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Abstract

In continuation to an earlier work, where error exponents of typical random codes were
studied in the context of general block coding, with no underlying structure, here we carry out
a parallel study on typical random, time–varying trellis codes for general discrete memoryless
channels, focusing on a certain range of low rates. By analyzing an upper bound to the er-
ror probability of the typical random trellis code, using the method of types, we first derive a
Csiszár–style error exponent formula (with respect to the constraint length), which allows to
easily identify and characterize properties of good codes and dominant error events. We also
derive a Gallager–style form of this error exponent, which turns out to be related to the ex-
purgated error exponent. The main result is further extended to channels with memory and
mismatch.

Index Terms: trellis codes, convolutional codes, typical error exponent, constraint length,
expurgated bound, mismatch, channels with memory.
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1 Introduction

Following the work of Barg and Forney [1], Nazari [13] and Nazari et al. [14], in a recent work

[11], the error exponent of the typical random block code for a general discrete memoryless channel

(DMC) was studied. The error exponent of the typical random code (TRC) was defined as the

long–block limit of the negative normalized expectation of the logarithm of the error probability,

as opposed to the classical random coding exponent, defined as the negative normalized logarithm

of the expectation of the error probability. The investigation of error exponents for TRCs was

motivated in [11, Introduction] by a few points: (i) Owing to Jensen’s inequality, it cannot be smaller

than the random coding error exponent, and so, it is a more optimistic performance measure than

the ordinary random coding exponent, especially at low rates. (ii) Given that a certain measure

concentration property holds, it is more relevant as a performance metric, since the code is normally

assumed to be randomly selected just once, and then used repeatedly. (iii) It captures correctly

the behavior of random–like codes [2], which are well known to be very good codes.

In [11], an exact single–letter expression was derived for the error exponent function of the TRC

assuming a general discrete memoryless channel (DMC) and an ensemble of fixed composition codes.

Among other things, it was shown in [11] (similarly as in [1] and [13]), that the TRC error exponent

is: (i) the same as the expurgated exponent at zero rate, (ii) below the expurgated exponent, but

above the random coding exponent for low positive rates, and (iii) the same as the random coding

exponent beyond a certain rate.

In view of the practical importance and the rich literature on trellis codes, and convolutional

codes in particular (see, e.g., [3], [7], [8], [9], [10], [15], [16], [17], [18] just to name a few, as well as

and many references therein), the purpose of this paper is to study the behavior and the performance

of typical random trellis codes. More specifically, our aim is at an investigation parallel to that of

[11], in the realm of ensembles of time–varying trellis codes. The main motivation is to compare

the error exponent of the typical random trellis code to that of the typical block code on the

basis of similar decoding complexity, in the spirit of the similar comparison in [17, Chap. 5], which

was carried out for the ordinary random coding exponents of the two classes of codes. Technically

speaking, our main result is that the error exponent of the typical random, time–varying trellis code

is lower bounded by a certain expression that is related to the expurgated exponent, and its value
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lies between those of the convolutional random coding error exponent and the convolutional–coding

expurgated exponent functions [16], [17, Sect. 5]. For the subclass of linear trellis codes, namely,

time–varying convolutional codes, the result is improved: the typical time–varying convolutional

code achieves the convolutional–coding expurgated exponent, provided that the channel is binary–

input, output–symmetric (see also [16]). In other words, in the limit of large constraint length, a

randomly selected time–varying convolutional code achieves the convolutional expurgated exponent

with an overwhelmingly high probability. This is parallel to a similar behavior in the context of

ordinary random block codes (without structure), where the error exponent of the typical random

code is inferior to the corresponding expurgated exponent, and superior to the random coding error

exponent (at low rates), but when it comes to linear random codes, the typical–code error exponent

coincides with the expurgated exponent.

These results both sharpen and generalize some earlier statements on the fraction of time–

varying (or periodically time–varying) convolutional codes with certain properties (see, for example,

[9, Lemma 3.33, Lemma 4.15]), and in particular, the fact that (at least) half of the convolutional

codes achieve the convolutional coding exponent [16, Theorem]. Beyond this, our contributions are

in several aspects.

1. Our analysis provides a fairly clear insight on the behavior of the typical codes, i.e., their free

distances and their distance enumerators.

2. Thanks to the use the method of types, we are able to characterize the dominant error events,

that is, typical lengths of error bursts and joint types of incorrect trellis paths together with

the correct path, which are even more informative than distances.

3. Our analysis is considerably general: we address general trellis codes (not merely convolu-

tional codes) with a general random coding distribution (not necessarily the uniform distri-

bution) and a general discrete memoryless channel (DMC), not merely binary–input, output–

symmetric channels.

4. We further extend the results in two directions simultaneously, allowing both channels with

input memory and mismatch.

The outline of the remaining part of this paper is the following. In Section 2, we establish
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notation conventions, define the problem setting, provide some background, and spell out the

objectives of the paper more formally. In Section 3, we state the main result, and in Section 4 we

prove it. Section 5 is devoted to some discussion, and finally, in Section 6, we extend the main

result to channels with memory and mismatch.

2 Notation, Problem Setting, Background and Objectives

2.1 Notation

Throughout the paper, random variables will be denoted by capital letters, specific values they may

take will be denoted by the corresponding lower case letters, and their alphabets will be denoted by

calligraphic letters. Random vectors and their realizations will be denoted, respectively, by capital

letters and the corresponding lower case letters, both in the bold face font. Their alphabets will

be superscripted by their dimensions. For example, the random vector X = (X1, . . . , Xr), (r –

positive integer) may take a specific vector value x = (x1, . . . , xr) in X r, the r–th order Cartesian

power of X , which is the alphabet of each component of this vector. The probability of an event E

will be denoted by Pr{E}, and the expectation operator will be denoted by E{·}. For two positive

sequences {ak} and {bk}, the notation ak
·
= bk will stand for equality in the exponential scale, that

is, limk→∞
1
k log ak

bk
= 0. Similarly, ak

·
≤ bk means that lim supk→∞

1
k log ak

bk
≤ 0, and so on. The

indicator function of an event E will be denoted by I{E}.

