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Abstract—Anonymity platforms route the traffic over a net-
work of special routers that are known as mixes and implement
various traffic disruption techniques to hide the communicating
users’ identities. Batch mixes in particular anonymize commu-
nicating peers by allowing message exchange to take place only
after a sufficient number of messages (a batch) accumulate, thus
introducing delay. We introduce a queueing model for batch mix
and study its delay properties. Our analysis shows that delay of a
batch mix grows quickly as the batch size gets close to the number
of senders connected to the mix. We then propose a randomized
batch mixing strategy and show that it achieves much better
delay scaling in terms of the batch size. However, randomization
is shown to reduce the anonymity preserving capabilities of the
mix. We also observe that queueing models are particularly useful
to study anonymity metrics that are more practically relevant
such as the time-to-deanonymize metric.

Index Terms—Chaum mixes, Delay analysis, Queueing Theory,
Order statistics.

I. INTRODUCTION

In numerous circumstances, more than just the content
of a message has to be hidden from the adversary. Unlike
covertness which aims to deny that any communication is
taking place [1]–[3], we consider the case where it is known
that a group of peers communicate but it is desired to hide
who is communicating with whom [4]. It is well known that
identities of peers communicating over a network can be
identified via rather simple network traffic analysis techniques
[5]. Anonymity mixes were introduced by David Chaum in
1980’s as a general framework for implementing anonymous
message exchange [6]. They are sophisticated network routers
that pass messages such that no one (except the mix itself) can
link an ingoing message to an outgoing message. Today, some
form of a mix is often a part of anonymity preserving solu-
tions (e.g., PetMail, Mixminion, Panoramix) or data transfer
services (e.g., Onion routing, Freenet).

A mix typically collects messages and forwards them in
batches according to a fixed deterministic rule or a randomized
strategy (see e.g., [7]–[9]). This allows hiding the origin of
the outgoing messages, but also introduces delay in message
transfer. The incurred delay of the mixes is the most concern-
ing cost of anonymity they provide. For instance anonymous
web browsing platform ToR, which currently has more than
2 million users, does not implement sophisticated mixing to
keep a low latency platform, even though it is shown to be
vulnerable to deanonymization attacks based on network traffic
analysis [10]–[12].

Appropriate modeling of the mixes is crucial to study
their delay vs. anonymity tradeoff. Stability conditions and
delay characteristics of a mix naturally depend on its system
parameters which also determine its anonymity preserving
capabilities. In this paper, we propose and study two queueing
models for batch mixes that are designed and used against
passive adversarial attacks. Note that, we do not consider
active attacks that involve traffic injection into the network,
which have also been shown to successfully deanonymize
users on popular anonymity platforms [12], [13].

We propose a mix model that implements the well known
deterministic batch mixing algorithm [7]. We observe the close
connection of the model to assembly queues, which was used
to model and study the operational process of assembling
multiple items into a product [14]. Using the proposed model,
we find that batch mix provides a well defined anonymity
guarantee that gets better with the batch size, on the other
hand, its incurred delay grows quickly as the batch size gets
close to the number of senders connected to the mix.

Our study of the batch mix led us to consider a new
randomized mixing algorithm. We show that the randomized
model achieves better delay scaling in terms of the batch
size compared to its deterministic counterpart. However, it
can provably preserve anonymity only if the adversary can
not infer the state of the mix, and is in general vulnerable to
anonymity attacks under low traffic.

There are many measures of anonymity and privacy (see
[15], [16]). We are here concerned with preserving unlinkabil-
ity, which is ensuring that no sender/receiver pair is exposed.
Our study shows that delay of the mix can be reduced by
sacrificing some anonymity, which would eventually lead to
complete deanonymization of all the sender-receiver pairs.
However, message transfer sessions are of finite duration in
practice, and minimum amount of time required for an attack
to destroy anonymity is a concern regardless of the anonymity
measure. Previous papers that are concerned with the delay of
anonymity schemes ignore the queueing dynamics within the
mix (see e.g., [17], [18] and references therein). We believe
that queueing models are necessary for studying the time-to-
deanonymize metric, and this paper is a first step towards
understanding this metric.

