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Abstract—We study the problem of empirical coordination
subject to a fidelity criterion for a general set-up. We prove
a result which indicates a strong connection between our frame-
work and the framework of empirical coordination developed in
[1]. It turns out that when we design codes that achieve empirical
coordination according to a given distribution and subject to the
fidelity criterion, it is sufficient to consider codes that produce
actions of the same joint type for a class of types which is close
enough to our desired distribution is some sense.

I. INTRODUCTION

Communication is one of the most important and expensive
resources in a network with nodes who desire to establish
cooperative behavior. When relevant information is known
only at some nodes, finding the minimum communication
requirements to coordinate actions can be posed as a network
information theory problem. Specifically, we consider the
communication needed to establish coordination summarized
by a joint probability distribution of behavior among all nodes
in the network (see Fig. 1).

Cuff et al. in [1] introduced two different notions of
coordination, empirical and strong. According to [1], empirical
coordination is established if the joint type of the actions in
the network is close to the desired distribution. This kind of
coordination has been studied in various set-ups (see e.g.,
[2]–[4]) and it has been combined with ideas from other
fields like game theory (see e.g., [5]). Strong coordination
instead deals with the joint probability distribution of the
actions. If the actions in the network are generated randomly
so that a statistician cannot reliably distinguish (as measured
by total variation) between the constructed n-length sequence
of actions and random samples from the desired distribution,
then strong coordination is achieved. The literature related
to strong coordination is vast and includes more complex
set-ups, such as extensions in networks with noisy channels,
applications in power control etc, (see, e.g., [6]–[8]). It should
be noted that [1] establishes a fundamental difference between
empirical and strong coordination regarding the impact that
common randomness can have to the accomplishment of the
coordinated behaviour. Specifically, it turns out that common
randomness does not play a necessary role in achieving em-

Fig. 1. An illustrative example of the considered framework. The nodes
in this network have rate-limited communication links between them. In
this example, actions X1, X2, and X3 are assigned according to the joint
distribution p0(x1, x2, x3). Then, using the communication that is available
to all nodes, the actions Y1, Y2, and Y3 are produced. We ask, the amount
of the communication that is required such that the average distance between
the joint type of the actions and the desired distribution to be smaller than a
certain level ∆.

pirical coordination but it is a valuable resource for achieving
strong coordination. For more details on the foundation of
common randomness, see [9].

In this paper, we deal with empirical coordination. However,
instead of asking the joint type of the actions to be close to
the desired distribution in probability, we require something
less restrictive. We demand the average distance (as measured
by total variation) between the joint type of the actions and
the desired distribution to be smaller than a certain level ∆
for long enough n-length sequences. To distinguish between
the two kinds of empirical coordination, i.e., ours and the one
in [1], we will call the one established in [1] perfect empirical
coordination and ours imperfect empirical coordination. This
kind of imperfect empirical coordination was first introduced
and studied for a specific set-up (including a more general
class of fidelity metrics) by Kramer and Savari in [10]. Here,
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Fig. 2. To simplify things, we define formally our problems and we state our
general result in the context of the cascade set-up of the figure.

we generalize this framework (in the case of the total variation
fidelity metric) for a general network setting. We establish
formally a coordination result which shows that when our task
is to design a good coordination code that achieves imperfect
empirical coordination according to some distribution, it is
optimal to restrict our search exactly to the class of codes
that achieve perfect empirical coordination according to any
distribution from a class of distributions which is close enough
to our desired distribution with respect to the total variation
distance.

II. DEFINITIONS

In this section, we state the definitions of perfect and imper-
fect empirical coordination in the context of the cascade net-
work of Fig 2. These definitions have obvious generalizations
to other networks. We begin with some basic mathematical
concepts and the definition of the ∆-neighborhood, a concept
which will help us in the statement of our results.

Definition 1 (Joint type): The joint type Pxn,,yn,zn of a tuple
of sequences (xn, yn, zn) is the empirical probability mass
function, given by

Pxn,yn,zn (x, y, z) ,
1

n

n∑
i=1

1
(

(xi, yi, zi) = (x, y, z)
)
,

for all (x, y, z) ∈ X×Y×Z, where 1 is the indicator function.
Definition 2 (Total variation): The total variation between

two probability mass functions is given by

‖p (x, y, z)−q (x, y, z) ‖TV ,
1

2

∑
x,y,z

|p (x, y, z)− q (x, y, z) |.