The empirical distribution of a string of symbols in a finite alphabet X , denoted by P̂X , is the

vector of relative frequencies P̂X(x) of each symbol x ∈ X along the string. Here X denotes an

auxiliary random variable (RV) distributed according to this distribution. Information measures

associated with empirical distributions will be denoted with ‘hats’. For example, the entropy

associated with the empirical distribution P̂X , namely, the empirical entropy, will be denoted

by Ĥ(X). Similar conventions will apply to the joint empirical distribution, the joint type class,

the conditional empirical distributions and the conditional type classes associated with pairs (and

multiples) of sequences of length r. Accordingly, P̂XX′ will be the joint empirical distribution

associated with a pair of strings of the same length, Ĥ(X, X ′) will designate the empirical joint

entropy, and Ĥ(X|X ′) will be the empirical conditional entropy.
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2.2 Problem Setting

Consider the system configuration depicted in Fig. 1. Let the information source, U1, U2, . . ., be

the binary symmetric source (BSS), i.e., an infinite sequence of binary random variables taking

on values in U = {0, 1}, independently of each other, and with equal probabilities for ‘0’ and

‘1’. We shall group the bits of this information source in blocks of length m, and denote U t =

(Um(t−1)+1, Um(t−1)+2, . . . , Umt), U t ∈ Um, t = 1, 2, . . ..

A time–varying trellis code of rate R = m/n and with memory size k, is a sequence of functions

f1, f2, . . ., ft : Umk → X n, t = 1, 2, . . ., where X is the finite channel input alphabet of size J .

When fed with an input information sequence, u1, u2, . . ., which is a realization of U1, U2, . . ., the

time–varying trellis codes outputs a code sequence, x1, x2, . . ., according to

xt = ft(ut, ut−1, . . . , ut−k+1), t = 1, 2, . . . (1)

The product mk designates the constraint length of the trellis code, and it will henceforth be

denoted by K. As is well known, a trellis code is a special case of a finite–state encoder whose total

number of states is 2K . On the other hand, a convolutional code is a special case of a trellis code

where {ft} are linear functions over the relevant field.

A discrete memoryless channel (DMC) W is defined by a set of single–letter conditional proba-

bilities (or probability density functions), {W (y|x), x ∈ X , y ∈ Y}, where X is as before and Y is

the channel output alphabet, which may be discrete or continuous.1 When the channel is fed by a

sequence, x1, x2, . . ., xt ∈ X , t = 1, 2, . . . (a realization of a random process, X1, X2, . . .), it responds

by generating a corresponding output sequence, y1, y2, . . ., yt ∈ Y, t = 1, 2, . . . (a realization of a

random process, Y1, Y2, . . .), according to

Pr{Y1 = y1, Y2 = y2, . . . , Yr = yr|X1 = x1, X2 = x2, . . . , Xr = xr} =
r
∏

t=1

W (yt|xt). (2)

As customary, we assume that the trellis code is decoded in long blocks using the maximum–

likelihood (ML) decoder, which is implementable by the Viterbi algorithm, and by terminating

each block with m(k − 1) zero input bits in order to reset the state of the encoder. As mentioned

1Throughout the sequel, we will treat Y as a discrete alphabet, with the understanding that in the continuous
case, all summations over Y should be replaced by integrals.
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earlier, we also extend the results to channels with input memory (inter-symbol interference) along

with mismatched decoding metrics, which are still implementable by the Viterbi Algorithm.

We consider the ensemble of time–varying trellis codes where for every t = 1, 2, . . . and every

possible value of (ut, ut−1, . . . , ut−k+1) ∈ UK), the value of ft(ut, ut−1, . . . , ut−k+1) ∈ X n is selected

independently at random under the i.i.d. distribution Qn, namely, each one of the n components of

ft(ut, ut−1, . . . , ut−k+1) ∈ X n is randomly drawn independently under a fixed distribution Q over

X . For the case of time–varying convolutional codes, the symbols {xt} are assumed binary (J = 2),

and {ft} are assumed linear functions over GF(2), namely,

ft(ut, . . . , ut−k+1) = x0,t ⊕
k−1
∑

j=0

ut−jGj(t), (3)

where {ut−j} are considered row–vectors of dimension m, {x0,t} are binary vectors of dimension

n, {Gj(t)} are binary m × n matrices, the operations ⊕ and
∑

both designate summations modulo

2, and the channel is assumed binary–input, output–symmetric. The entries of {x0,t} and {Gj(t)}

are randomly and independently selected with equal probabilities of 0 and 1.

D D D

ft

xt

ut−k+1ut

yt ût
W (yt|xt) decoder

Figure 1: Block diagram of a communication system based on a time–varying trellis code.

2.3 Background

The traditional ensemble performance metric is the exponential decay rate (as a function of K) of

the expectation of the first–error event probability, or the per–node error probability [17, p. 243],
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as well as the related bit error probability,

Ertc(R, Q) = lim inf
K→∞

{

−
log EPe

K

}

, (4)

where the subscript “rtc” stands for “random trellis code” and accordingly, the expectation is

w.r.t. the randomness of the time–varying trellis code, see, e.g., [17, Chap. 5]. As shown in [17,

Sect. 5.1], the result for random time–varying convolutional codes, which easily extends to random

time—varying trellis codes, is that this error exponent is essentially2 given by

Ertc(R, Q) ≥ Ertc(R, Q)
∆
=

{

R0(Q)/R R < R0(Q)
E0(ρrtc(R), Q)/R R > R0(Q)

(5)

where ρrtc(R) is the solution ρ the equation R = E0(ρ, Q)/ρ, E0(ρ, Q) being the Gallager function,

E0(ρ, Q) = − log





∑

y

[

∑

x

Q(x)W (y|x)1/(1+ρ)

]1+ρ


 , (6)

and R0(Q) = E0(1, Q). The best result is obtained, of course, upon maximizing over Q, in which

case, for R > R0 = maxQ R0(Q), the resulting error exponent is the best achievable error exponent,

as it meets the converse bound of [17, Theorem 5.4.1].3 It follows then that there is room for

improvement only for rates below R0. Indeed, an improvement in this range is accomplished, for

binary–input, output symmetric channels [17, p. 86], by an expurgated bound, derived in [16], [17,

Sect. 5.3], and given by

Ecex(R, Q) =
Ex(ρcex(R), Q)

R
, (7)

where ρcex(R) is the solution ρ ≥ 1 to the equation R = Ex(ρ, Q)/ρ, with Ex(ρ, Q) being defined as

Ex(ρ, Q) = −ρ log





∑

x,x′

Q(x)Q(x′)

(

∑

y

√

W (y|x)W (y|x′)

)1/ρ


 . (8)

More precisely, in [16] the main theorem asserts that for at least half of the rate–1/n time–varying

convolutional codes, the probability of error does not exceed

(

2L

1 − 2−ǫ/ρR

)ρ

· exp{−KEcex(ρ, Q)}, (9)

2The actual exponent is slightly smaller than that, but by an amount ǫ that can be made arbitrarily small. Here
and in the sequel, we will ignore this very small loss.

