors
are bounded, the impact of wrong contigs in Kk on p̃k
also vanishes, and we conclude that the distribution estimate
p̃k = 1

|Kk|
∑

x∈Kk p̂x → p` as N →∞.



B. Binning Contigs

In Subsection III-A, we established that we can construct
estimates of the underlying distributions {pk}Mk=1 that are
arbitrarily accurate as N → ∞. Next we show that, binning
the contigs based on the conditional relative entropy using the
underlying distributions achieves (8) in the limit.

Consider the hypothesis test between two Markov processes
pk and p` (assumed to be known). Given prior probabilities
πk and π`, the Bayesian probability of error is

πkPr(choose `|k true) + π`Pr(choose k|` true)

for the decision rule on a contig generated by either pk or p`.

Theorem 2. Let E(L)
k,` be the error event for the decision rule

which minimizes the Bayesian probability of error. Then

lim
L→∞

1

L
log Pr(E(L)

k,` ) = −C(pk, p`), (12)

i.e., C(pk, p`) is the optimal error exponent.

The proof of Theorem 2 is given in Section VII. For a given
contig, the last step of Algorithm 1 can be thought of as M−1
binary hypothesis tests between the true distribution and each
of the remaining distributions. Thus, we will use Theorem 2
to bound the overall error probability, Pr(EδL), by considering
the two closest distributions.

Pr(EδL) ≤
∑
x∈Ck

πk

M∑
k=1

∑
6̀=k

Pr(E(L)
k,` ) (13)

≤ N
(

1

M

)
M(M − 1) max

k 6=`
Pr(E(L)

k,` ) (14)

≤M2
L
(

1/L̄+maxk 6=`(1/L) log Pr(E(L)
k,` )

)
(15)

where (13) follows from the union bound. By Theorem 2,

max
k 6=`

1

L
log Pr(E(L)

k,` )→ −min
k 6=`

C(pk, p`) = −Cmin

as N →∞. Hence, if L̄ > 1
Cmin

, Pr(EδL)→ 0. Consider the
case when instead we have estimates of the true distributions.
The decision boundary for the optimal assignment of contigs
is continuous on {p̃k}Mk=1. Since each p̃k → p`, a continuity
argument can be used to show that the probability of error of
the binary hypothesis test converges to the same value as the
distributions converge to the true ones. Then, it follows that
the overall error probability converges to (15). This concludes
the achievability proof of Theorem 1.

IV. CONVERSE

Without loss of generality, let p1 and p2 be such that
Cmin = C(p1, p2). Given the decision rule δL, contigs
x1 ∈ C1 and x2 ∈ C2, and a contig x ∈ C, let

Ẽ1,2,x = {x ∈ C1, δN (x) 6= δN (x1)}∪{x ∈ C2, δN (x) 6= δN (x2)}

i.e. the event that x was generated by either p1 or p2 and
incorrectly binned. Note that Pr(Ẽ1,2,x) ≥ 2

MPr(E1,2). Then

Pr(EδN ) ≥ Pr

(
N⋃
i=1

Ẽ1,2,xi

)
= 1− (1− Pr(Ẽ1,2,x1))N

≥ 1−

[(
1− 2

M
Pr(E1,2)

)1/Pr(E1,2)
]NPr(E1,2)

≥ 1− e− 2
MNPr(E1,2) (16)

where (16) follows from the bound (1 − ap)1/p ≤ e−a for
p ∈ (0, 1], a ∈ R. We see that, if NPr(E1,2) 6→ 0, then
Pr(E) 6→ 0. Since

NPr(E1,2) = 2L(1/L̄+(1/L) log Pr(E1,2)),

then by Theorem 2, NPr(E1,2) 6→ 0 when L̄ ≤ 1
Cmin

. This
concludes the converse proof for Theorem 1.

V. EXPERIMENTAL RESULTS

From the point of view of practical metagenomic binning
algorithms, our main result suggests that:

1) the conditional relative entropy is a good metric for
binning contigs,

2) the Chernoff information can be used as a measure of
how difficult it is to distinguish two species.

In this section, we provide preliminary empirical evidence
of these claims. To this end, we utilized several previously se-
quenced and assembled bacterial genomes, available at NCBI
[20]. For each bacterial species k, we numerically computed
its fourth-order distribution pk (i.e., the overall tetranucleotide
frequency vector). We were able to simulate contigs of a
desired length L by sampling from all length-L substrings
from the genome. For each experiment, we assume N = 106

for concreteness (thus L = L̄ log 106), but the results are not
significantly affected by this choice.