Definition 3 (∆-neighborhood): The ∆-neighborhood of a
distribution p (x, y, z) is defined as

N∆

(
p (x, y, z)

)
,
{
q(x, y, z) : ‖p (x, y, z)− q (x, y, z) ‖TV ≤ ∆

}
.

A
(
2nR1 , 2nR2 , n

)
coordination code is the protocol which is

used to coordinate the actions in the network for a block of n
time periods. The coordination code and the distribution of the
random actions, Xn, induce a joint distribution on the actions
in the network.

Definition 4 (Coordination code [1]): The
(
2nR1 , 2nR2 , n

)
coordination code for our set-up consist of four functions-an
encoding function

i : Xn →
{

1, . . . , 2nR1
}
,

a recoding function

j :
{

1, . . . , 2nR1
}
→
{

1, . . . , 2nR2
}
,

and two decoding functions

yn :
{

1, . . . , 2nR1
}
→ Yn,

zn :
{

1, . . . , 2nR2
}
→ Zn.

Definition 5 (Induced distribution [1]): The induced dis-
tribution p̃ (xn, yn, zn) is the resulting joint distribution
of the actions in the network Xn, Y n, and Zn when a(
2nR1 , 2nR2 , n

)
coordination code is used.

In our set-up, the actions Xn are chosen by nature to be
i.i.d according to p0 (x). Thus, Xn is distributed according to
a product distribution

Xn ∼
n∏

i=1

p0 (xi).

The actions Y n and Zn are functions of Xn given by
implementing the coordination code as

Y n = yn
(
i (Xn)

)
,

Zn = zn
(
j
(
i (Xn)

))
.

Perfect empirical coordination is achieved if the joint type
of the actions in the network tends to the desired distribution
with high probability.

Definition 6 (Achievability for perfect coordination [1]): A
desired distribution pX,Y,Z (x, y, z) , p0 (x) pY Z|X (y, z|x)
is achievable for empirical coordination with the rate-pair
(R1, R2) if there exists a sequence of

(
2nR1 , 2nR2 , n

)
co-

ordination codes such that

‖Pxn,yn,zn (x, y, z)− p0 (x) pY,Z|X (y, z|x) ‖TV → 0,

in probability.
Definition 7 (Coordination capacity region [1]): The co-

ordination capacity region CP
p0

for the source distribution
p0 (x) is the closure of the set of rate-coordination tuples(
R1, R2, pY,Z|X (y, z|x)

)
that are achievable:

CP
p0

, Cl


(
R1, R2, pY,Z|X (y, z|x)

)
:

p0 (x) pY,Z|X (y, z|x)

is achievable at rates (R1, R2)

 .

Imperfect empirical coordination is achieved if the average
distance between the joint type of the actions in the network
and the desired distribution is under a certain level ∆. We will
call this kind of coordination ∆-empirical coordination.

Definition 8 (Achievability for ∆-empirical coordination): A
desired distribution pX,Y,Z (x, y, z) , p0 (x) pY,Z|X (y, z|x)



is achievable for ∆-empirical coordination with the rate-pair
(R1, R2) if there is an N such that for all n > N , there exists
a coordination code

(
2nR1 , 2nR2 , n

)
such that

E
{
‖Pxn,yn,zn (x, y, z)− p0 (x) pY Z|X (y, z|x) ‖TV

}
≤ ∆.

Definition 9 (Rate-distortion-coordination region): The rate-
distortion-coordination region RI

p0
for the source distribution

p0 (x) and for a fixed conditional distribution pY,Z|X (y, z|x)
is defined as:

RI
p0

(
pY,Z|X (y, z|x)

)
, Cl


(R1, R2,∆) :

p0 (x) pY,Z|X (y, z|x) is achievable
for ∆-empirical coordination at rates (R1, R2)

 .

III. MAIN RESULT

In this section, we state and prove the main result. For
simplicity, we state and prove the result in the case of the
cascade set-up of Fig. 2. Nevertheless, the results herein are
general and they can be extended to many other set-ups.

Our achievability part states that every good
coordination code designed for achieving perfect
empirical coordination according to any distribution
in N∆

(
p0 (x) pY Z|X (y, z|x)

)
achieves ∆-empirical

coordination according to p0 (x) pY Z|X (y, z|x) (see Fig.
3.) This means that, if

(
R1, R2, qŶ ,Ẑ|X

)
∈ CP

p0
for some

p0 (x) qŶ Ẑ|X (y, z|x) ∈ N∆

(
p0 (x) pY Z|X (y, z|x)

)
, then,

(R1, R2,∆) ∈ RI
p0

(
pY Z|X (y, z|x)

)
.