3Although the converse bound in [17, Sect. 5.4] is proved with convolutional codes in mind, the linearity of
convolutional codes is not really used there, and so the very same proof applies also to non–linear trellis codes.
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where Q is the binary symmetric source (which in our notation, means the uniform distribution over

the binary alphabet X ), L is the block length, ǫ = Ex(ρ, Q)−ρR > 0 is an arbitrarily small positive

real, and ρ ≥ 1 is any number that satisfies R = [Ex(ρ, Q) − ǫ]/ρ < R0. It is clear from the proof

of this theorem that choosing to refer to exactly half of the codes is quite arbitrary, and a similar

bound, with the same exponential rate (assuming that L is sub–exponential in K), would apply to

any, arbitrarily large, fraction of the codes, at the expense of increasing the pre–exponential factor

of (9) accordingly. For example, if the factor 2L at the numerator of the pre–exponent of (9) is

replaced by 100L, then the bound would apply to at least 99% of the time–varying convolutional

codes with block length L, and so on. This indicates that the ensemble of convolutional codes

obeys a measure concentration property concerning their error exponent.4

2.4 Objectives

The purpose of this work is to study the above mentioned measure concentration property in a

systematic manner and to broaden the scope in several directions at the same time, as will be

specified shortly. In this context, similarly as in [11], we refer to the error exponent of typical

random trellis code, and as discussed in [11, Introduction], if the ensemble of codes possesses the

relevant measure concentration property associated with exponential error bounds, then the error

exponent of the the typical random trellis code, is captured by the quantity

Etrtc(R, Q)
∆
= lim inf

K→∞

{

−
E log Pe

K

}

, (10)

which is similar to the above definition of Ertc(R, Q), except that the expectation operator and the

logarithmic function are commuted. It will be understood that the limit of K = mk → ∞ will be

taken under the regime where m and n (and hence also R = m/n) are held fixed whereas k → ∞.

A similar definition will apply to the smaller ensemble to time–varying convolutional codes and it

will be denoted by Etrcc(R, Q), where the subscript stands for typical random convolutional code.

4As mentioned in the Introduction, several assertions in the same spirit can be found also in [9], see for example,
Lemmas 3.33 and 4.15 therein.
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3 Main Result

Our main theorem has two parts, where the second part actually follows directly from [16] (as

discussed in Subsection 2.3) and is included here for completeness.

Theorem 1 Consider the problem setting defined in Subsection 2.2. Then, for R < R0(Q),

(a)

Etrtc(R, Q) ≥ Etrtc(R, Q)
∆
=

Ex(ρtrtc(R), Q)

R
, (11)

where ρtrtc(R) is the solution, ρ ≥ 1, to the equation

R =
Ex(ρ, Q)

2ρ − 1
. (12)

(b) For the ensemble of time–varying convolutional codes and the binary–input output symmetric

channel (with Q(0) = Q(1) = 1
2),

Etrcc(R, Q) ≥ Ecex(R, Q). (13)

We emphasize that here the setup is considerably extended relative to that of [16], especially

in part (a). This extension takes place in several dimensions at the same time:

1. Allowing general rational coding rates, R = m/n, rather than R = 1/n.

2. Using ensembles with a general random coding distribution Q, instead of just the uniform

distribution. In this case, assertions about fractions of codes with certain properties are

replaced by parallel assertions concerning (high) probabilities of possessing these properties.

3. Assuming a general DMC, not necessarily a binary–input, output symmetric channel.

4. As was mentioned already, we are referring to general trellis codes, as an extension to convo-

lutional codes, which are linear.

5. A further extension is for mismatched decoding for a channel with input memory.

Furthermore, our analysis, which is strongly based on the method of types, will provide some

insights on the character of two ingredients of interest:
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1. Structure and distance enumeration (or more generally, type class enumeration) of the typical

random trellis code, that achieves the convolutional coding expurgated exponent.

2. Error events that dominate the error probability: joint types of decoded trellis paths and the

correct paths, along with the lengths of the typical error bursts.

These points, among others, will be discussed in mode detail in Section 5.

4 Proof of Theorem 1

Here we prove part (a) only, because part (b) can be obtained in a very similar manner by a small

modification in a few places. Also, as discussed in Subsection 2.3, part (b) was actually proved

already in [16] (at least for rate–1/n codes, but the extension to m/n–codes is not difficult).

Clearly, in order to derive a bound on Etrtc(R, Q), we have to assess E log Pe(Ck), where Ck

designates a randomly selected trellis code with memory k (and constraint length K = mk) in the

ensemble described in Subsection 2.2. Our first observation is the following: suppose we can define,

for every k ≥ 1, a subset Tk of codes {Ck} whose probability, 1 − ǫk
∆
= Pr{Tk}, tends to unity as

k → ∞. Then,

E log Pe(Ck) = Pr{Tk} · E{log Pe(Ck)|Ck ∈ Tk} + Pr{T c

k } · E{log Pe(Ck)|Ck ∈ T c

k }

≤ (1 − ǫk) · E{log Pe(Ck)|Ck ∈ Tk} + ǫk · log 1

= (1 − ǫk) · E{log Pe(Ck)|Ck ∈ Tk}

≤ (1 − ǫk) · log

[

max
Ck∈Tk

Pe(Ck)

]

. (14)

Thus, if we can define a subset of codes Tk, which on the one hand, has very high probability, and

on the other hand, there is a uniform upper bound on Pe(Ck) for every Ck ∈ Tk, this would yield

a lower bound on the error exponent of the typical random trellis code. We will use this simple

observation shortly after we define the subset Tk.

As mentioned earlier, we are assuming that each transmitted block is terminated by k − 1 all–

zero input vectors (each of dimension m) in order to reset the state of the shift register of the trellis

encoder. Similarly as in linear convolutional codes, here too, every incorrect path {vt}, diverging

from the correct path, {ut}, at a given node j and re-merging with the correct path exactly after
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k + ℓ branches, must have the form

vj , vj+1, . . . , vj+ℓ, uj+ℓ+1, uj+ℓ+2, . . . , uj+ℓ+k−1,

where vj and vj+ℓ can be any one of the 2m − 1 incorrect input m–vectors at nodes j and j + ℓ,

respectively. Between j and j + ℓ there should be no sub-strings of k −1 consecutive correct inputs.

