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Abstract

We show that polynomial codes (and some related codes) used for distributed matrix multiplication

are interleaved Reed-Solomon codes and, hence, can be collaboratively decoded. We consider a fault

tolerant setup where t worker nodes return erroneous values. For an additive random Gaussian error

model, we show that for all t < N −K , errors can be corrected with probability 1. Further, numerical

results show that in the presence of additive errors, when L Reed-Solomon codes are collaboratively

decoded, the numerical stability in recovering the error locator polynomial improves with increasing L.

Index Terms

Distributed computation, collaborative decoding, polynomial codes

I. INTRODUCTION AND MAIN RESULT

We consider the problem of computing ATB for two matrices A ∈ F
s×r and B ∈ F

s×r′ (for an

arbitrary field F)1 in a distributed fashion with N worker nodes using a coded matrix multiplication

scheme [1]–[11] To keep the presentation clear, we will focus on one class of codes, namely Polynomial

codes, and explain our results in relation to the Polynomial codes [1]; notwithstanding, our results also

apply to Entangled Polynomial codes [2] and PolyDot codes [3]. We assume that the matrices A and B

are split into m subblocks and n subblocks, respectively. These subblocks are encoded using a Polynomial

code [2]. Each worker node performs a matrix multiplication and returns a matrix with a total of L = rr′

mn

elements (from F) to the master node.

Our main interest is in the fault-tolerant setup where some of the N worker nodes return erroneous

values. We say that an error pattern of Hamming weight t has occurred if t worker nodes return matrices

1Some results in this paper will apply to specific fields and this will be clarified later.
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that contain some erroneous values. The main idea in the Polynomial codes, Entangled Polynomial codes

and PolyDot codes is to encode the subblocks of A and B in a clever way such that the matrix product

returned by the worker nodes are symbols of a codeword of a Reed-Solomon (RS) code over F. The

properties of an RS code are then used to obtain bounds on the error-correction capability of the scheme.

The main contribution of this work relies on the observation that Polynomial codes, Entangled Polyno-

mial codes, and PolyDot codes are not just RS codes, but an Interleaved Reed-Solomon (IRS) code which

consists of several RS codes that can be collaboratively decoded (see Section III or [12] for a formal

definition). This additional structure provides the opportunity for collaborative decoding of multiple RS

codes involved in such coded matrix multiplication schemes. Such a collaborative decoding, for which

efficient multi-sequence shift-register (MSSR) based decoding algorithms exist [13], provides a practical

decoder with quadratic complexity in t, while potentially nearly doubling the decoding radius.

The main results of this paper and their relation to the existing results are as follows. In [2], it is

shown that any error pattern with Hamming weight t can be corrected if t ≤ ⌊N−K
2 ⌋ where K = mn

is the effective dimension of the Polynomial code. Very recently, Dutta et al. in [3] showed that when

F = R (the real field) and error values are randomly distributed according to a Gaussian distribution,

with probability 1 all error patterns of Hamming weight t ≤ N − K − 1 can be corrected. To attain

this bound, [3] uses a decoding algorithm which is similar in spirit to exhaustive maximum likelihood

decoding with a complexity that is O
(
LNmin{t,N−t}

)
. This can be prohibitive for many practical values

of N and t. In [3], it is suggested that in practice, the performance of ML decoding can be approximated

by algorithms with polynomial complexity in N such as the ℓ1-minimization algorithm [14]. However,

there is no proof (nor evidence) that such algorithms can correct all error patterns of Hamming weight

up to N −K − 1 with probability 1. Indeed, as we will show in this work, the standard ℓ1-minimization

based decoding algorithm [14] fails to correct all error patterns of Hamming weight up to N −K − 1

with a non-zero probability.

