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Abstract—The problem of characterising the zero-error ca-
pacity region for multiple access channels even in the noiseless
case has remained an open problem for over three decades.
Motivated by this challenging question, a recently developed
theory of nonstochastic information is applied to characterise
the zero-error capacity region for the case of two correlated
transmitters. Unlike previous contributions, this analysis does
not assume that the blocklength is asymptotically large. Finally,
a new notion of nonstochastic information is proposed for a non-
cooperative problem involving three agents. These results are
preliminary steps towards understanding information flows in
worst-case distributed estimation and control problems.

Index Terms—Nonstochastic information, multiple access
channels, zero-error capacity, multi-agent systems

I. INTRODUCTION

The multiple access channel (MAC) was initially introduced

by Shannon in his work [1]. The multiple access communi-

cation system consists of several senders that aim to transmit

each an independent message reliably to a common receiver.

This model corresponds indeed to various real-life scenar-

ios such as multiple ground stations communicating with a

satellite receiver, or the uplink phase of a cellular system.

Clearly, the challenge in this case is not only the channel

noise distorting the transmitted signal, but also the interference

between the senders. The ordinary capacity region C of MAC

channels has been extensively studied in the literature [2]–

[4], and by means of superposition coding, the single-letter

characterization of this region was found by Slepian and

Wolf [4]. It consists of the closure of the convex hull for all

nonnegative rate tuples (R0,R1,R2) satisfying

R1 ≤ I(X1;Y |X2,U),

R2 ≤ I(X2;Y |X1,U),

R1 +R2 ≤ I(X1,X2;Y |U),

R0 +R1 +R2 ≤ I(X1,X2;Y ) (1)

where X1 ↔U ↔X2 and U ↔X1,X2 ↔Y form Markov chains.

A further important notion in addition to the ordinary capacity

is the so-called zero-error capacity. This parameter is defined

as the least upper bound of rates leading to an error probability
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at the receiver which is exactly equal to zero [5]. The signifi-

cance of zero-error capacity has recently been shown in worst-

case control problems where strict, deterministic guarantees

on performance must be met [12]. However, little is known

about the zero-error capacity region of many simple MAC’s.

For instance, for deterministic binary adder channels, the best

outer bound on this region has been found by Ordentlich and

Shayevitz in [6] and presents a slight improvement on the

result obtained by Urbanke and Li [7]. These studies mainly

rely on combinatorics in order to tighten the outer bound of

C0.

In this paper we apply the concept of nonstochastic infor-

mation [8] to obtain an intrinsic characterisation of the zero-

error capacity region of a general noisy MAC. A motivation

for investigating such a problem arises from the study of

decentralised control systems. In fact, the independent senders

model the sensors reading the states of different plants, while

the common decoder can be seen as the controller stabilising

the system. Furthermore, the concept of zero-error capacity

has increasingly gained more attention as it is an insightful

parameter of the system worst-case performance. Contrary to

communication systems, in control applications safety presents

a crucial criterion, and hence, the plant performance must be

guaranteed not only on average but rather at all times. Thus,

in this case C0 can be considered a more useful figure of

merit than the classical Shannon capacity C which allows an

arbitrary small probability of error.

The rest of the paper is organised as follows. In Section II,

some basic definitions related to the nonprobabilistic frame-

work are introduced and the MAC model along with the

zero-error coding scheme are presented. Next, the zero-error

capacity region for the MAC channel for any given block-

length n is characterised in Section III, with converse and

achievability proofs provided. A new notion of information

in the MAC setting, namely the noncooperative NC−sense

connectedness, is studied in Section IV. Finally, Section V

concludes the article by summarising the main contributions

and discussing possible future directions.

II. ZERO-ERROR COMMUNICATION OVER MACS IN THE

NONSTOCHASTIC FRAMEWORK

In this section, we reformulate the problem of zero-error

communication over multiple access channels (MACs) in
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terms of the nonstochastic framework of [8].

A. Uncertain Variables, Unrelatedness and Markovianity

First we briefly those elements of the nonstochastic frame-

work of [9] that are needed for this section. We present further

aspects as required in subsequent sections.