This paper is organized as follows. Sec. II-A describes the
batch mix model. Sec. II-B presents the anonymity guarantee
implemented by a batch mix. Sec. III shows a stability criterion
for the batch mix and presents an approximate method for
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Blocking queue 2, 4 Forwarding queue 1, 2, 4

Fig. 1: Illustration of a (4, 3) batch mix. As long as there are
less than three non-empty queues, messages are blocked (Left).
As soon as a message arrival forms a group of three non-empty
queues, one message from each is dispatched (Right).

analyzing its incurred delay. Sec. IV introduces a randomized
batch mixing strategy, and discusses its anonymity and delay
properties. Sec. V gives a summary and conclusions.

II. A BATCH MIX AND ITS ANONYMITY

A. Mix Model

A batch mix has n senders connected, and buffers the
messages incoming from each sender in a separate first-in
first-out queue with an infinite buffer space. As soon as any
k ≥ 2 queues become non-empty, one message from each is
dispatched (see Fig. 1). The recipient sets of each sender are
assumed to be disjoint and of at most size m.

Each sender is assumed to generate an independent Poisson
message traffic at rate λ. Delay added by the mix is assumed
to come only from the message queueing time. We ignore any
message reception or transmission delay.

Definition 1. An (n, k) batch mix is a system of n first-in
first-out queues, each receiving messages from an independent
Poisson process of rate λ. Messages are blocked as long as the
mix has less than k non-empty queues. As soon as k queues
become non-empty, one message from each is dispatched.

B. Attack Model and Anonymity

We assume that the adversary monitoring the traffic going
in and out of the mix can observe 1) who the sender of each
incoming message is and 2) who the recipient of each outgoing
message is. Thus, if a message arrival triggers a message
departure, the adversary can identify the sender-receiver pair.
His goal is to identify the receivers of a particular sender,
which we refer to as the target sender.

Forwarding messages in batches of size k prevents the
adversary from immediately finding out the exact destination
of an incoming message, as it can be any of the k message
recipients. However, the adversary can, over time, collect mul-
tiple size-k receiver sets, each containing a potential recipient
of the target sender. Intersecting such sets would eventually
reveal the receivers linked to the target sender. We refer to
such attacks as intersection attacks [19].

We say that the mix preserves anonymity, when it ensures
that no sender/receiver pair is exposed, that is, no sender and
receiver can be linked.

Theorem 1 (Anonymity under intersection attack). Consider
a target sender connected to an (n, k) batch mix that is under
intersection attacks. When k < n, all m receivers of the target
can be identified if m ≤ bn/kc. All m receivers cannot be
identified surely otherwise.

Proof. This theorem is a reformulation of [7, Claim 1]. Let ad-
versary wait and observe m mutually disjoint sets R1, . . . , Rm

of size k that include the possible receivers of Alice. These m
sets can be disjoint only if km ≤ n. Adversary is thus sure that
there is exactly one receiver of Alice in each observed recipient
set Ri. Afterwards, adversary refines each of these sets by
observing new recipient sets that intersect with only one of
the prior sets. This means, a new recipient set R is useful if
R∩Ri 6= ∅ and R∩Rj = ∅ for all j 6= i, then Ri can be refined
to R∩Ri. Note that if R intersects with multiple prior recipient
sets, then refining all intersecting sets may remove the actual
receivers of Alice. The correct refinement process can be
continued until each of the sets R1, . . . , Rm contains only
one receiver. Remaining m receivers in the refined recipient
sets are clearly the communication partners of Alice.

As described above, intersection attacks will surely identify
all receivers of a target only if adversary can observe m
disjoint sets of size k. This is the only way for adversary
to isolate each receiver of the target in a separate set so that a
newly observed set can be intersected with one of these sets
correctly, that is, intersection will not surely end up removing
the true receiver from the set. When km > n, adversary can
never observe m disjoint sets of size k, hence can never surely
identify all m receivers of the target.