Thus, overall there are no more than (2m − 1)2mℓ such incorrect paths [17, p. 311]. Following a

similar5 line of thought as in the derivations of [17], for a given trellis code Ck, the probability of

an error event beginning at any given node is upper bounded by

Pe(Ck) ≤
∑

ℓ≥1

1

2mℓ

∑

x∈X k+ℓ

∑

x′∈X k+ℓ

Pr
{

W (y|x′) ≥ W (y|x)
}

, (15)

where x designates the codeword associated with the correct path and x′ stands for any incorrect

path diverging from the correct path at node j and re-merging at j + k + ℓ. Since x and x′

may disagree at no more than n(k + ℓ) channel uses, the summand is actually the pairwise error

probability associated with two vectors of length n(k+ℓ), and it depends only on the joint empirical

distribution of these two n(k +ℓ)–vectors, which we denote by P̂XX′ . In particular, by the Chernoff

bound, it is readily seen that for a given pair (x, x′),

Pr
{

W (y|x′) ≥ W (y|x)
}

≤ exp







−n(k + ℓ) max
0≤s≤1

∑

x,x′

PXX′(x, x′)ds(x, x′)







∆
= exp2

{

−n(k + ℓ) max
0≤s≤1

∆s(P̂XX′)

}

∆
= exp2

{

−n(k + ℓ)∆(P̂XX′)
}

, (16)

where

ds(x, x′) = − log2

[

∑

y

W 1−s(y|x)W s(y|x′)

]

, (17)

is the Chernoff distance between x and x′. It follows then that

Pe(Ck) ≤
∑

ℓ≥1

2−mℓ
∑

{P̂XX′}

Nℓ(P̂XX′) · exp
{

−n(k + ℓ)∆(P̂XX′)
}

, (18)

5Note that here, unlike in [17], in part (a) of Theorem 1, we are considering general trellis codes, not convolutional
codes, which are linear. Therefore, we cannot assume, without loss of generality, that the all–zero message was
sent, but rather average over all input messages. In part (b), on the other hand, this averaging is not needed. This
difference causes certain modifications in the analysis, which yield eventually Ecex(R, Q).
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where Nℓ(P̂XX′) is the number of pairs {(x, x′)} ∈ X 2n(k+ℓ) having joint empirical distribution

that is given by P̂XX′ . Here, the inner summation over {P̂XX′} is defined over the set Pn(k+ℓ)

of all possible empirical distributions of pairs of vectors in X n(k+ℓ). For a given joint empirical

distribution P̂XX′ , we denote

D(P̂XX′‖Q × Q) =
∑

x,x′∈X

P̂XX′(x, x′) log2
P̂XX′(x, x′)

Q(x)Q(x′)
. (19)

We note that

E{Nℓ(P̂XX′)} ≤ (2m − 1)22mℓ · Pr{(x, x′) have joint type P̂XX′}

≤ (2m − 1)22mℓ · exp2{−n(k + ℓ)D(P̂XX′‖Q × Q)}

= (2m − 1) · exp2

{

m[2ℓ − (k + ℓ)D(P̂XX′‖Q × Q)/R]
}

. (20)

We now define Tk as the subset of codes, henceforth referred to as the typical trellis codes, with

the following property for a given arbitrarily small ǫ > 0: for every ℓ ≥ 1 and every empirical joint

distribution P̂XX′ derived from n(k + ℓ)–vectors:

• Nℓ(P̂XX′) = 0 whenever E{Nℓ(P̂XX′)} < (2m − 1) · 2−n(k+ℓ)ǫ, and

• Nℓ(P̂XX′) ≤ 2n(k+ℓ)ǫ · E{Nℓ(P̂XX′)} whenever E{Nℓ(P̂XX′)} ≥ (2m − 1) · 2−n(k+ℓ)ǫ.

Obviously, by the Markov inequality, for every ℓ and P̂XX′ in the first category, we have

Pr{Nℓ(P̂XX′) ≥ 1} ≤ E{Nℓ(P̂XX′)} < (2m − 1) · 2−n(k+ℓ)ǫ, (21)

and similarly, for ℓ and P̂XX′ in the second category, we have

Pr{Nℓ(P̂XX′) > 2n(k+ℓ)ǫ · E{Nℓ(P̂XX′)} ≤ 2−n(k+ℓ)ǫ < (2m − 1) · 2−n(k+ℓ)ǫ. (22)

It follows by the union bound that

Pr{T c

k } ≤ (2m − 1)
∑

ℓ≥1

∑

{P̂XX′}

2−n(k+ℓ)ǫ

≤ (2m − 1)
∑

ℓ≥1

[n(k + ℓ) + 1)J2

· 2−n(k+ℓ)ǫ

= (2m − 1) ·
∑

ℓ≥k+1

(nℓ + 1)J2

· 2−nℓǫ
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= (2m − 1) ·
∑

ℓ≥k+1

exp2

{

−nℓ

[

ǫ −
J2 log(nℓ + 1)

nℓ

]}

. (23)

The sequence { log(nℓ+1)
nℓ } is monotonically decreasing and so, since ℓ ≥ k + 1, we have, for large

enough k,
J2 log(nℓ + 1)

nℓ
≤

J2 log[n(k + 1) + 1]

n(k + 1)
≤

ǫ

2
,

and then the last line of (23) cannot exceed the sum of the geometric series, (2m−1)·2−n(k+1)ǫ/2/(1−

2−nǫ/2), which tends to zero as k → ∞. Thus, Pr{Tk} tends to unity as k → ∞. Denoting

S ′
ℓ = {P̂XX′ ∈ Pn(k+ℓ) : E{Nℓ(P̂XX′)} ≥ (2m − 1) · 2−n(k+ℓ)ǫ}

⊆

{

P̂XX′) ∈ Pn(k+ℓ) : 2ℓ ≥
k + ℓ

R
[D(P̂XX′‖Q × Q) − ǫ]

}

∆
= Sℓ, (24)

it now follows that for every typical trellis code, Ck ∈ Tk,

Pe(Ck) ≤
∑

ℓ≥1

2−mℓ
∑

{P̂XX′)∈S′
ℓ
}

Nℓ(P̂XX′) · exp2{−n(k + ℓ)∆(P̂XX′)}

≤ (2m − 1)
∑

ℓ≥1

∑

{P̂XX′)∈Sℓ}

exp2{m(ℓ − (k + ℓ)[D(P̂XX′‖Q × Q) +

∆(P̂XX′) − ǫ]/R)}. (25)

In order to address this summation over Sℓ, let us partition it as the disjoint union of the subsets

Sℓ,i = Sℓ∩{P̂XX′ ∈ Pn(k+ℓ) : Ri−1 ≤ D(P̂XX′‖Q×Q) < Ri}, Ri = iǫ, i = 1, 2, . . . , ⌈2R/ǫ⌉ (26)

and observe that for a given i, Sℓ,i is non–empty only when 2ℓ ≥ (k+ℓ)(Ri−1 −ǫ)/R, or equivalently,

ℓ ≥
k(Ri−1 − ǫ)

2R − Ri−1 + ǫ

∆
= kθ(Ri−1).