Our main result makes a stronger statement. According
to the converse part, there is no more efficient way of
satisfying the ∆ coordination-distortion limit than by using
a coordination code that produces actions of the same joint
type which belongs to N∆

(
p0 (x) pY,Z|X (y, z|x)

)
. Clearly,

a good coordination code, designed for imperfect empiri-
cal coordination would produce a variety of different joint
types, satisfying on the average the distortion limit. However,
given such a coordination code, repeated uses will produce
a longer coordination code with the same rates that achieves
perfect empirical coordination according to the expected joint
type. This expected joint type can be shown to belong to
N∆

(
p0 (x) pY,Z|X (y, z|x)

)
and therefore according to the

achievability part this new code achieves the distortion limit.
Since the two codes have the same rates, we do not lose
in rate-efficiency if we substitute the old by the new one
(see Fig. 4). This further means that, if (R1, R2,∆) ∈
RI

p0

(
pY,Z|X (y, z|x)

)
, then,

(
R1, R2, qŶ ,Ẑ|X

)
∈ CP

p0
for

some p0 (x) qŶ ,Ẑ|X (y, z|x) in N∆

(
p0 (x) pY,Z|X (y, z|x)

)
.

As a consequence, when we are interested in designing a
good coordination code that achieves ∆-empirical coordina-
tion according to some distribution, we can restrict our search,
without loss of optimality, exactly to the class of coordination
codes that achieve perfect empirical coordination according

to any distribution in the ∆-neighborhood of this desired
distribution.

The previous discussion is formalized in the next theorem.

Fig. 3. Achievability part: Every good coordination code designed
for achieving perfect empirical coordination according to some distribu-
tion p0 (x) qŶ ,Ẑ|X (y, z|x) ∈ N∆

(
p0 (x) pY,Z|X (y, z|x)

)
achieves ∆-

empirical coordination according to p0 (x) pY,Z|X (y, z|x).

Fig. 4. Converse part: For every coordination code that achieves ∆-empirical
coordination according to p0 (x) pY,Z|X (y, z|x), there is a coordination code
with the same rates which achieves perfect empirical coordination according
to some distribution in N∆

(
p0 (x) pY,Z|X (y, z|x)

)
(red).

Theorem 1: For every pY,Z|X (y, z|x),

RI
p0

(
pY,Z|X (y, z|x)

)

=



(R1, R2,∆) :(
R1, R2, qŶ ,Ẑ|X

)
∈ CP

p0

for some
(
Ŷ , Ẑ

)
which satisfy

p0 (x) qŶ ,Ẑ|X (y, z|x) ∈ N∆

(
p0 (x) pY,Z|X (y, z|x)

)


.

Remark 1: Note that in Theorem 1,
N∆

(
p0 (x) pY,Z|X (y, z|x)

)
is non-empty since

p0 (x) pY,Z|X (y, z|x) ∈ N∆

(
p0 (x) pY,Z|X (y, z|x)

)
.

Proof: Achievability. When a rate-coordination tu-
ple

(
R1, R2, qŶ ,Ẑ|X

)
is in the interior of CP

p0
for

some qŶ ,Ẑ|X (y, z|x) such that p0 (x) qŶ ,Ẑ|X (y, z|x) ∈
N∆

(
p0 (x) pY,Z|X (y, z|x)

)
, we are assured (see Definition 6)

the existence of a coordination code such that for every ε > 0
and for all large enough n we have

Pr
{
‖Pxn,yn,zn (x, y, z)− p0 (x) qŶ ,Ẑ|X (y, z|x) ‖TV > ε

}
< ε.



Applying the triangle inequality on the total variation and
because p0 (x) qŶ ,Ẑ|X (y, z|x) ∈ N∆

(
p0 (x) pY,Z|X (y, z|x)

)
,

we obtain

‖Pxn,yn,zn (x, y, z)− p0 (x) pY,Z|X (y, z|x) ‖TV

≤ ‖Pxn,yn,zn (x, y, z)− p0 (x) qŶ ,Ẑ|X (y, z|x) ‖TV

+ ‖p0 (x) qŶ ,Ẑ|X (y, z|x)− p0 (x) pY,Z|X (y, z|x) ‖TV

≤ ‖Pxn,yn,zn (x, y, z)− p0 (x) qŶ ,Ẑ|X (y, z|x) ‖TV + ∆.

