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Abstract—In this paper, we continue our previous work on the
reduction of algebraic lattices over imaginary quadratic fields
for the special case when the lattice is spanned over a two
dimensional basis. In particular, we show that the algebraic
variant of Gauss’s algorithm returns a basis that corresponds
to the successive minima of the lattice in polynomial time if the
chosen ring is Euclidean.

I. INTRODUCTION

Lattice reduction algorithms over algebraic number fields
have attracted great attention in recent years. In network
information theory, efficient techniques for finding the net-
work coding matrices in compute-and-forward boil down to
designing a lattice reduction algorithm where the direct-sums
are defined by the space of codes [1]–[3]. In cryptography,
analyzing the bit-level security of ideal lattice based NTRU
or fully homomorphic encryption schemes through a sub-field
algorithm has been shown effective [4], [5].

Since the Lenstra-Lenstra-Lovász (LLL) algorithm is one
of the most celebrated lattice reduction algorithms to date, its
extension from over real/rational space to higher dimensional
space has been studied extensively. Napias first generalised the
LLL algorithm to lattices spanned over imaginary quadratic
rings and certain quaternion fields [6]; later Fieker, Pohst and
Stehle investigated more fundamental properties of algebraic
lattices [7], [8]. Recently Kim and Lee proposed an efficient
LLL algorithm over bi-quadratic field whose quantization step
requires a Euclidean domain [4], while our work on LLL over
imaginary quadratic fields showed that a Euclidean domain is
needed to make the algorithm convergent [9].

As a special case of the LLL algorithm for (real/rational)
lattices over two dimensions, conventional Gauss’s algorithm
has been proved to return the two vectors corresponding to the
successive minima of the lattice [10]. However, the algebraic
analog of Gauss’s algorithm, has not, so far, been analyzed.
It remains unknown whether the algebraic Gauss’s algorithm
possesses the optimality properties as its counter-part.

To address this issue, we take a modest step to investigate
Gauss’s algorithm over Imaginary Quadratic Fields. When the
ring of integers is a Euclidean domain, we prove that Gauss’s
algorithm returns a basis corresponding to the successive
minima of an algebraic lattice. This result is further explained
through numerical examples. Specifically, we show how the

algorithm finds the two successive minima when the domain
is Euclidean, and how the algorithm fails to work when it is
non-Euclidean.

II. PRELIMINARIES

We begin by defining some familiar concepts in algebraic
number theory and lattice theory. Let K be a complex
quadratic extension of Q, i.e. K = Q(

√
−d) for some positive

square-free integer d that is not equal to 1. Then recall the ring
of integers of K (maximal order), OK , is Z[ξ], where

ξ =

{√
−d if − d ≡ 2, 3 mod 4,

1+
√
−d

2 if − d ≡ 1 mod 4.

Definition II.1. A field K is said to be norm-Euclidean if,
for all x ∈ K, there exists q ∈ OK its ring of integers such
that

|NormK/Q(x− q)| < 1,

where NormK/Q denotes the algebraic norm of K. We denote
the valueM(K) := maxx∈K minq∈OK

|NormK/Q(x−q)| the
Euclidean minimum of K.

Proposition 1. Let K = Q(
√
−d) be an imaginary quadratic

field with ring of integers OK . Then we have

M(K) =

{
1+d
4 if − d ≡ 2, 3 mod 4,

(1+d)2

16d if − d ≡ 1 mod 4.

Hence, K is norm-Euclidean if and only if d ∈
{1, 2, 3, 7, 11}.

Proof. See [9].

For imaginary quadratic fields, we may analytically extend
the norm function to all complex numbers using the absolute
value. Moreover, we have maxx∈K minq∈OK

|NormK/Q(x −
q)| = maxx∈C minq∈OK

|x − q|2 as the maximum distance
with respect to the absolute value is achieved at a rational
point. We say that x ∈ C is fully Z[ξ]-reduced if |x| ≤ |x− q|
for all q ∈ Z[ξ].