In this work, we show that we can use the MSSR decoding algorithm of [13] for decoding Polynomial

codes with the complexity of O
(
Lt2 +N

)
. For this algorithm, we will show that when F = Fq (a finite

field with q elements), for ⌊N−K
2 ⌋ < t ≤ L

L+1(N −K), all but a fraction γ(t) of the error patterns of

Hamming weight t can be corrected where γ(t) → 0 as q → ∞. In particular, the convergence of γ(t) to

zero is exponentially fast in L, i.e., γ(t) = q−Ω(L), for ⌊N−K
2 ⌋ < t ≤ L

L+1(N −K). In addition, when

F = R, by extending the results of [13] and [15] to the real field and using the results of [3], we will

show that for L ≥ N −K − 1 and ⌊N−K
2 ⌋ < t ≤ N −K − 1, all error patterns of Hamming weight t

can be corrected with probability 1, under the random Gaussian error model previously considered in

[3].
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In a nutshell, our results show that with a probability arbitrarily close to 1 (or respectively, with

probability 1), all error patterns of Hamming weight up to L
L+1(N −K), which can be made arbitrarily

close to N − K − 1 for sufficiently large L, can be corrected for sufficiently large finite fields (or

respectively, the real field). Not only does this indicate a substantial increase in the error-correction

radius with provable guarantees when compared to the results in [2], but it also shows that the Dutta

et al.’s upper bound in [3] can be achieved with a practical decoder with a quadratic complexity in

the number of faulty worker nodes (t). This improvement in complexity is the result of collaboratively

decoding the IRS code instead of separately decoding the RS codes using a maximum likelihood decoder

as is done in [3].

II. REVIEW OF POLYNOMIAL CODES FOR DISTRIBUTED MATRIX MULTIPLICATION

A. Notation

Throughout the paper, we denote matrices by boldface capital letters, e.g., A, and denote vectors by

boldface small letters, e.g., a. For an integer i ≥ 1, we denote {1, . . . , i} by [i], and for two integers i

and j such that i < j, we denote {i, i+1, . . . , j} by [i, j]. We use the short notation ((f(i, j))i∈[m],j∈[n])

to represent an m × n matrix whose entry (i, j) is f(i, j), where f(i, j) is a function of i and j. We

occasionally use the compact notation (a1,a2, . . . ,an) to represent an m×n matrix whose columns are

the column-vectors a1,a2, . . . ,an, each of length m. Similarly, sometimes we use the compact notation

(a1;a2; . . . ;am) to represent an m × n matrix whose rows are the row-vectors a1,a2, . . . ,am, each of

length n. We also denote by A(i, :) and A(:, j) the ith row and the jth column of a matrix A, respectively.

A vector or a matrix with a ∧ above is an estimate.

B. Polynomial Codes

In this section, we review the Polynomial codes of Yu, Maddah-Ali and Avestimehr [1] for distributed

matrix multiplication. Consider the problem of computing ATB in a distributed fashion for two matrices

A ∈ F
s×r and B ∈ F

s×r′ for an arbitrary field F. In the scheme of Polynomial codes in [1], the master

node distributes the task of matrix multiplication among N worker nodes as follows.

The columns of A and B are first partitioned into m partitions A0,A1, . . . ,Am−1 of equal size r
m

and n partitions B0,B1, . . . ,Bn−1 of equal size r′

n
, respectively,

A = [A0 A1 · · ·Am−1], B = [B0 B1 · · ·Bn−1].
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Let x1, x2, . . . , xN be N distinct elements in F. For two parameters α, β ∈ [N ], let Ãi and B̃i be

matrices defined by,

Ãi =

m−1∑

j=0

Ajx
jα
i , B̃i =

n−1∑

j=0

Bjx
jβ
i .

The dimensions of the matrices Ãi and B̃i are s× r
m

and s× r′

n
, respectively.