An uncertain variable (uv) X consists of a mapping from

an underlying sample space Ω to a space X of interest [9].

Each sample ω ∈Ω is hence mapped to a particular realization

X(ω) ∈ X . For a pair of uv’s X and Y , we denote their

marginal, joint and conditional ranges as

[[X ]] := {X(ω) : ω ∈ Ω} ⊆ X , (2)

[[X ,Y ]] := {(X(ω),Y (ω)) : ω ∈ Ω} ⊆ X ×Y , (3)

[[X |y]] := {X(ω) : Y (ω) = y,ω ∈ Ω} ⊆ X . (4)

The dependence on Ω will normally be hidden, with most

properties of interest expressed in terms of operations on these

ranges. As a convention, uv’s are denoted by upper-case letters,

while their realizations are indicated in lower-case. The family

{JX |yK : y ∈ JY K} of conditional ranges is denoted JX |Y K.

Definition 1 (Unrelatedness [9] ): The uvs X1,X2, · · ·Xn are

said to be (mutually) unrelated if

[[X1,X2, · · · ,Xn]] = [[X1]]× [[X2]]×·· ·× [[Xn]]. (5)

Remark: Unrelatedness, which is closely related to the

notion of qualitative independence [13] between discrete sets,

can be shown to be equivalent to the conditional range property

[[Xk|x1:k−1] = [[Xk]], ∀x1:k−1 ∈ [[X1:k−1]], k ∈ [2 : n]. (6)

Definition 2 (Markovianity [9]): The uvs X1,X2 and Y are

said to form a Markov uncertainty chain X1 ↔ Y ↔ X2 if

[[X1|y,x2]] = [[X1|y]], ∀(y,x2) ∈ [[Y,X2]]. (7)

Remark: This can be shown to be equivalent to X1 and X2

being conditionally unrelated given Y , i.e.

JX1,X2|yK = JX1|yK× JX2|yK, ∀y ∈ JY K. (8)

By the symmetry of (8), X1 ↔ Y ↔ X2 iff X2 ↔ Y ↔ X1.

B. System Model

Consider a multiple access communication system with one

receiver, two transmitters and three messages, as illustrated in

Fig. (1). Assume the messages M0, M1 and M2 are mutually

unrelated and finite-valued. Without loss of generality, for

i = 0,1,2 let Mi take the integer values [1 : µ i] for some

integer µ i ≥ 1. For a given block-length n ≥ 1, the messages

are encoded into channel input sequences X1
1:n and X2

1:n as

X
j

1:n = γ i(M0,M j), j = 1,2, (9)

where γ1 and γ2 are the coding functions at each transmitter.

Observe that the common message M0 is seen by both trans-

mitters, while the private messages M1 and M2 are available

only to their respective transmitters. The code rate for each

message is defined as

Ri := (log2 µ i)/n, i = 0,1,2. (10)

Due to the common message, the two channel input sequences

applied will typically be related. In the case where the common

message can take only one value, so that R0 = 0, each channel

input is generated in isolation and is mutually unrelated with

the other. At the other extreme, if the private messages can

each take only one value so that R1 = R2 = 0, then the channel

inputs are generated in complete cooperation.

The encoded data sequences are then sent through a sta-

tionary memoryless MAC as depicted in Fig. (1). The output

Yk ∈ Y of the MAC is given in terms of a fixed function

f : X1 ×X2 ×W → Y as

Yk = f (X1
k ,X

2
k ,Wk) ∈ Y , k = 1,2, . . . , (11)

where Wk is channel noise that is mutually unrelated with

W1:k−1, M0, M1, M2, and has constant range JWkK = W .

At the receiver , the decoder δ produces message estimates

M̂0, M̂1 and M̂2 from the channel output sequence Y1:n. Under

a zero-error objective, these estimates must always be exactly

equal to the original messages, regardless of channel noise or

interference between X1
k and X2

k . In other words, JMi|y1:nK is a

singleton for each i = 0,1,2 and any y1:n ∈ JY1:nK. For a given

block-length n, we define the zero-error n-capacity region C0,n

of the MAC as the set of rate tuples R = (Ri)3
i=0 for which

this is possible by suitable choice of coding functions.