In order to verify the usefulness of the conditional relative
entropy and compare it to the Euclidean distance (used in
state-of-the-art tools such as [5], [9]), we considered the
following experiment: we extracted random contigs from a
species p1 and then tested whether it was closer to species
p1 or to another species p2 based on both the Euclidean
distance and the conditional relative entropy. In Figure 1a, the
conditional relative entropy metric3 consistently outperforms
the Euclidean metric as we vary L̄ in the test between the
species Alistipes Obesi and Megamonas Funiformi.

We performed this experiment for 45 different choices of
pairs of bacterial genomes from NCBI. For each pair (k, `),
we considered a fixed normalized contig length given by
L̄ = C(pk, p`)

−1. As shown in Figure 1b, the conditional
divergence improves the error compared to the Euclidean
distance in almost 90% of cases.

Theorem 1 implies that the inverse of the Chernoff Informa-
tion characterizes how long the extracted contigs need to be in
order for two species to be reliably distinguishable. In order

3Dc(·||·) is not technically a metric as it is not symmetric.



(a) (b) (c)

Fig. 1: (a) Comparison of conditional divergence and Euclidean distance for a hypothesis test between Alistipes Obesi and Megamonas
Funiformis; (b) The difference between error percentages for Euclidean distance and conditional divergence with L̄ = C(pk, p`)

−1

; (c) Normalized contig length required for 5% error (L5%) vs the inverse of the Chernoff information for several pairs of
species.

to verify that, we calculated L̄5%, the minimum normalized
contig length required to guarantee a 5% error rate in the
Bayesian hypothesis test between species pk and p` with equal
priors. In Figure 1c, we plot L̄5% vs C−1(pk, p`) for many
such pairs and observe a roughly linear relationship between
these two quantities. Such a linear relationship agrees with the
relationship suggested by Theorem 1. Moreover, it provides
support to the claim that C−1(pk, p`) is a measure of how
difficult it is to distinguish contigs from two species based on
tetranucleotide frequencies.

VI. DISCUSSION

In this paper, we modeled the metagenomic binning problem
as the problem of clustering sequences generated by distinct
Markov processes. While overly simplistic, this model allowed
us to establish the Chernoff Information as a measure of how
easy it is to distinguish contigs generated by two species.

The algorithm used to prove the achievability suggests that
a good “metric” for binning is the conditional relative entropy
between a contig and an estimate of a species TNF. Through
experiments, we provided preliminary evidence that this metric
often outperforms the Euclidean metric in the problem of
assigning a contig to a species bin. However, this assumes
knowledge of the overall TNF of a genome, which is not
known in practical settings. Therefore a natural direction for
future investigation is how to efficiently estimate the TNF
distribution for the species present in the sample.

Furthermore, it is unclear whether estimating the underlying
TNF distributions is necessary to achieve the fundamental
limit. Alternatively, one could consider an approach that
directly clusters the contigs based on their pairwise distances
or based on a graph obtained by thresholding the distances
(similar to our Gε). We point out that, for such a graph, the
problem becomes a community detection problem, and bears
similarities with the stochastic block model [21], since for
each species there is a given probability that an edge is placed
among two of its contigs, and for each pair of distinct species,
there is another probability that an edge is placed between
their contigs. These probabilities would in general depend
on the species TNF distributions (or the Markov processes

generating the contigs). Notice that, unlike in the standard
stochastic block model, here the placing of the edges would
not be independent events.

Finally, we point out that in most approaches to metage-
nomic binning, the read coverage, or abundance, is used to
compare contigs in addition to the TNF. The read coverage
of a contig is essentially the average number of reads that
cover any given base in the contig. Intuitively, this number
is proportional to the abundance of the corresponding species
in the mixture. Hence, one expects contigs from the same
species to have similar read coverages, which can be used to
improve metagenomic binning. Another direction for future
work is thus to consider the metagenomic binning problem
where the different species have different abundances and, for
each contig, one observes a read coverage value that is related
to the species abundance.
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VII. APPENDIX

A. Proof of Lemma 1

Suppose by contradiction that x,y ∈ Kj , x ∈ Ck,ε/2 and
y ∈ C`,ε/2, for k 6= `. Then d(x,y) < ε, and we have

d(pk, p`) ≤ d(pk, p̂x) + d(p̂x, p`)

≤ d(pk, p̂x) + d(p̂x, p̂y) + d(p̂y, pl)

< ε/2 + ε+ ε/2 < dmin,

which is a contradiction to the definition of dmin.