Thus, for every ε > 0 and for all large enough n, this
coordination code achieves

Pr
{
‖Pxn,yn,zn (x, y, z)− p0 (x) pY,Z|X (y, z|x) ‖TV

> ∆ + ε
}
< ε,

which gives

E
{
‖Pxn,yn,zn (x, y, z)− p0 (x) pY,Z|X (y, z|x) ‖TV

}
≤ Pr

{
‖Pxn,yn,zn (x, y, z)− p0 (x) pY,Z|X (y, z|x) ‖TV

> ∆ + ε
}
× TVmax

+ Pr
{
‖Pxn,yn,zn (x, y, z)− p0 (x) pY,Z|X (y, z|x) ‖TV

≤ ∆ + ε
}
× (∆ + ε)

≤ ∆ + ε+ εTVmax.

By choosing ε arbitrarily small and n large enough, we con-
clude that this coordination code achieves also ∆-empirical co-
ordination according to pY,Z|X (y, z|x) and so (R1, R2,∆) ∈
RI

p0

(
pY,Z|X (y, z|x)

)
.

Converse. Suppose that (R1, R2,∆) is in the interior of
RI

p0

(
pY,Z|X (y, z|x)

)
, i.e., there exists a coordination code

with blocklength n large enough which achieves ∆-empirical
coordination according to pY,Z|X (y, z|x), at rates (R1, R2)
such that

E
{
‖Pxn,yn,zn (x, y, z)− p0 (x) pY,Z|X (y, z|x) ‖TV

}
≤ ∆.

This coordination code induces a distribution
p̃ (xn, yn, zn) = pXn (xn) qŶ n,Ẑn|Xn (yn, zn|xn) where
pXn (xn) =

∏n
i=1 p0 (xi). We repeat the use of the scheme

over k blocks of length n each and, as a result, we induce a
joint distribution on

(
Xkn, Ŷ kn, Ẑkn

)
that consists of blocks(

Xn
1 , Ŷ

n
1 , Ẑ

n
1

)
, . . . ,

(
Xkn

kn−n+1, Ŷ
kn
kn−n+1, Ẑ

kn
kn−n+1

)
de-

noted as
(
X(1)n, Ŷ (1)n, Ẑ(1)n

)
, . . . ,

(
X(k)n, Ŷ (k)n, Ẑ(k)n

)
.

The new coding scheme has rates R′i =
log
(
(2nRi)

k
)

kn = Ri,
for i = 1, 2. By the law of large numbers, we get

Pxkn,ykn,zkn =
1

k

k∑
i=1

Px(i)n,y(i)n,z(i)n → E {Pxn,yn,zn} ,

in probability. Point-wise convergence in probability further
implies that as k grows

‖Pxkn,ykn,zkn (x, y, z)− E {Pxn,yn,zn} ‖TV → 0,

in probability. However,

E {Pxn,yn,zn} = p
X,Ŷ ,Ẑ

(x, y, z),

and thus

‖Pxkn,ykn,zkn (x, y, z)− p
X,Ŷ ,Ẑ

(x, y, z)‖TV → 0,

in probability, where

p
X,Ŷ ,Ẑ

(x, y, z) ,
n∑

k=1

p0k (x) qŶk,Ẑk|Xk
(y, z|x)

n

=

n∑
k=1

p0 (x) qŶkẐk|Xk
(y, z|x)

n

= p0 (x)

n∑
k=1

qŶk,Ẑk|Xk
(y, z|x)

n︸ ︷︷ ︸
,p

Ŷ ,Ẑ|X

,

(see Lemma 5 in the Appendix). Moreover,

∆ = E
{
‖Pxn,yn,zn (x, y, z)− p0 (x) pY,Z|X (y, z|x) ‖TV

}
(a)

≥ ‖E {Pxn,yn,zn} − p0 (x) pY,Z|X (y, z|x) ‖TV

= ‖p
XŶ Ẑ

(x, y, z)− p0 (x) pY,Z|X (y, z|x) ‖TV

= ‖p0 (x) p
Ŷ ,Ẑ|X

(y, z|x)− p0 (x) pY,Z|X (y, z|x) ‖TV ,

where (a) follows from Jensen’s inequality since total variation
is convex, i.e., for every λ ∈ [0, 1] we have

λ‖p1 (x, y)−q (x, y) ‖TV +(1− λ) ‖p2 (x, y)−q (x, y) ‖TV

≥ ‖
(
λp1 (x, y) + (1− λ) p2 (x, y)

)
− q (x, y) ‖TV .