The system set-up above is inspired by that of [4]. The

critical difference is that the messages and channel here are

not assumed to have any statistical structure, and the aim is

to recover the messages perfectly, not just with arbitrarily

small error probability. In addition, we are interested in

characterising the zero-error capacity region at finite n, not

just as n → ∞.

γ1

γ2

Source 1

Source 0

Source 2

MAC

Wk

δ

M1

M2

M0

X1
k

X2
k

Yk

M̂2

M̂0

M̂1

Fig. 1. The two-transmitter MAC system with a common message operating
at time instant k.

III. NONSTOCHASTIC INFORMATION AND MAC

ZERO-ERROR CAPACITY

In this section, we use the nonstochastic information con-

cepts of [8], [9] to give an exact characterisation of the zero-

error capacity region of the multiple access channel (MAC)

defined in the previous section.

A. Preliminaries on Nonstochastic Information

First we present some necessary background concepts.

Throughout this subsection X , Y , Z, Z′ and W denote uncertain

variables (uv’s).



Definition 3 (Overlap Connectedness [9]): Two points x

and x′ ∈ [[X ]] are said to be [[X |Y ]]-overlap connected, de-

noted x ! x′, if there exists a finite sequence {X |yi}
m
i=1

of conditional ranges such that x ∈ [[X |y1]],x
′ ∈ [[X |ym]] and

[[X |yi]]∩ [[X |yi−1]] 6= /0, for each i ∈ [2, · · · ,m].
Remarks: It is easy to see that overlap connectedness is

both transitive and symmetric, i.e. it is an equivalence relation

between x and x′. Thus it induces disjoint equivalence classes

that cover JXK and form a unique partition. This is called the

[[X |Y ]]-overlap partition, denoted by [[X |Y ]]∗.

Definition 4 (Nonstochastic Information [9]): The non-

stochastic information between X and Y is given by

I∗[X ;Y ] = log2 |JX |Y K∗| . (12)

Remark: This can be shown to be symmetric, i.e. I∗[X ;Y ] =
I∗[Y ;X ].

Definition 5 (Common Variables [10], [11]):

A uv Z is said to be a common variable (cv) for X and Y

if there exist functions f and g such that Z = f (X) = g(Y ).
It is further said to be a maximal cv if any other cv Z′

admits a function h such that Z′ = h(Z).
Remarks: In the context of random variables, these concepts

were first discussed by Shannon [10], who used the term

common information element for a maximal cv. Notice that

no cv can take more distinct values than the maximal one.

The nonstochastic information I∗[X ;Y ] is precisely the log-

cardinality of the range of a maximal cv between X and Y . This

is because it can be shown that ∀(x,y) ∈ JX ,Y K, the partition

set in JX |Y K∗ that contains x also uniquely specifies the set in

JY |XK∗ that contains y. Thus these overlap partitions define a

cv for X and Y , with corresponding functions f and g given

by the labelling. Furthermore, this cv can be proved to be

maximal. See [8] for details.

Definition 6 (Conditional I∗): The conditional nonstochastic

information between X and Y given W is

I∗[X ;Y |W ] := min
w∈JWK

log2 |JX |Y wK∗| , (13)

where for a given w ∈ JW K, JX |YwK∗ is the overlap partition

of JX |wK induced by the family JX |YwK of conditional ranges

JX |ywK, y ∈ JY |wK [9].

Remark: It can be shown that I∗[X ;Y |W ] also has an

important interpretation in terms of cv’s: it is the maximum

log-cardinality of the ranges of all cv’s Z = f (X ,W ) = g(y,W )
that are unrelated with W . See [9] for details.

B. MAC Zero-Error Capacity via Nonstochastic Information

We are now in a position to prove the main result of this

paper.

Theorem 1: For a given block-length n ≥ 1, let

R(U,X1
1:n,X

2
1:n) be the set of nonegative tuples (R0,R1,R2)

such that

nR0 ≤ I∗[U ;Y1:n] (14)

nR1 ≤ I∗[X
1
1:n;Y1:n|U ] (15)

nR2 ≤ I∗[X
2
1:n;Y1:n|U ] (16)

where X i
1:n, i = 1,2, are sequences of inputs to the multiple

access channel (MAC) (11), Y1:n is the corresponding channel

output sequence, and U is an auxiliary uncertain variable (uv).