Lemma 1. Let x ∈ C be fully Z[ξ]-reduced. Then |<(x)| ≤
1/2, |=(x)| ≤

√
d/2 if ξ =

√
−d or |<(x)| ≤ 1/2, |=(x)| ≤

1√
d

(
−|<(x)|+ 1+d

4

)
if ξ = 1+

√
−d

2 .
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Fig. 1. Left: lattice generated by Z[
√
−2], tesselated by rectangles, Right:

lattice generated by Z[ 1+
√
−7

2
], tesselated by "stretched" hexagons.

Proof. Define the map φ(x + iy) = (x, y) for all x + iy ∈
C. Then |x + iy| = ‖(x, y)‖. When −d ≡ 2, 3 mod 4,
Z[ξ] generates the lattice with basis (1, 0), (0,

√
d), otherwise

Z[ξ] generates the lattice with basis (1, 0), (1/2,
√
d/2). The

bounds that form the fundamental region of these lattices
correspond to the bounds given in the proposition (see fig.
1 for reference).

A Z[ξ]-module Λ is an abelian group with a binary operation
over Z[ξ] that satisfies the axioms of scalar multiplication. In
general, modules need not have a basis, and those that are
are denoted free modules. A subset of Λ forms a basis for Λ
if the basis is linearly independent over Z[ξ] and also spans
Λ over Z[ξ]. We denote discrete free Z[ξ]-submodules of Cn
algebraic lattices. Algebraic lattices can be expressed by a
basis b1, . . . ,bn whose linear sum with scalar multiplication
over Z[ξ] span Λ.

Definition II.2. The jth successive minima of an algebraic
lattice is the smallest such number λj such that the ball of
radius λj (under an appropriate norm) contains j linearly
independent lattice vectors over Z[ξ].

A. Classical Gauss’s algorithm

Aside from Euclid’s famous greatest divisor algorithm,
Gauss’s lattice reduction algorithm is one of the first examples
of a lattice reduction algorithm. Gauss defined the notion of a
reduced basis over two dimensions as the following.

Definition II.3. An ordered basis {b1,b2} ∈ Rn of a two
dimensional lattice is reduced if ‖b1‖ ≤ ‖b2‖ ≤ ‖b2 + pb1‖
for all p ∈ Z.

The following algorithm returns a reduced basis in the
sense of Gauss. Notice we get a basis whose Gram-Schmidt
coefficients round to zero, as such |µ12|, |µ21| ≤ 1/2. Then
taking an arbitrary vector in the lattice v = xb1 + yb2 where
x, y ∈ Z, we get

‖v‖|2 = x2‖b1|2 + 2xy〈b1,b2〉+ y2‖b2‖2

≥ x2‖b1‖2 − |xy|‖b1‖2 + y2‖b1‖2

= (x− y)2‖b1‖2 + |xy|‖b1‖2.

input : An ordered basis {b1,b2} ∈ Rn of a two
dimensional lattice spanned over Z.

output: A Gauss reduced basis.

while ‖b1‖ < ‖b2‖ do
µ12 = 〈b1,b2〉/‖b1‖2;
b2 = b2 − bµ12eb1 ;
swap b1,b2

end

If x is nonzero, since (x−y)2, |xy| ∈ N and at least one must
be nonzero, b1 must be the shortest vector. If y is nonzero,
letting f(x, y) = (x− y)2 + |xy| we have

‖v‖2 = y2(‖b2‖2 − ‖b1‖2)

+ (x2 + y2)‖b1‖2 + 2xy〈b1,b2〉
≥ y2(‖b2‖2 − ‖b1‖2) + f(x, y)‖b1‖2

≥ (y2 − 1)(‖b2‖2 − ‖b1‖2) + ‖b2‖2,

and since y is nonzero, y2 − 1 ≥ 0 so b2 corresponds to the
second successive minima for the lattice.

III. ALGEBRAIC LATTICE REDUCTION IN TWO
DIMENSIONS

For our work, we use the complex Euclidean (l2) norm to
measure the length of lattice vectors and the regular complex
inner product. Unlike algebraic lattices spanned over other
rings, we do not need to embed the ring structure before
measuring the norm, as the Euclidean norm already takes the
complex conjugate into account. Define the quantisation func-
tion qK : C→ Z[ξ] such that qK(x) = arg minµ∈Z[ξ] |x− µ|.
A specific definition of how the quantisation function works
can be found in [9].