B. Proof of Lemma 2

Let Ek be the event of interest,
{
|Ck,ε/2| < (1− α)NM

}
, and

let Ak =
{
|Ck| < (1− α

2 )NM
}

. Note that we use α
2 for Ak as

opposed to α because we need |Ck| to be larger than |Ck,ε/2|.
By Hoeffding’s inequality,

Pr(Ak) ≤ e−2( α
2M )

2
N = e−N

α2

2M2

This means, with high probability, pk will generate enough
contigs.

Let Fk be the set of distributions “far” from pk:

Fk =
{
p ∈ P̃ : d (pk, p) ≥

ε

2

}
. (17)

By a version of Sanov’s theorem for Markov chains, given in
Theorem 4, for any x ∈ Ck,

Pr(p̂x ∈ Fk) ≤ (L+ 1)42−LDc(p
∗‖pk) (18)

where p∗ = arg infp∈Fk Dc (p‖pk); i.e., p∗ is the distribution
in Fk closest to pk in conditional relative entropy. Notice that
Ek occurs when more than |Ck| − (1 − α)NM + 1 contigs
lie in Fk, leaving an insufficient number of “good” contigs.
Letting x0 ∈ Ck be some contig generated by pk,

Pr(Ek|Ack)

=Pr

(∑
x∈Ck

1{p̂x ∈ Fk} ≥ |Ck| − (1− α)
N

M
+ 1

∣∣∣∣∣Ack
)

≤Pr

(∑
x∈Ck

1{p̂x ∈ Fk} ≥
α

2

N

M

∣∣∣∣∣Ack
)

(19)

≤2M

α
· Pr(p̂x0

∈ Fk|Ack) (20)

where (19) follows the definition of Ak, and (20) from
Markov’s inequality and symmetry across contigs. Combining
the probabilities,

Pr(Ek) = Pr(Ek|Ack)Pr(Ack) + Pr(Ek|Ak)Pr(Ak) (21)

≤ 2M

α
· Pr(p̂x0

∈ Fk|Ack) + Pr(Ak) (22)

≤ 2M

α
(L+ 1)42−LDc(p

∗‖pk) + e−N
α2

2M2 (23)

≤ 2

α
e−γα

2L (24)

where γ > 0 is a constant that does not depend on α or L,
guaranteed to exist such that (24) holds for large N . γ can be
found by manipulating (23) using simple algebraic operations.

C. Proof of Theorem 2

We define the type of a contig x to be its empirical fourth-
order distribution, denoted p̂x. Let the set of all possible types
of length-L, stationary, third-order Markov sequences be PL.
The cardinality of PL is upper-bounded by (L+1)4 as shown
in [22]. The type class, TL, of a given type, p ∈ PL, is then
defined as the set of all length-L sequences whose types are
equal to p:

TL(p) =
{
x ∈ XL : p̂x = p

}
(25)

To facilitate analysis, we use a cyclical Markov model,
where three artificial transitions are added from the end of
the sequence to the beginning. This model ensures that p̂x is
consistent. More precisely, for a ∈ X 3,∑

b∈X

p̂x(ab) =
∑
b∈X

p̂x(ba). (26)
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Note that this implies p̂x ∈ P̃ as defined in Section II. Further-
more, the third-order and conditional empirical distributions
can be derived from p̂x as follows, for any b ∈ X ,

p̂x(a) =
∑
b∈X

p̂x(ab) (27)

and

p̂x(b|a) =
p̂x(ab)

p̂x(a)
(28)

We now use some Large Deviations theory to make an
argument about the probability of error in the hypothesis test.

1) Large Deviations Principle: Vidyasagar [22] provides
an extensive analysis of large deviations theory for Markov
processes. Theorems 3 and 4, shown below, utilize this anal-
ysis along with [23, Lemma 1], which allows us to make an
argument about the probability of error for the subsequent
hypothesis test. For the proofs of Theorems 3 and 4, the reader
is referred to [22, Theorem 7] and [16, Chapter 11].

The results in [22] show that a Markov process
X = (X1, . . . , XL) with type p and generated by q satisfies
the large deviations property with rate function

I(p) = Dc (p‖q) (29)

Here, Dc is the conditional relative entropy defined as the KL
divergences averaged over p:

Dc (p‖q) =
∑
a∈X 3

p(a)
∑
b∈X

p(b|a) log

(
p(b|a)

q(b|a)

)
=

∑
a∈X 3,b∈X

p(ab) log
p(ab)

q(ab)

−
∑
a∈X 3

p(a) log
p(a)

q(a)

=D(4)(p‖q)−D(3)(p‖q)

i.e. the divergence between the fourth-order distributions
minus the divergence between the third-order distributions.
Similarly, the “Markov conditional entropy” can be written
as

Hc (p) =
∑
a∈X 3

p(a)
∑
b∈X

p(b|a) log p(b|a)

=H(4)(p)−H(3)(p)

We use Dc and Hc so as to distinguish between the normal
divergence and entropy.