Then the zero-error n-capacity region C0,n of the MAC over

n uses coincides with the union of the regions R(U,X1
1:n,X

2
1:n)

over all uv’s U,X1
1:n,X

2
1:n that satisfy the Markov uncertainty

chains X1
1:n ↔U ↔ X2

1:n and U ↔
(

X1
1:n,X

2
1:n

)

↔ Y1:n.

Remarks: This result is the zero-error analogue of the

Slepian-Wolf ordinary capacity region C (1), in terms of

nonstochastic rather than Shannon information. Although C

is prima facie given in ‘single-letter’ terms, it is operationally

relevant only at large block-lengths n, to yield small probabil-

ities of error. In contrast, the result above specifies all rates

tuples that allow exactly zero errors to be achieved at a given

finite n. This could potentially be of interest in safety-critical,

low-latency applications in distributed networked control. If

arbitrarily long blocks are permitted, then the relevant zero-

error capacity region C0 is given by the convex hull of

∪n≥1C0,n.

Although (14)–(16) give a cuboidal rate region

R(U,X1
1:n,X

2
1:n) , it is not clear if the zero-error capacity

regions also have geometrically simple shapes, due to the

unions over U,X1
1:n,X

2
1:n and n. We aim to investigate this in

future work, for specific channels of interest.

1) Proof of Converse: Consider a zero-error code (9) with

block-length n operating at rates R0,R1 and R2 (10) over the

MAC (11), and set U = M0. As Mi, i = 0,1,2 are mutually

unrelated, it follows from (9) that the codewords X1
1:n and X2

1:n

are conditionally unrelated given M0, i.e. the first Markov

uncertainty chain X1
1:n ↔ U ↔ X2

1:n is satisfied. Since the

channel noise in (11) is unrelated with the messages and

hence with the codewords, we also have the second Markov

uncertainty chain Y1:n ↔
(

X1
1:n,X

2
1:n

)

↔U .

As the messages are all errorlessly recovered at the re-

ceiver, there certainly exists a decoding function δ 0 such that

M0 = δ 0(Y1:n). Setting U = M0, we see that M0 is therefore

a common variable (cv) between U and Y1:n. By the maximal

cv property of I∗,

nR0 ≡ log2 |JM0K| ≤ I∗[U ;Y1:n], (17)

proving (14).

We next prove the remaining two inequalities. Observe that

for a given realisation m0 of the common message, there

must be a unique message m1 corresponding to each channel

codeword x1
1:n; otherwise, multiple values of m1 would be

associated with a single channel output sequence y1:n, violating

the zero-error requirement. Consequently, there must exist a

mapping g such that M1 = g(X1
1:n,M

0). Furthermore, by the

zero-error property there also exists a function δ 1 such that

M1 = δ 1(Y1:n).
Thus M1 is a cv between (X1

1:n,M
0) and (Y1:n,M

0). As by

hypothesis it is also unrelated with U = M0, the interpretation

of conditional I∗ in terms of maximal unrelated cv’s allows us

to conclude that

nR1 ≡ log2 |JM1K| ≤ I∗[X
1
1:n;Y1:n|M

0] = I∗[X
1
1:n;Y1:n|U ], (18)



U
u1 u2 u3

· · ·
· · · u

2nR0

Fig. 2. Example of an overlap partition [[U |Y1:n]]∗. The horizontal lines
represent to the different member-sets of each partition and the filled circles
correspond to the selected points ui.

proving (14). In a similar way, the bound on the rate R2 stated

in (16) can be shown.

2) Proof of Achievability: We now prove that if we have

a block-length n and uv’s U , X
j

1:n, j = 1,2 satisfying the

requirements in Theorem 1), it is possible to construct a zero-

error coding scheme at rates achieving equality in (14)–(16).

a) Codebook Generation: First, set nR0 = I∗[U ;Y1:n] and

pick one point in each of the disjoint sets of the overlap

partition [[U |Y1:n]]∗. With mild abuse of notation call these

distinct points u(m0), m0 = 1, . . . ,2nR0 .