Lagrange and Gauss have given the reduction criteria for a
two dimensional real basis. We first generalize this criteria to
over complex quadratic rings.

Definition III.1. A basis b1,b2 ∈ Cn is Gauss reduced if
‖b1‖ ≤ ‖b2‖ ≤ ‖b2 + pb1‖ for all p ∈ Z[ξ].

The following algorithm, which is a special case of algebraic
LLL in two dimensions, computes a Gauss reduced basis.

input : An ordered basis {b1,b2} ∈ Cn of a two
dimensional algebraic lattice Λ and a
relevant ring Z[ξ] that we want to reduce the
basis over.

output: A Gauss reduced basis.

while ‖b1‖ < ‖b2‖ do
µ12 = 〈b1,b2〉/‖b1‖2;
b2 = b2 − qK(µ12)b1 ;
swap b1,b2

end



Theorem 2. Let b1,b2 be an output basis of the algorithm
above. Then ‖b1‖ = λ1, ‖b2‖ = λ2 if Z[ξ] is the ring of
integers of a norm-Euclidean domain (i.e., d = 1, 2, 3, 7, 11).

Proof. We first show that the Gram-Schmidt coefficients are
fully Z[ξ]-reduced, i.e. the GS coefficients of the output
basis are rounded to zero. Let b2 be the input vector in
the last run of the algorithm before b2,b1 are output as the
reduced basis, and let µ12 be the GS coefficient between
b1,b2. Then qK(〈b1,b2〉/‖b1‖2) = qK( 1

‖b1‖2 (〈b1,b2〉 −
qK(µ12)‖b1‖2)) = qK(ε), where ε = µ12 − qK(µ12) has
already been fully reduced, by the definition of the quantisa-
tion function. Since no swap has occurred (since the basis has
been output), ‖b1‖ ≤ ‖b2‖ so the same argument follows for
the GS coefficient between b2,b1.

To prove that ‖b1‖ = λ1, we denote an arbitrary lattice
vector v = p1b1 + p2b2 where p1, p2 ∈ Z[ξ], and analyze its
norm function:

‖v‖2 = |p1|2‖b1‖2 + |p2|2‖b2‖2 + 2<(p1p2〈b1,b2〉). (1)

We examine the cases −d ≡ 1, 2 mod 4 and −d ≡ 3
mod 4 separately. When the chosen ring is in the form of
ξ =

√
−d, we let p1 = x + y

√
−d, p2 = z + w

√
−d where

x, y, z, w ∈ Z. Then p1p2 = (xz + dyw) +
√
−d(xw − yz),

and

2<(p1p2〈b1,b2〉) = 2(xz + dyw)<(〈b1,b2〉)
− 2
√
d(xw − yz)=(〈b1,b2〉).

Since the GS coefficients are fully reduced, we have:{
2(xz + dyw)<(〈b1,b2〉) ≥ −|xz + dyw|‖b1‖2,
−2
√
d(xw − yz)=(〈b1,b2〉) ≥ −d|xw − yz|‖b1‖2.

Based on this, the r.h.s. of Eq. (1) can be lower bounded:

‖v‖2 ≥ Q′1(x, y, z, w)‖b1‖2, (2)

where

Q′1(x, y, z, w) , (x2 + dy2 + z2 + dw2

− |xz + dyw| − d|xw − yz|).

Letting Q1(x, y, z, w) , (x2+dy2+z2+dw2−(xz+dyw)−
d(xw− yz)), we note that the codomain of Q′1 is a subset of
the codomain of Q1 (this can be seen by changing the signs of
x, y, z, w around until the functions are equivalent), showing
positive-definiteness of Q1 immediately yields that Q′1 is also
positive-definite. The 4-D symmetric matrix w.r.t. quadratic
form Q1(x, y, z, w) can be written as

Q1 =


1 0 − 1

2 −d2
0 d d

2 −d2
− 1

2
d
2 1 0

−d2 −d2 0 d

 .