Then,

Pe(Ck) ≤

⌈2R/ǫ⌉
∑

i=1

∑

ℓ≥1

∑

{P̂XX′∈Sℓ,i}

exp2{m[ℓ − (k + ℓ)[D(P̂XX′‖Q × Q) + ∆(P̂XX′) − ǫ]/R}

≤

⌈2R/ǫ⌉
∑

i=1

∑

ℓ≥kθ(Ri−1)

[n(k + ℓ) + 1]J
2

max
{P̂XX′ : D(P̂XX′‖Q×Q)≤Ri}

exp2{m[ℓ − (k + ℓ)[Ri−1 + ∆(P̂XX′) − ǫ]/R}
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=

⌈R/ǫ⌉
∑

i=1

∑

ℓ≥kθ(Ri−1)

[n(k + ℓ) + 1]J
2

exp2{m[ℓ − (k + ℓ)[Ri−1 + Z(Ri) − ǫ]/R}

=

⌈R/ǫ⌉
∑

i=1

exp2{−K[Ri−1 + Z(Ri) − ǫ]/R} ×

∑

ℓ≥kθ(Ri−1)

[n(k + ℓ) + 1]J
2

exp2{−mℓ[Ri−1 + Z(Ri) − R − ǫ]/R}, (27)

where we have defined

Z(Ri) = min{∆(P̂XX′) : D(P̂XX′‖Q × Q) ≤ Ri}. (28)

Now observe that

Ri−1 + Z(Ri) = Ri + Z(Ri) − ǫ

= Ri + min{∆(P̂XX′) : D(P̂XX′‖Q × Q) ≤ Ri} − ǫ

≥ min
{P̂XX′ : D(P̂XX′‖Q×Q)≤Ri}

[D(P̂XX′‖Q × Q) + ∆(P̂XX′)] − ǫ

≥ min
P̂XX′

[D(P̂XX′‖Q × Q) + ∆(P̂XX′)] − ǫ

= min
P̂XX′

max
0≤s≤1



D(P̂XX′‖Q × Q) +
∑

x,x′

P̂XX′(x, x′)ds(x, x′)



− ǫ

= max
0≤s≤1

min
P̂XX′



D(P̂XX′‖Q × Q) +
∑

x,x′

P̂XX′(x, x′)ds(x, x′)



− ǫ

= max
0≤s≤1







− log





∑

x,x′

Q(x)Q(x′)2−ds(x,x′)











− ǫ

= − min
0≤s≤1

log





∑

x,x′,y

Q(x)Q(x′)W s(y|x)W 1−s(y|x′)



− ǫ

= − log





∑

x,x′,y

Q(x)Q(x′)
√

W (y|x)W (y|x′)



− ǫ

= − log





∑

y

[

∑

x

Q(x)
√

W (y|x)

]2


− ǫ

= R0(Q) − ǫ, (29)

where the commutation of the minimization and the maximization is allowed by convexity–concavity

of the objective, and the final minimization over s is achieved by s = 1/2 due to the convexity and

14



the symmetry of the function
∑

x,x′,y Q(x)Q(x′)W s(y|x)W 1−s(y|x′) around s = 1/2. Thus, the

series in the last line of (27) is convergent as long as R < R0(Q) − 2ǫ, and its exponential order as

a function of K (ignoring ǫ–terms) is given by

1

R
min

i
{Ri + Z(Ri) + θ(Ri)[Ri + Z(Ri) − R]}

=
1

R
min

i

{

Ri + Z(Ri) +
Ri

2R − Ri
· [Ri + Z(Ri) − R]

}

= min
i

Ri + 2Z(Ri)

2R − Ri

≥ inf
R̂<2R

2Z(R̂) + R̂

2R − R̂

= inf
R̂/2<R

Z(R̂) + R̂/2

R − R̂/2

= inf
R̂<R

Z(2R̂) + R̂

R − R̂

= inf
R̂<R

inf
{PXX′ : D(PXX′‖Q×Q)≤2R̂}

max
0≤s≤1

∆s(PXX′) + R̂

R − R̂
. (30)

Thus, we have shown that the typical random trellis code error exponent is lower bounded by

Etrtc(R, Q) ≥ inf
R̂<R

inf
{PXX′ : D(PXX′‖Q×Q)≤2R̂}

max
0≤s≤1

∆s(PXX′) + R̂

R − R̂
. (31)

We next show that this expression is equivalent to the one asserted in part (a) of Theorem 1. First,

observe that since ∆s(PXX′) is a linear functional of PXX′ , then ∆(PXX′) = max0≤s≤1 ∆(PXX′) is

convex in PXX′ . We argue that the minimizer, P ∗
XX′ , of ∆(PXX′) within the set {PXX′ : D(PXX′‖Q×

Q) ≤ 2R̂} must be a symmetric distribution, namely, P ∗
XX′(x, x′) = P ∗

XX′(x′, x) for all x, x′ ∈ X .