Theorem 3. The probability of x under q depends only on its
type p̂x and is given by

q(L)(x) = 2−L[Dc(p̂x‖q)+Hc(p̂x)]+logα (30)

where α = q(x1x2x3), i.e. the probability of the initial state
of x.

Theorem 4 (Sanov’s Theorem for Markov Processes). Let
X = (X1, X2, . . . , XL) be a Markov process q, and let

F ⊆ P̃ . The probability that the empirical distribution of X
is contained in F , denoted q(L)(F), is upper-bounded as

q(L)(F) ≤ |PL| 2−LDc(p
∗‖q)+logα (31)

where p∗ is the information projection of q onto F:

p∗ = arg inf
p∈F

Dc (p‖q) (32)

If, in addition, the closure of F is equal to the closure of its
interior (F̄ = Fo), then

lim
L→∞

1

L
log q(L)(F) = −Dc (p∗‖q) = −I(p∗) (33)

2) Hypothesis Test: In the binary hypothesis test, there are
two candidate models for q: p1 and p2, where p1 6= p2. We
decide between the two hypotheses:
• H1 : q = p1

• H2 : q = p2

Let P1 and P2 be the decision regions for H1 and H2,
respectively. The sets P1 and P2 form a partition of P̃
(P1∪P2 = P̃). As a result, given any x ∈ XL, δN (x) decides
H1 if p̂x ∈ P1 and H2 if p̂x ∈ P2. The Bayesian probability
of error, Pe, for the binary hypothesis test with priors π1 and
π2 is given by

Pe = π1p
(L)
1 (P2) + π2p

(L)
2 (P1) (34)

To minimize the error, the decision rule4 uses a Neyman-
Pearson test

δN (p̂x) =

{
H1 if L(x) ≥ π2

π1

H2 if L(x) < π2

π1

(35)

where the likelihood ratio, L, is defined as:

L(x) =
Pr(x|H1 true)

Pr(x|H2 true)
=
p

(L)
1 (x)

p
(L)
2 (x)

(36)

Using Theorem 3, the normalized log-likelihood ratio is

1

L
logL(x) =− [Dc (p̂x‖p1) +Hc (p̂x)] +

logα1

L

+ [Dc (p̂x‖p2) +Hc (p̂x)]− logα2

L

=Dc (p̂x‖p2)−Dc (p̂x‖p1) +
1

L
log

α1

α2

Again, α1 and α2 represent the probabilities of the initial states
of x under p1 and p2, respectively. Notice that as L → ∞,
the optimal decision rule simply chooses arg min

k∈{1,2}
Dc (p‖pk)

because the effect of the priors washes out with L, along with
the probability of the initial states. We will show that, by using
the decision regions, P1 and P2, given by

P1 = {p ∈ P̃ : Dc (p‖p2)−Dc (p‖p1) ≥ 0} (37)

P2 = {p ∈ P̃ : Dc (p‖p2)−Dc (p‖p1) < 0} (38)

4The decision rule δL uses overloaded notation with the decision rule for
the main problem.



the optimal error exponent is achieved in the limit. First we
will prove Lemmas 3 and 4, which allow for the use of (33)
in Theorem 4.

Lemma 3. P1 and P2 are convex.

Proof. Let pa, pb ∈ P1 and let

pab = λpa + (1− λ)pb, λ ∈ (0, 1)

be a convex combination of pa and pb. Then

Dc (pab‖p2)−Dc (pab‖p1)

=
∑

a∈X 3,b∈X

pab(ab) log
pab(b|a)

p2(b|a)

−
∑

a∈X 3,b∈X

pab(ab) log
pab(b|a)

p1(b|a)

=
∑

a∈X 3,b∈X

pab(ab) log
p1(b|a)

p2(b|a)

= λ [Dc (pa‖p2)−Dc (pa‖p1)]

+ (1− λ) [Dc (pb‖p2)−Dc (pb‖p1)] ≥ 0

so pab ∈ P1 and therefore P1 is a convex set. A similar
argument can be made for the set P2. Note that since P1 and
P2 are both convex, this implies that the boundary linearly
divides the set of stationary fourth-order distributions, P̃ .