The four eigenvalues of Q1 are:
d−
√
5d2−6d+9+3

4 ,
d+
√
5d2−6d+9+3

4 ,
3d−
√
13d2−6d+1+1

4 ,
3d+
√
13d2−6d+1+1

4 .

We therefore conclude that Q1 has four positive eigenvalues
and hence being positive definite with only d = 1, 2 in this
case. Along with Q(x, y, z, w) ∈ Z, we arrive at ‖v‖2 ≥
‖b1‖2 when d = 1, 2.

When the chosen ring is in the form of ξ = 1+
√
−d

2 , like
before, letting p1 = x+y 1+

√
−d

2 , p2 = z+w 1+
√
−d

2 , we have
p1p2 = (xz+1/2(yz+xw)+ 1+d

4 yw)+(
√
−d/2)(xw−yz).

Then

2<(p1p2〈b1,b2〉) =2(xz + 1/2(yz + xw)

+
1 + d

4
yw)<(〈b1,b2〉)

−
√
d(xw − yz)=(〈b1,b2〉).

Using the following inequality from the “fully-reduced” con-
straints:

|=(x)| ≤ 1√
d

(
−|<(x)|+ 1 + d

4

)
,

similarly to before, we obtain the inequality

‖v‖2 ≥ (x2 + xy +
1 + d

4
y2 + z2 + zw +

1 + d

4
w2

− 1 + d

4
|xw − yz|)‖b1‖2 − |<(〈b1,b2〉)|

∗ (|2xz +
1 + d

2
yw + xw + yz| − |xw − yz|).

Focusing on the term (|2xz+ 1+d
2 yw+xw+yz|−|xw−yz|),

we note that one of the xw, yz on the left hand term must
annihilate with one on the right hand term, and one must sum
to two times the variable (the choice of which does not matter
for our case, as the overall function is symmetric in xw, yz).
We choose xw to annihilate and yz to coalesce. Then clearly,
all terms whose coefficient is |<(〈b1,b2〉)| are negative, so
the minimum is achieved at |<(〈b1,b2〉)| = 1/2‖b1‖2. Once
again, to show the above is greater than or equal to ‖b1‖2
for all x, y, z, w, we construct a “larger” quadratic form,
Q2(x, y, z, w), and show its positive-definiteness, where:

Q2(x, y, z, w) , (x2 + xy +
1 + d

4
y2 + z2 + zw

+
1 + d

4
w2 − 1 + d

4
xw +

(
1 + d

4
− 1

)
yz

− xz − 1 + d

4
yw.

The symmetric matrix w.r.t. the quadratic form Q2(x, y, z, w)
and its corresponding eigenvalues are respectively:

Q2 =


1 1/2 − 1

2 − 1+d
8

1/2 1+d
4

1
2

(
1+d
4 − 1

)
− 1+d

8

− 1
2

1
2

(
1+d
4 − 1

)
1 1/2

− 1+d
8 − 1+d

8 1/2 1+d
4

 ,





2D+2−
√

9D2−10D3+10−4 D3−D2+2√
D2−2D+2

−
√
D2−2D+2

4 ,

2D+2+

√
9D2−10D3+10−4 D3−D2+2√

D2−2D+2
−
√
D2−2D+2

4 ,

2D+2−
√

9D2−10D3+10+4 D3−D2+2√
D2−2D+2

+
√
D2−2D+2

4 ,

2D+2+

√
9D2−10D3+10+4 D3−D2+2√

D2−2D+2
+
√
D2−2D+2

4 ,

where D = 1+d
4 . Through checking the eigenvalues, it shows

that Q2 is positive definite when d = 3, 7, 11; therefore
‖v‖2 ≥ ‖b1‖2 is reached.