To see why this is true, given any PXX′ that satisfies the divergence constraint, define its transpose,

P̃XX′ by P̃XX′(x, x′) = PXX′(x′, x) for all x, x′ ∈ X . Obviously, ∆(P̃XX′) = ∆(PXX′) because if s∗

achieves ∆(PXX′), then 1 − s∗ achieves ∆(P̃XX′) and the value of the maximum is the same (just

by swapping x and x′). Next, define P̄XX′ = 1
2PXX′ + 1

2 P̃XX′ . Then,

∆
(

P̄XX′

)

= ∆

(

1

2
PXX′ +

1

2
P̃XX′

)

≤
1

2
∆(PXX′) +

1

2
∆(P̃XX′) = ∆(PXX′), (32)

and at the same time,

D(P̄XX′‖Q × Q) ≤
1

2
D(PXX′‖Q × Q) +

1

2
D(P̃XX′‖Q × Q) = D(PXX′‖Q × Q) ≤ 2R̂, (33)
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so the divergence constraint is satisfied. It follows then that the symmetric distribution P̄XX′ is

never worse than PXX′ in terms of minimizing ∆(·) under the divergence constraint. Thus, it is

sufficient to seek the minimizing PXX′ among the symmetric distributions. However, given that

PXX′ is symmetric, the maximizing s is s∗ = 1/2, because then ∆1−s(PXX′) = ∆s(PXX′). Thus,

the r.h.s. of eq. (31) is equivalent to

inf
R̂<R

inf
{PXX′ : D(PXX′‖Q×Q)≤2R̂}

∆1/2(PXX′) + R̂

R − R̂
.

Now,

inf{∆1/2(PXX′) : D(P̃XX′‖Q × Q) ≤ 2R̂}

= inf
PXX′

sup
ρ≥0





∑

x,x′

PXX′(x, x′)d1/2(x, x′) + ρ





∑

x,x′

PXX′(x, x′) log
PXX′(x, x′)

Q(x)Q(x′)
− 2R̂









= sup
ρ≥0

inf
PXX′



ρ ·
∑

x,x′

PXX′(x, x′) log
PXX′(x, x′)

Q(x)Q(x′)2−d1/2(x,x′)/ρ
− 2ρR̂





= sup
ρ≥0







−ρ log





∑

x,x′

Q(x)Q(x′)2−d1/2(x,x′)/ρ



− 2ρR̂







= sup
ρ≥0







−ρ log





∑

x,x′

Q(x)Q(x′)

(

∑

y

√

W (y|x)W (y|x′)

)1/ρ


− 2ρR̂







= sup
ρ≥0

[Ex(ρ, Q) − 2ρR̂], (34)

and so,

Etrtc(R, Q) ≥ inf
R̂<R

sup
ρ≥0

Ex(ρ, Q) − (2ρ − 1)R̂

R − R̂

≥ inf
R̂<R

Ex(ρtrtc(R), Q) − (2ρtrtc(R) − 1)R̂

R − R̂

= inf
R̂<R

(2ρtrtc(R) − 1)R − (2ρtrtc(R) − 1)R̂

R − R̂

= 2ρtrtc(R) − 1

=
Ex(ρtrtc(R), Q)

R

= Etrtc(R, Q). (35)

Formally, this proves Theorem 1, but as a final remark, to complete the picture, we also argue that

the there is no loss of tightness in the passage from the right–hand side of the first line of eq. (35) to
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Etrtc(R, Q). This follows from the following matching upper bound on the first line of (35). Let R̃

be such that the maximizer of Ex(ρ, Q) − (2ρ − 1)R̃ is ρtrtc(R). This is feasible due to the concavity

of Ex(ρ, Q) in ρ [17, Theorem 3.3.2],

R̃ =
1

2
·

∂Ex(ρ, Q)

∂ρ

∣

∣

∣

∣

ρ=ρtrtc(R)

≤
Ex(ρtrtc(R), Q)

2ρtrtc(R)
≤

Ex(ρtrtc(R), Q)

2ρtrtc(R) − 1
= R.

Thus,

inf
R̂<R

sup
ρ≥0

Ex(ρ, Q) − (2ρ − 1)R̂

R − R̂
≤ sup

ρ≥0

Ex(ρ, Q) − (2ρ − 1)R̃

R − R̃

=
Ex(ρtrtc(R), Q) − (2ρtrtc(R) − 1)R̃

R − R̃

=
(2ρtrtc(R) − 1)R − (2ρtrtc(R) − 1)R̃

R − R̃

= 2ρtrtc(R) − 1

=
Ex(ρtrtc(R), Q)

R

= Etrtc(R, Q). (36)

5 Discussion

Several comments are in order concerning Theorem 1 and its proof.

Relations among the exponents. It is easy to see that Etrtc(0) is equal to the zero–rate expur-

gated exponent, Eex(0, Q) = Ecex(0, Q) = limρ→∞ Ex(ρ, Q), and that for all R < R0(Q),

Ertc(R, Q) =
R0(Q)

R
≤ Etrtc(R, Q) ≤ Ecex(R, Q).

In other words, the typical random trellis code exponent is between the convolutional coding ran-

dom coding exponent and the convolutional coding expurgated exponent. This is parallel to the

ordering among the corresponding the block code exponents [11]. These relations are displayed

graphically in Fig. 2, where the concave curve of Ex(ρ, Q) is plotted as a function of ρ, along with

the straight lines, ρR and (2ρ − 1)R. For ρ = 1, we have Ex(1, Q) = E0(1, Q) = R0(Q). The

straight lines ρR and (2ρ − 1)R intersect at the point (1, R), which is below the point (1, R0(Q))

on the curve (as R is assumed smaller than R0(Q)). The straight lines ρR and (2ρ − 1)R meet the

curve Ex(ρ, Q) at the points (ρcex(R), R · Ecex(R, Q)) and (ρtrtc(R), R · Etrtc(R, Q)), respectively. As
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can be seen, R · Ecex(R, Q)) ≥ R · Etrtc(R, Q)) ≥ R0(Q).

R

1
ρ

−R

R · Ecex(R, Q)

R0(Q)

ρtrtc(R)

Ex(ρ, Q)

ρR

(2ρ − 1)R

ρcex(R)

R · Etrtc(R, Q)

Figure 2: Graphical representation of Etrtc(R, Q) and Ecex(R, Q).

Properties of the typical random trellis codes. For typical randomly selected trellis codes,

we are able to characterize the features that make them achieve Etrtc(R, Q). This is, in fact, spelled

out explicitly in the definition of the subset of typical codes, Tk. We know that for these codes,

joint types that correspond to empirical distributions that are too far from Q × Q (e.g., those that

exhibit too strong empirical dependency between the incorrect path and the correct one), are not

populated. For the other types, we know the distance spectrum, or more precisely, the population

profile of the various joint types.