Next, observe that since nRi = I∗[X
i
1:n;Y1:n|U ] for i = 1,2,

(13) implies that

2nRi

≤
∣

∣[[X i
1:n|Y1:n,U = u(m0)]]∗

∣

∣ , i= 1,2,m0 ∈ [1 : 2nR0

]. (19)

For any m0, we may therefore pick 2nRi
distinct codewords xi

1:n

from [[X i
1:n|U = u(m0)]] such that there is at most one codeword

in each set of the overlap partition [[X i
1:n|Y1:n,U = u(m0)]]∗.

Denote these codewords by γ i(m0,mi), mi ∈ [1 : 2nRi
]. This

gives us our coding laws (9).

b) Zero Error: To show that this code may be decoded

with zero error, observe first that since X1
1:n ↔ U ↔ X2

1:n,

the joint conditional range [[X1
1:n,X

2
1:n|U = u(m0)]] is just the

Cartesian product

[[X1
1:n|,U = u(m0)]]× [[X2

1:n|U = u(m0)]].

Thus we are guaranteed that for every m0, all codeword pairs
(

γ1(m0,m1),γ2(m0,m2)
)

, mi = 1, . . . ,2nRi
, i = 1,2, lie within

the conditional joint range [[X1
1:n,X

2
1:n|U = u(m0)]]. In other

words, for every combination of m0,m1 and m2, the triple
(

γ1(m0,m1),γ2(m0,m2),u(m0)
)

is a valid point inside the joint

range JX1
1:n,X

2
1:n,UK.

The decoding proceeds in three stages. In the first stage,

the common message m0 is recovered. Recall that each of the

2nR0
points u(m0) lies in a distinct set of the overlap partition

JU |Y1:nK∗. By the common variable (cv) property of overlap

partitions, this set is uniquely determined by the corresponding

set of the matching overlap partition JY1:n|UK∗ that contains

the channel output sequence y1:n. In this way, m0 is uniquely

decoded.

In the second stage, having recovered m0, the decoder

calculates which distinct set of the conditional overlap partition

[[Y1:n|X
1
1:n,U = u(m0)]]∗ contains y1:n. Again by the cv property,

this set uniquely determines the corresponding set of the

matching conditional overlap partition [[X1
1:n|Y1:n,U = u(m0)]]∗

that contains the codeword γ1(m0,m1). By construction, for

each m0 there is at most one codeword in each set of this latter

conditional overlap partition; thus m1 is uniquely recovered.

In the third stage, the decoder repeats the second stage but

with X2
1:n instead of X1

1:n, and recovers m2 uniquely in the same

way.

IV. NONCOOPERATIVE CONNECTEDNESS AND

INFORMATION

The notions of overlap connectedness and common vari-

ables (cv’s) were critical in developing a characterisation of

MAC zero-error capacity based on nonstochastic information.

In this section, we consider a related but more basic problem,

in which three uncertain variables X1,X2 and Y with joint range

JX1,X2,Y K are respectively observed by three agents. The

agents observing X1 and X2 each wish to separately deduce as

much as possible about Y , while the agent observing Y wishes

to know exactly what the other two agents have deduced about

it. In other words, we seek to characterise cv’s of the form

Z = ( f1(X1) f2(X2)) = (g1(Y ) g2(Y ))≡ g(Y ) (20)

In order to do so, we propose a new notion of connectedness

and nonstochastic information.

Definition 7: (NC-Connectedness) A pair of points (x1,x2,y)
and (x′1,x

′
2,y

′) ∈ [[X1,X2,Y ]] is called noncooperatively (NC-

)connected, denoted (x1,x2,y)
NC
! (x′1,x

′
2,y

′), if

(i) x1 ! x′1 in [[X1|Y ]],
and

(ii) x2 ! x′2 in [[X2|Y ]],

where the symbol ”!” refers to overlap connectedness.