III. STABILITY AND DELAY

A batch mix consists of n FIFO queues, each buffering
messages arriving from an i.i.d. Poisson process. A message
arrival triggers a batch departure if it finds k − 1 other non-
empty queues in the mix, and the arriving message departs
immediately with the batch. Therefore, there can be at most
k − 1 non-empty queues in the mix at any time. Since all
the queues and the associated arrival processes are identical,
system state can be represented as the Markov process L(t) =
(l1(t), . . . , lk−1(t)) where li(t) denotes the length of the ith
longest queue in the system at time t.

An (n, n) batch mix behaves as an assembly queue, found
to be unstable in [14]. Stability here refers to the existence of
an invariant probability measure for the system state process.

Theorem 2. An (n, k) batch mix is stable if k < n.

Proof. A Markov process is stable if and only if it is positive
recurrent. Given that transition rates of L(t) are neither too
“slow” nor too “fast”, its positive recurrence is implied by
the positive recurrence of its embedded discrete chain St. We
here use the Foster-Lyapunov criterion to show the positive
recurrence of St as interpreted from [20, Thm. 2].



For system state s = (s1, . . . , sk−1), let

W (s) := s
log2(n/n−1)
k−1 .

Recall that sk−1 = min{si, i = 1, . . . , k − 1}.
Note that supsW (s) = ∞ as required. One step drift for

any state s ∈ {s, W (s) > 0} is

E [W (S1)−W (S0) | S0 = s] < 0.

and we have

sup
{s,W (s)≤0}

E[S1 | S0 = s] < 1 <∞.

Thus St, hence L(t) is positive recurrent.

There are three scenarios that a message can experience upon
arrival to the mix: 1) If a message arrives to an empty queue
and finds k−1 other non-empty queues in the mix, then it will
immediately depart with no queueing. 2) If a message arrives
to an empty queue and finds fewer than k−1 other non-empty
queues in the mix, then it has to wait for a formation of k
non-empty queues (i.e., a batch). 3) If a message arrives to a
non-empty queue, it has to first wait to the HoL (head of the
line) in its queue, and then wait for the next batch formation.

In a tagged queue, batch formation delay experienced by a
message is completely characterized by the number of non-
empty queues R (excluding the tagged queue) seen by the
message once it moves to HoL. If R < k − 1, message will
be blocked until any k − 1 − R of the n − 1 − R empty
queues receive at least a message. Using the memoryless
property of message inter-arrival times, batch formation delay
is distributed as the (k− 1−R)th order statistic of n− 1−R
i.i.d. exponentials, which we denote as Xn−1−R:k−1−R

1.
Overall, a message moving to HoL may find from 0 up to
k − 1 other non-empty queues, hence there are k possible
different distributions for the batch formation delay.

When k = 2, system state is just the longest queue length
and defines a birth-death process. Exact analysis is formidable
when k > 2 because of the infamous state space explosion
problem. We first present the exact analysis for k = 2, then
present an approximate method for k > 2, which is similar to
an approximation presented for assembly queues in [21].

A. Exact analysis of (n, 2)-mix

In (n, 2)-mix for n > 2, there can be at most one non-
empty queue at any time, hence the system state is captured
by the length of the longest queue L(t). It defines a single
dimensional birth-death Markov process as shown in Fig. 3.

Exact analysis in this case is straightforward. Let pl be
the stationary probability for state l. From global balance
equations we find

p0 =
n− 2

2(n− 1)
pl =

n(n− 2)

2(n− 1)i+1
; l = 1, 2, . . .

Ergodicity implies that fraction of the time an arbitrary queue
is non-empty (i.e., average load on the queue) is ρ = (1 −

1Xi:j := 0 if i < j or j = 0.

p0)/n = 1/2(n − 2). Larger n gives higher frequency of
emptiness at the servers, which is natural since queues empty
out faster when the mix receives messages at a higher rate.