Dominant error events. In the process of proving Theorem 1 in Section 4, we have seen also

alternative forms of the error exponent expression, like the Csiszár–style expression (31). While this

expression may not be easier to calculate numerically (due to the nested optimizations involved),

it is nevertheless useful for gaining some insight. We learn the following from the first part of
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the derivation: the error probability is dominated by a sub–exponential number of incorrect paths

whose joint empirical distribution with the correct path is given by

P ∗
XX′(x, x′) =

Q(x)Q(x′)2−d1/2(x,x′)/ρ

∑

x̂,x̃ Q(x̂)Q(x̃)2−d1/2(x̂,x̃)/ρ
(37)

and whose total unmerged length, k + ℓ (a.k.a. the critical length), spans

k + kθ(D(P ∗
XX′‖Q × Q)) = kR/[2R − D(P ∗

XX′‖Q × Q)]

branches.6 The error exponent expression (31) is therefore essentially the same as that of a zero–

rate7 block code of block length K/[2R − D(P ∗
XX′‖Q × Q)], where the competing trellis paths

are at normalized Bhattacharyya distance ∆1/2(P ∗
XX′) from the correct path, hence the product,

∆1/2(P ∗
XX′)/[2R − D(P ∗

XX′‖Q × Q)]. For time–varying convolutional codes over the binary–input,

output–symmetric channel, better performance is obtained (as discussed above) as one obtains [17,

Corollary 5.3.1],

Ecex(R, Q) =
log Z

log(21−R − 1)
,

with Z =
∑

y

√

W (y|0)W (y|1), which has the simple interpretation of the Costello lower bound on

the free distance [3] multiplied by the corresponding Bhattacharyya bound (see also [18, p. 1652]).

In other words, the typical time–varying convolutional code achieves the Costello bound. Note that

the parameter ρ in (37) controls the similarity (and hence the dominant distance) between P ∗
XX′

and the product distribution Q × Q. When ρ is very large (at low rates), the dominant distance is

large and when ρ is very small (low rates), the distance is very small.

A numerical example. In [17, Chap. 5], there is a comparison of the performance–complexity

trade-off between unstructured block codes and convolutional codes, where the performance is

measured according to the traditional random coding error exponents. As explained therein, the

idea is that for block codes of length N and rate R, the complexity is G = 2NR and the error

probability is exponentially 2−NEblock(R) = G−Eblock(R)/R. For convolutional codes, decoded by

the Viterbi algorithm, the complexity is about G = 2K and the error probability decays like

2−KEconv(R) = G−Econv(R), and so, it makes sense to compare Eblock(R)/R with Econv(R), or more

6Interestingly, this is different from the total critical length that dominates ordinary average error probability,
which for R < R0, is k branches long [17, Theorem 5.5.1].

7The zero rate is because of the sub–exponential number of dominant incorrect paths.
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conveniently, to compare Eblock(R) with R·Econv(R). It is interesting to conduct a similar comparison

when the performance of both classes of codes is measured according to error exponents of the

typical random codes. In Fig. 3, this is done for the binary symmetric channel with crossover

parameter p = 0.1 and the uniform random coding distribution. For reference, the ordinary random

coding exponent of convolutional codes, R·Ertc(R, Q) ≡ R0(Q), is also plotted in the displayed range

of rates. As can be seen, the typical code exponent of the ensemble of time–varying convolutional

codes is much larger than that of block codes for the same decoding complexity.
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Figure 3: The functions Etrc(R, Q) [11] of general (unstructured) random block codes (green dashed
curve −·−), R·Ertc(R) ≡ R0 of the random convolutional coding exponent (red dashed curve −−−)
and R·Etrcc(R) = Ex(ρcex(R), Q) of the typical random coding convolutional code (blue solid curve),
all in the range [0, Rcrit] for the binary symmetric channel with crossover parameter p = 0.1, where
R0 = 0.2231 and Rcrit = 0.1308. All rates are in units of nats/channel–use.

6 Channels with Memory and Mismatch

In this section, we extend our main results in two directions at the same time. The first direction

is that instead of assuming memoryless channels, we now allow channels that memorize a finite

number of the most recent past inputs, with the clear motivation of channels with intersymbol

interference (see also [17, Sect. 5.8]). For the sake of simplicity, we consider the case where the
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memory contains the one most recent past input only, in other words, the channel model (2) is

replaced by

Pr{Y1 = y1, Y2 = y2, . . . , Yr = yr|X0 = x0, X1 = x1, . . . , Xr = xr} =
r
∏

t=1

W (yt|xt, xt−1). (38)

The extension to any fixed number p of the most recent past inputs is conceptually straightforward

by redefining the channel input at time t as x̄t = (xt, . . . , xt−p+1) and taking into account that in

the sequence {x̄t} not all (Jp)2 state transitions x̄t → x̄t+1 are allowed, but only those in which

the two states are consistent with each other. Using this transformation, we are back to the model

(38), except that {xt} are replaced by {x̄t}. The other direction of extension is that we allow

mismatch. The decoding metric is assumed to be
∏

t W̃ (yt|xt, xt−1) for some channel W̃ that may

differ from W . To avoid further complications, the ensemble of time–varying trellis codes continues

to be defined exactly as in Section 2 (without any attempt at introducing memory). These model

assumptions are motivated by the facts that: (i) they are practically relevant, and (ii) the Viterbi

algorithm is still implementable, although the number of states is now larger than before. In the

remaining part of this section, we will not repeat all the derivations of Section 4, but only highlight

the differences and the state the results.

The first basic difference, relative to the derivation in Section 4, is associated the pairwise error

probability: given the correct trellis path x and a competing path x′, both of length n(k + ℓ)

channel uses, the pairwise average error probability is upper bounded using the Chernoff bound as

follows:

P̄e(x → x′) ≤
∑

x,x′

Q(x)Q(x′) · min
s≥0

∑

y
W (y|x) ·

[

W̃ (y|x′)

W̃ (y|x)

]s

=
∑

x,x′

Q(x)Q(x′) · min
s≥0

∑

y

n(k+ℓ)
∏

t=1

W (yt|xt, xt−1)W̃ 1−s(yt|xt, xt−1)W̃ s(yt|x
′
t, x′

t−1)

=
∑

x,x′

Q(x)Q(x′) · min
s≥0

n(k+ℓ)
∏

t=1

∑

yt

W (yt|xt, xt−1)W̃ 1−s(yt|xt, xt−1)W̃ s(yt|x
′
t, x′

t−1)

=
∑

x,x′

Q(x)Q(x′) · min
s≥0

exp2







−

n(k+ℓ)
∑

t=1

ds(xt, xt−1; x′
t, x′

t−1)