To prove that ‖b2‖ = λ2, we leverage the technique in [11].
For both cases of ξ, we construct a vector p1b1 + p2b2 with
p1, p2 ∈ Z[ξ], p2 6= 0. When the chosen ring is in the form of
ξ =
√
−d, we have

‖p1b1 + p2b2‖2 = |p2|2(‖b2‖2 − ‖b1‖2)

+ (|p1|2 + |p2|2)‖b1‖2 + 2<(p1p2〈b1,b2〉)
≥ |p2|2(‖b2‖2 − ‖b1‖2) +Q1(x, y, z, w)‖b1‖2

≥ (|p2|2 − 1)(‖b2‖2 − ‖b1‖2) + ‖b2‖2

≥ ‖b2‖2.

This shows b2 is the shortest lattice vector that is independent
of b1. The proof for the case ξ = 1+

√
−d

2 follows the same
way by replacing Q1(x, y, z, w) with Q2(x, y, z, w).

IV. NUMERICAL EXAMPLES

Example 1 (Euclidean domain). Consider the field K =
Q
(√
−3
)

and its maximal ring of integers Z[ω]. Suppose the
input lattice basis is

B =

[
4 + ω 1 + 4ω
−1 + 5ω 1 + 2ω

]
.

The algebraic reduction on this basis will consist of a swap,
a size reduction, and another swap, to yield the reduced basis

B̃ =

[
−3 + 3ω 1 + 4ω
2− 3ω 1 + 2ω

]
,

which satisfies
∥∥∥b̃1

∥∥∥2 = λ21 = 16, and
∥∥∥b̃2

∥∥∥2 = λ22 = 28. On
the contrary, if we turn B into a real basis and perform real
LLL (whose Lovasz’s parameter is 1) on it, the square norm of
the reduced vectors are respectively 16, 16, 31, and 28. In its
reduced basis, the first two vectors are not independent over
K, and the second shortest vector is in the last position. In
this scenario only the Minkowski reduction on the real basis
can have the same effect as our algebraic lattice reduction,
whose reduced vectors respectively have square norms 16, 16,
28, and 28.
Example 2 (non-Euclidean domain). Consider the field
K = Q(

√
−5) and its maximal ring of integers Z[

√
−5]. By

Proposition 1, this field is an example of a non-norm Euclidean
field. We begin with the following basis:

B =

[
2 + 3

√
−5 8 +

√
−5

2 +
√
−5 2

]
.

Performing algebraic reduction on this basis consists of a
single size reduction, resulting in the basis

B̃ =

[
2 + 3

√
−5 6− 2

√
−5

2 +
√
−5 −

√
−5

]
.

Such a basis is reduced in the sense of Gauss whose vectors
have square lengths of 58 and 61. However, running real LLL
over the corresponding four dimensional basis returns reduced
vectors with respective square lengths 20, 30, 26, 39. As such,
we conclude that the algebraic Gauss’s algorithm does not
guarantee an output that corresponds to the successive minima
of the lattice if the chosen field is not Euclidean.

V. CLOSING REMARKS

In this paper, we have shown that it is possible to success-
fully build a polynomial time algorithm that returns a basis
that corresponds to the successive minima. However, we have
not addressed the lattice reduction problem for non-Euclidean
imaginary quadratic domains. Indeed, all the quadratic forms
listed in this paper become non-positive definite when the
respective field is not Euclidean (this can be easily seen by
example), however this does not immediately imply that reduc-
tion fails over these fields. In our second numerical example,
we have shown that our definition of Gauss reduction, although
converges to a “reduced” basis, returns a basis that is much
larger than the actual successive minima of the lattice. The
first question that could be addressed in further research is
whether the algorithm is optimal for any lattices spanned over
non-Euclidean imaginary quadratic rings, and if not, is it guar-
anteed that there exists a unimodular transformation that maps
any basis to a new basis that corresponds to the successive
minima of the lattice. In the event that the answer to the first
question is negative and the second is positive, does there
exist a modified algorithm (possibly also polynomial time)
that is optimal over lattices over the said non-Euclidean ring?
Another area to explore is reduction over “trace-Euclidean”
domains, i.e. domains where, for all x ∈ K, there exists
a q ∈ OK such that |TraceK/Q((x − q)(x− q))| < 1 (for
imaginary quadratic fields, trace-Euclideanity is equivalent to
norm-Euclideanity).
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