Lemma 4.
P1 = Po1 and P2 = Po2 (39)

Proof. The boundary between P1 and P2 consists of the set
of distributions p ∈ P̃ for which Dc (p‖p2)−Dc (p‖p1) = 0.
We see that p1 does not lie on this boundary because

Dc (p1‖p2)−Dc (p1‖p1) = Dc (p1‖p2) > 0 (40)

by the non-negativity of the KL-divergence. Furthermore, p1

cannot lie on any other boundary of P1 because all of the
elements of p1 are nonzero. Thus p1 is an interior point of P1

as it does not lie on any of the boundaries.
Finally, we need to show that convexity and a non-empty

interior imply (39). Take a point p ∈ P1. Then either p ∈ Po1
or p ∈ ∂P1, the boundary of P1. If p ∈ Po1 , then p ∈ Po1 ,
trivially. If p ∈ ∂P1, we must prove that p is a limit point of
Po1 . Since p1 is an interior point of P1, then there exists an
open ball U1 centered at p1 which is completely contained in
P1. We define V1 as the set of distributions that result from a
convex combination of p and U1

V1 = {αU1 + (1− α)p : 0 < α ≤ 1} (41)

using Minkowski addition. The set V1 clearly has non-zero
volume (by Lebesgue measure) and all of its points are
interior points of P1 due to Lemma 3. Therefore there exists
a sequence of interior points {pt}, pt ∈ V1 such that pt → p.
Thus p ∈ Po1 .

A similar argument can be made for P2. Hence, the proof
of Lemma 4 is complete.

Now, by Theorem 4 and Lemmas 3 and 4, the error
exponents are

lim
L→∞

1

L
log p

(L)
1 (P2) =−Dc (p∗1‖p1) (42)

lim
L→∞

1

L
log p

(L)
2 (P1) =−Dc (p∗2‖p2) . (43)

Distribution p∗1 is found by minimizing Dc (p∗1‖p1), subject to
the decision boundary constraint,

Dc (p∗1‖p1)−Dc (p∗1‖p2) ≥ 0, (44)

the consistency constraints for all a ∈ X 3,∑
b∈X

p∗1(ab) =
∑
b∈X

p∗1(ba), (45)

and the sum-to-one constraint,∑
c∈X 4

p∗1(c) = 1 (46)

This will yield the distribution p∗1 ∈ P2 that is closest to p1.
Moreover, we claim that p∗ must lie on the boundary, i.e.
(44) holds with equality. This can be proven by contradiction:
suppose p′ is the optimal solution to the minimization problem
and suppose

Dc(p
′‖p1)−Dc(p

′‖p2) > 0.

For 0 ≤ λ ≤ 1, let pλ = λ p1 + (1 − λ) p′ be a
convex combination of p′ and p1. We know from Lemma 3
that pλ ∈ P̃ for any value of λ and furthermore, there exists
a λ = λ∗ such that

Dc(pλ∗‖p1)−Dc(pλ∗‖p2) = 0

since the boundary linearly divides P̃ . Now, to show by
contradiction that

Dc(pλ∗‖p1) < Dc(p
′‖p1),

we will show that conditional relative entropy is convex in its
first argument. For some distribution q ∈ P̃ ,

Dc(pλ‖q) =
∑

ab∈X 4

pλ(ab) log
pλ(b|a)

q(b|a)

= λ
∑

ab∈X 4

p1(ab) log
pλ(b|a)

q(b|a)

+ (1− λ)
∑

ab∈X 4

p′(ab) log
pλ(b|a)

q(b|a)

= λ
∑

ab∈X 4

p1(ab)

(
log

p1(b|a)

q(b|a)
− log

p1(b|a)

pλ(b|a)

)
+ (1− λ)

∑
ab∈X 4

p′(ab)

(
log

p′(b|a)

q(b|a)
− log

p′(b|a)

pλ(b|a)

)
= λDc(p1‖q) + (1− λ)Dc(p

′‖q)
− λDc(p1‖pλ)− (1− λ)Dc(p

′‖pλ)

< λDc(p1‖q) + (1− λ)Dc(p
′‖q)



where the last step follows from the non-negativity of condi-
tional relative entropy. Finally, setting q = p1, we have

Dc(pλ‖p1) < λDc(p1‖p1) + (1− λ)Dc(p
′‖p1) < Dc(p

′‖p1).

Therefore, pλ∗ must be a better solution, which is a contra-
diction. Clearly p∗1 = p∗2 since they both lie on the boundary
where the minimands, Dc(·‖p1) and Dc(·‖p2), are equal.
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