Thus, we have constructed a sequence of coordination
codes with rates (R1, R2) that achieves perfect empirical
coordination according to p

X,Ŷ ,Ẑ
= p0 (x) p

Ŷ ,Ẑ|X
(y, z|x),

i.e.,
(
R1, R2, pŶ ,Ẑ|X

)
∈ CP

p0
and additionally

p0 (x) p
Ŷ ,Ẑ|X

(y, z|x) ∈ N∆

(
p0 (x) pY,Z|X (y, z|x)

)
. This

completes the proof.

IV. EXAMPLES

In this section, we apply Theorem 1 to get the rate-
distortion-coordination region in the two node-network illus-
trated in Fig. 5 and in the cascade network illustrated in Fig.
6.

Fig. 5. Two node-network.

Lemma 1: Consider the setup of Fig. 5. Then,

CP
p0

=
{(
R, pY |X (y|x)

)
: R ≥ I (X;Y )

}
.



Fig. 6. Cascade network.

Proof: See [1, Theorem 3].
Lemma 2: Consider the setup of Fig. 5. Then,

RI
p0

(
pY |X (y|x)

)
=


(R,∆) :

R ≥ min
qŶ |X(y|x):

p0(x)qŶ |X(y|x)∈N∆

(
p0(x)pY |X(y|x)

) I
(
X; Ŷ

) ,

for every pY |X (y|x).
Proof: From Theorem 1, we obtain

RI
p0

(
pY |X (y|x)

)

=


(R,∆) :(
R, qŶ |X

)
∈ CP

p0

for some Ŷ which satisfy
p0 (x) qŶ |X (y|x) ∈ N∆

(
p0 (x) pY |X (y|x)

)

 .

Using Lemma 1, the latter can be reformulated as

RI
p0

(
pY |X (y|x)

)

=


(R,∆) :

R ≥ I
(
X; Ŷ

)
for some Ŷ which satisfy
p0 (x) qŶ |X (y|x) ∈ N∆

(
p0 (x) pY |X (y|x)

)

 ,

and by taking into account the non-emptiness and the closeness
of N∆

(
p0 (x) pY |X (y|x)

)
, we obtain the characterization of

the lemma.
Lemma 3: Consider the set-up of Fig. 6. Then,

CP
p0

=

{(
R1, R2, pY,Z|X (y, z|x)

)
:

R1 ≥ I (X;Y, Z) , R2 ≥ I (X;Z)

}
.

Proof: See [1, Theorem 5].
Lemma 4: Consider the set-up of Fig. 6. Then,

RI
p0

(
pY,Z|X (y, z|x)

)

=



(
R1, R2,∆

)
:

R1 ≥ I
(
X; Ŷ , Ẑ

)
, R2 ≥ I

(
X; Ẑ

)
for some

(
Ŷ , Ẑ

)
which satisfy

p0 (x) qŶ ,Ẑ|X (y, z|x) ∈ N∆

(
p0 (x) pY,Z|X (y, z|x)

)



for every pY,Z|X (y, z|x).
Proof: From Theorem 1, we obtain

RI
p0

(
pY,Z|X (y, z|x)

)

=


(R1, R2,∆) :(
R1, R2, qŶ ,Ẑ|X

)
∈ CP

p0

for some
(
Ŷ , Ẑ

)
which satisfy

p0 (x) qŶ ,Ẑ|X (y, z|x) ∈ N∆

(
p0 (x) pY,Z|X (y, z|x)

)

 ,

and by applying Lemma 3, we obtain the characterization of
the lemma.

V. APPENDIX

Lemma 5: For a given probability distribution pXn (xn),

E
{
Pxn (x)

}
=

1

n

n∑
k=1

(
pXk

(x)
)
.

Proof:

E
{
Pxn (x)

}
=
∑
xn

pXn (xn)
nxn (x)

n

=
∑
xn

(
pXn (xn)

1

n

n∑
k=1

1 (xk = x)

)

=

n∑
k=1

∑
xn

(
pXn (xn)

1

n
1 (xk = x)

)

=
1

n

n∑
k=1

(
pXk

(x)
)
.
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