Remark: It is clear that NC-connectedness inherits the

symmetry and transitivity of overlap connectedness; thus it is

an equivalence relation, which splits [[X1,X2,Y ]] into disjoint

equivalence classes. Call this partition the NC-partition of

JX1,X2,Y K.

From the definition, it can be shown that each set of

the NC-partition is uniquely defined by a set in the prod-

uct JX1|YK∗ × JX2|YK∗ of overlap partitions. By the common

variable property of overlap partitions, it is also uniquely

defined by a corresponding pair of sets in the matching

overlap partitions JY |X1K∗ and JY |X2K∗. As both these latter

partitions are of JY K, this pair of sets is uniquely defined

by a more refined set in the pairwise intersection or join

JY |X1K∗∨ JY |X2K∗.

Thus the overlap partitions JX1|Y K∗ and JX2|YK∗ yield the

functions f1(X1) and f2(X2) of (20), while JY |X1K∗∨ JY |X2K∗
yields the matching function g(Y ).

A. Maximal Common Variable and Noncooperative I∗

Theorem 2: The functions f1, f2 and g given respectively by

the (labels of) the partitions JX1|Y K∗, JX2|YK∗ and JY |X1K∗ ∨
JY |X2K∗ yield a common variable (cv) Z∗ in the sense (20) that

is maximal. That is, any other cv

Z =
(

f̄1(X1), f̄2(X2)
)

= ḡ(Y )

admits a function h such that Z = h(Z∗).
Proof. This statement can be proven by contradiction. Sup-

pose that there is a set P in the NC-partition of JX1,X2,YK that



Z-Partition

(x1,x2,y)
(x′1,x

′
2,y

′)

Equivalence Class under NC−Connectedness

Fig. 3. Illustration of the scenario expressed by (21).

is not wholly contained inside any partition set induced by the

cv Z. Then there must exist two admissible points (x1,x2,y)
and (x′1,x

′
2,y

′) in P that lie in different partition sets of Z,

therefore yielding different values z 6= z′ of Z. That is,

(

f̄1(x1), f̄2(x2)
)

6=
(

f̄1(x
′
1), f̄2(x

′
2)
)

(21)

Without loss of generality, say that f̄1(x1) 6= f̄1(x
′
1). As Z

is a cv in the sense (20), its first component is a cv Z1 =
f̄1(X1) = ḡ1(Y ) between X1 and Y .

However, by the maximal cv property, Z1 is a function of

the set of the overlap partition JX1|Y K∗ that contains X1. Since

both x1 and x′1 lie in the same set JX1|YK∗, they must therefore

yield the same value f̄1(x1) = f̄1(x
′
1), contradicting (21).

With this result, it is then natural to take the log-cardinality

of JZ∗K as a new measure of nonstochastic information,

INC
∗ [X1,X2;Y ] := log2 |JY |X1K∗∨ JY |X2K∗| . (22)

V. CONCLUSION

In this paper, zero-error multiple access communication

systems was analysed in a nonprobabilistic framework using

uv’s and nonstochastic information. These notions were used

to characterise the zero-error capacity region of multiple

access channels. The presented analysis is not only valid

for asymptotically large blocklength but it also includes the

case of finite n. Subsequently, theconcept of noncooperative

connectedness was introduced and used as a tool to extend

the concept of nonstochastic information to non-cooperative

situations.

Future work will consider the extension of this framework

to include the general multi-user case (more than two input se-

quences) and MAC’s with feedback. These scenarios represent

the first steps of modelling information flows in distributed

estimation and control systems using nonstochastic concepts.
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[13] A. Rényi, Foundations of Probability, Holden-Day, San Francisco, 1970.


	I Introduction
	II Zero-Error Communication over MACs in the Nonstochastic Framework
	II-A Uncertain Variables, Unrelatedness and Markovianity
	II-B System Model

	III Nonstochastic Information and MAC Zero-Error Capacity
	III-A Preliminaries on Nonstochastic Information
	III-B MAC Zero-Error Capacity via Nonstochastic Information
	III-B1 Proof of Converse
	III-B2 Proof of Achievability


	IV Noncooperative Connectedness and Information
	IV-A Maximal Common Variable and Noncooperative I*

	V Conclusion
	References