=
∑

x,x′

Q(x)Q(x′) · exp2







− max
s≥0

n(k+ℓ)
∑

t=1

ds(xt, xt−1; x′
t, x′

t−1)







(39)
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where we have defined

ds(x, x−; x′, x′
−) = − log

[

∑

y

W (y|x, x−)W̃ 1−s(y|x, x−)W̃ s(y|x′, x′
−)

]

, x, x−, x′, x′
− ∈ X . (40)

Note that here, it is no longer necessarily true that the optimal choice of s is s = 1/2, as the

symmetry properties that were valid in the memoryless matched case of Section 4, do not continue

to hold here, in general. To make the derivation more tractable, in the sequel, we interchange

the optimization over s with the summation over {x, x′}, at the possible risk of losing exponential

tightness.8 The expression
∑n(k+ℓ)

t=1 ds(xt, xt−1; x′
t, x′

t−1) depends on (x, x′) only via their joint

“Markov type”, defined by the joint empirical distribution,

P̂XX′X−X′
−

(x, x′, x−, x′
−) =

1

k + ℓ

n(k+ℓ)
∑

t=1

I{xt = x, x′
t = x′, xt−1 = x−, x′

t−1 = x′
−}, (41)

ignoring edge effects. Let us denote

∆s(P̂XX′X−X′
−

) =
∑

x,x′,x−,x′
−

P̂XX′X−X′
−

(x, x′, x−, x′
−)ds(x, x−; x′, x′

−). (42)

Using the extension of the method of types to Markov types (see, e.g., [4, Sect. VII.A], [5], [6, Sect.

3.1], [12]), we find that

P̄e(x → x′)
·

≤ min
s≥0

max
P̂XX′X−X′

−

exp

{

n(k + ℓ)

[

Ĥ(X, X ′|X−, X ′
−) − Ĥ(X, X ′) −

D(P̂XX′‖Q × Q) − ∆s(P̂XX′X−X′
−

)

]}

= exp

{

− n(k + ℓ) max
s≥0

min
P̂XX′X−X′

−

[

D(P̂XX′|X−X′
−

‖Q × Q|P̂X−X′
−

) +

∆s(P̂XX′X−X′
−

)

]}

, (43)

where Ĥ(X, X ′|X−, X ′
−) is the empirical conditional entropy of (X, X ′) given (X−, X ′

−), derived

from P̂XX′X−X′
−

,

D(P̂XX′|X−X′
−

‖Q × Q|P̂X−X′
−

)
∆
=

∑

x,x−,x′,x′
−

P̂XX′X−X′
−

(x, x′, x−, x′
−) log

P̂XX′|X−X′
−

(x, x′|x−, x′
−)

Q(x)Q(x′)
,

8 Of course, one may always select s = 1/2, as in Section 4, and then Theorem 1 will still be obtained as a special
case.
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P̂XX′|X−X′
−

being the conditional distribution induced by P̂XX′X−X′
−

, and the minimization over

{P̂XX′X−X′
−

} is confined to joint distributions where the marginals of (X, X ′) and (X−, X ′
−) are

the same. Repeating the same steps as in Section 4, and assuming that

R < R0(Q) = max
s≥0

min
PXX′X−X′

−

[D(PXX′|X−X′
−

‖Q × Q|PX−X′
−

) + ∆s(PXX′X−X′
−

)], (44)

the resulting error exponent of the typical random trellis code is lower bounded by

max
s≥0

min
R̂<R

min
{P̂XX′X−X′

−
: D(P̂XX′|X−X′

−
‖Q×Q|P̂X−X′

−
)≤2R̂}

∆s(P̂XX′X−X′
−

) + R̂

R − R̂
. (45)

As for the inner–most minimization, let us define the functions

Fs(d) = min{D(P̂XX′|X−X′
−

‖Q × Q|P̂X−X′
−

) : ∆s(P̂XX′X−X′
−

) ≤ d} (46)

and

Gs(2R̂) = min{∆s(P̂XX′X−X′
−

) : D(P̂XX′|X−X′
−

‖Q × Q|P̂X−X′
−

) ≤ 2R̂}. (47)

From large deviations theory [6, Sect. 3.1], we know that an alternative expression for Fs(d) is given

by

Fs(d) = sup
r≥0

[Gs(r) − rd], (48)

where Gs(r) = − log λs(r), λs(r) being the Perron–Frobenius eigenvalue of the J2 × J2 matrix

As(r) = {Q(x)Q(x′)e−rds(x,x−;x′,x′
−)}

whose rows and columns are indexed by the pairs (x, x′) and (x−, x′
−), respectively.9 Thus, given

d,

∆s(P̂XX′X−X′
−

) ≤ d implies D(P̂XX′|X−X′
−

‖Q × Q|P̂X−X′
−

) ≥ Fs(d).

Equivalently, given that 2R̂ = Fs(d),

D(P̂XX′|X−X′
−

‖Q × Q|P̂X−X′
−

) ≤ 2R̂ implies ∆s(P̂XX′X−X′
−

) ≥ F −1
s (2R̂).

But

F −1
s (2R̂) = sup

r≥0

Gs(r) − R̂

r
= sup

ρ≥0
[ρGs(1/ρ) − 2ρR̂], (49)

9 This equivalence between the two forms of Fs(d) follows from the fact that they are both expressions of the large

deviations rate function [6, Sect. 3.1] of the probability of the event {
∑N

t=1
ds(Xt, Xt−1; X ′

t, X ′
t−1) ≤ Nd}, where

{Xt} and {X ′
t} are independent i.i.d. processes, both governed by Q.
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and so, similarly as in Section 4, the error exponent of the typical random trellis code is lower

bounded by

sup
s≥0

inf
R̂<R

sup
ρ≥0

ρGs(1/ρ) − (2ρ − 1)R̂

R − R̂
= sup

s≥0

ρR,sGs(1/ρR,s)

R
, (50)

where ρR,s is the solution to the equation (2ρ−1)R = ρGs(1/ρ). Note that ρGs(1/ρ) is an extension

of Ex(ρ, Q) to a channel with both memory and mismatch. Using similar considerations, it is easy

to see that R0(Q) of eq. (44) is equal to sups≥0 Gs(1).

Referring to the comment on the extension to channels with memory of the p most recent past

channel inputs (see the introductory paragraph of this section), the only difference is that in such

a case, the matrix As(r) has larger dimensions, J2p × J2p, but it is rather sparse: all entries vanish

except those where both pairs (x, x−) and (x′, x′
−) are consistent.
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