Using the stationary state probabilities, first two moments
of the length of an arbitrary queue are given as

E[L] =
1

n

∞∑
l=1

l pl =
1

2(n− 2)

E[L2] =
1

n

∞∑
l=1

l2 pl =
n

2(n− 2)2

We next derive some simple conclusions for the steady state
delay experienced by an arriving message. Using PASTA [22],
an arbitrary message finds the system empty with probability
p0 and will have to wait for the first arrival to one of
the other n − 1 queues. Since arrivals are Poisson, waiting
time distribution for the message is minimum of n − 1
Exp(λ)’s, that is Exp ((n− 1)λ). An arriving message may
find its corresponding queue with l messages with probability
pl/n. In this case, waiting time distribution for the message
is sum of l + 1 independent Exp ((n− 1)λ)’s, which is
Erlang (l + 1, (n− 1)λ). Finally, it may also find its corre-
sponding queue empty with probability pl(n − 1)/n if there
is another queue with l messages. Then the message will not
be queued and will depart immediately upon arrival together
with the first message in the busy queue. Using the law of
total probability, distribution of waiting time D for an arbitrary
message is then given as

Pr{D > w} = p0 Pr {Exp ((n− 1)λ) > w}

+
1

n

∞∑
l=1

pl Pr {Erlang (l + 1, (n− 1)λ) > w} .

B. Approximate analysis of (n, k > 2)-mix

We here adopt the following approximating assumption;
a message upon moving to head of the line (HoL) in its
queue finds each other queue independently non-empty with
probability p. Given that, and the fact that there can be at
most k−1 non-empty queues at any time, the number of non-
empty queues seen by a message moving to HoL is distributed
as R ∼ B|{B ≤ k − 1} where B ∼ Binom(n− 1, p). Given
R = r, message will have to wait before getting dispatched for
the first k−1−r among all the n−1−r empty queues to receive
at least one arrival, that is, the message will experience a batch
formation delay of V |{R = r} ∼ Xn−1−r:k−1−r. Then V for
an arbitrary message, which arrives to a non-empty queue in
the first place, is approximately distributed as

Pr{V ≤ v} = ER [Pr{Xn−1−R:k−1−R ≤ v}] , (1)

where ER denotes expectation with respect to R.
Batch formation delay for messages that arrive to an empty

queue is differently distributed (than V above) because they
find each other queue non-empty with a different probability
than messages that arrive to a non-empty queue. Let a tagged
queue be left empty by a departing message m. If the queue
was left non-empty, the next message in line would have
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Fig. 2: (Left, Middle) Average delay in a batch mix with n = 40; Left: fixed λ and varying k, Middle: fixed k and varying λ.
(Right) Comparison between the average delay in a batch mix and in a sampling mix with pa = 1/n.
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Fig. 3: Markov process for (n, 2)-mix. State here denotes the
length of the longest queue in the mix; 0 length means the
system is empty.

immediately moved to HoL. Then according to our earlier
assumption, the number of non-empty queues left behind non-
empty by m is distributed as R. Including the next arrival to
the tagged queue, say message m+, the next batch formation
requires k −R of the n−R empty queues to receive at least
an arrival. Given that m+ is among these first k −R arrivals
and messages are generated from i.i.d. streams, probability that
m+ is the jth among the k − R arrivals is 1/(k − R). Thus,
batch formation delay experienced by a message arriving to
an empty queue is approximately distributed as

Pr{Ve ≤ v} = ER

k−R∑
j=1

Pr{Xn−R−j:k−R−j ≤ v}
k −R

 . (2)

Proposition 1 (Approximation by decoupling the queues). An
(n, k) batch mix approximately behaves to each sender as an
M/G/1/efs queue with regular service times distributed as
(1) and exceptional first service times distributed as (2).

Approximation requires estimating p, for which a natural
estimate would be the average load ρ for a queue, which is
known for an M/G/1/efs queue to be [23]

ρ =
λE[Ve]

1− λ (E[V ]− E[Ve])
.

Moments of V and Ve depend on p, hence on its estimate
ρ. The equality above can be solved numerically to find a
value for ρ. Simulated and approximated values of delay are
compared in Fig. 2 for a (40, k) batch mix. Despite the
strong independence assumptions employed in deriving the
approximation, it compares well with the simulations for low

values of k, which is the practically relevant case since the
incurred delay must be kept below a threshold in practice.

IV. SAMPLING MIX

A sampling mix also implements an (n, k) model; mix
buffers the messages from each of the n connected senders
in a separate FIFO queue and each sender communicates
with a disjoint set of at most m receivers. However, buffered
messages are forwarded differently compared to batch mix; as
soon as a message arrives to the mix, k queues are randomly
selected and released. Releasing a queue allows it to forward
a message if it is non-empty. Specifically with probability pa,
the queue that receives the arrival is selected together with
k− 1 queues chosen uniformly at random from the remaining
n−1 queues, or with probability 1−pa, the queue that receives
the arrival is skipped and k queues are selected uniformly at
random from the rest of the queues.

Theorem 3. Average load of a queue in an (n, k) sampling
mix is given as

ρ = (1− pa)/(k − pa)
and the average delay experienced by a message is given as

(1− pa)/λ(k − 1).

Proof. The length of a particular queue in the mix defines a
birth-death process with a state space of non-negative integers
and transition rates given for i ≥ 0 as

Pr{i→ i+ 1} = λ(1− pa), Pr{i+ 1→ i} = (n− 1)λpo,

where po = pa(k−1)/(n−1)+(1−pa)k/(n−1). Stationary
state probabilities are easily derived, using which average
length of a queue is found, then Little’s law is applied.

As shown in Fig. 2, average delay of a sampling mix scales
much better with k (i.e., decays as 1/(k − 1)) compared
to a batch mix (i.e., grows exponentially in k beyond a
value). However, a sampling mix cannot provide a well-defined
anonymity guarantee while a batch mix can (see Thm. 1).

Theorem 4. All receivers of a target sender connected to a
sampling mix can be identified with intersection attacks by an
adversary that can infer the state of the mix.



Proof. Queues in the mix will empty out infinite number of
times under stability. Suppose that the adversary can detect
whenever the mix becomes empty. Firstly, assume p 6= 0.
Given that a message from a target finds the mix empty,
the arriving message will be forwarded with probability p
or no message will depart. If the message is immediately
forwarded, a receiver of the target will revealed. Number of
times repeating this attack required to identify a receiver is
geometric with p, hence attack will be almost surely successful
in finite time.

Secondly, assume p 6= 0. Given that a message from a target
finds more than one non-empty queue in the mix, the following
departure may include messages going only to the receivers of
the non-target senders. This reveals which receiver does not
belong to the recipient set of the target. Eventually adversary
will be left with the correct set of receivers.

Sampling mix will empty out more frequently and cannot
often build a state complex enough to hide the origin of
the outgoing messages when k is larger and/or arrival rate
λ is lower, hence intersection attacks with state knowledge
will resolve faster. Moreover, even simple intersection attacks
that do not require state knowledge can deanonymize a target
connected to a sampling mix if pa is not chosen carefully.

Theorem 5. All receivers of a target sender connected to an
(n, k) sampling mix with pa 6= 1/n can be identified with
intersection attacks that do not require state knowledge.

Proof. Once a message arrives to a queue in steady state,
probability of a departure from any other queue is q = poρ =
(1 − pa)/(n − 1). Suppose m = 1 and pa > q (pa < q).
Adversary can record the message departures per arrival from
a target sender. By the law of large numbers, the greatest
(smallest) number of departures will almost surely be observed
on the correct receiver in the limit. Same idea applies when
each sender communicates with multiple receivers. Finally,
pa = q if and only if pa = 1/n.

In other words, in order to preserve anonymity, it is nec-
essary to maximize the uncertainty within the steady state
probabilities of message departures from the queues. Rényi
entropy is commonly used for measuring uncertainty and uni-
form distribution is known to maximize it, which is achieved
by setting pa = 1/n.

V. CONCLUSION

We proposed a queueing model for batch anonymity mixes
and showed that batch a mix with a deterministic message dis-
patching policy ensures that no sender-receiver pair is exposed
(referred to as anonymity in this paper) under intersection
attacks. On the other hand, its incurred delay on message
transfer grows quickly as the batch size gets close to the
number of connected senders. We introduced a sampling mix
model that implements a randomized message dispatching
policy. Sampling mix permits an exact delay analysis, which
allowed us to show that randomization allows cutting the
tail of delay immensely, however, at the cost of giving up

on the anonymity guarantee implemented by its deterministic
counterpart. We hope to next use our proposed queueing model
to understand the performance of mixes in terms of the time-
to-deanonymize metric vs. the incurred message transfer delay.
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