The ith worker node computes the smaller matrix product C̃i given the values of Ãi and B̃i,

C̃i = ÃT

i B̃i =

m−1∑

j=0

n−1∑

k=0

AT

j Bk x
jα+kβ
i . (1)

The parameters α and β are chosen carefully such that for each pair (j, k) the corresponding exponent

of xi (i.e., jα+ kβ) is distinct. For instance, one such choice for α and β is α = 1 and β = m. In this

case, the ith worker node essentially evaluates P(x) at x = xi and returns P(xi), where

P(x) =

m−1∑

j=0

n−1∑

k=0

AT

j Bk x
j+km. (2)

The coefficients in the polynomial P(x) are the mn uncoded symbols of the product C̃i in (1). The crux

of the Polynomial code is that the vector of coded symbols (P(x1), . . . ,P(xN )) = (C̃1, C̃2, · · · , C̃N )

can be considered as a codeword of a Reed-Solomon (RS) code. If N worker nodes are available in the

distributed system, a Polynomial code essentially evaluates the polynomial P(x) at N points of the field

F; any mn of which can recover the coefficients which can be put together to recover the matrix product.

The minimum number of worker nodes that need to compute and return the correct evaluations of P(x)

for the master node to be able to successfully recover the matrix product ATB is called the recovery

threshold. Viewing the recovery process of a Polynomial code as a polynomial interpolation operation,

it can be seen that the recovery threshold of the Polynomial code is mn [1].

III. POLYNOMIAL CODES ARE INTERLEAVED REED-SOLOMON CODES

Definition 1. Generalized Reed-Solomon (GRS) Codes: Let m = (m0,m1, . . . ,mK−1) and let the

associated polynomial m(x) be defined as m(x) := m0 + m1x + . . . + mK−1x
K−1. Further, let

c = (c0, c1, . . . , cN−1), ααα = (α0, α1, . . . , αN−1) and v = (v0, v1, . . . , vN−1) be three row vectors such

that ci, αi, vi ∈ F, vi 6= 0, and αi 6= αj . A Generalized Reed-Solomon (GRS) code C over F of length

N , dimension K, evaluation points ααα, weight vectors v, denoted by GRS(F, N,K,ααα,v), is the set of all

row-vectors (codewords) c = (v0m(α0), v1m(α1), . . . , vN−1m(αN−1)), i.e., ci = vim(αi). Equivalently,

a GRS code is also the set of codewords c such that for all i ∈ [0, N −K − 1],
∑N−1

j=0 ujcj(αi)
j = 0,

where u−1
i = vi

∏

j 6=i

(αi − αj). The minimum distance of such a GRS code is dmin = N −K + 1.
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Reed-Solomon (RS) codes are a special case of GRS codes with vi = 1, ui = 1,∀i ∈ [0, N − 1]. For

finite fields and the complex field, an ααα exists such that vi = 1 and ui = 1, i ∈ [0, N − 1]. However

for the real field, ui and vi cannot be simultaneously set to 1 and, hence, it is required to consider GRS

codes.

Definition 2. Interleaved Generalized Reed-Solomon (IGRS) Codes [12]: Let {C(l)}l∈[L] be a collection

of L GRS codes C(l) , RS(F, N,K(l),ααα,uuu), each of length N over a field F, where the dimension and

minimum distance of the lth GRS code are K(l) and d(l), respectively. Then, an Interleaved Generalized

Reed-Solomon (IGRS) code CIGRS is the set of all L×N matrices (c(1); c(2); . . . ; c(L)) where c(l) ∈ C(l)

for l ∈ [L] [13]. If all the L GRS codes C(l) are equivalent, i.e., C(l) = C for all l ∈ [L], the IGRS code

CIRS is called homogeneous.

The chief observation in this work is that the Polynomial codes, Entangled Polynomial codes, and

PolyDot codes are IGRS codes. Here, we formally prove this observation for the Polynomial codes. We

shall henceforth refer to GRS codes and IGRS codes as RS codes and IRS codes, respectively.

Theorem 3. A Polynomial code is an IRS code.

Proof. Let W be an a × b matrix with entries from F, and let Γ : Fa×b → F
ab denote a vectorizing

operator which reshapes a matrix W into a column-vector w = (w1, . . . , wab)
T, i.e., Γ(W) = w, such

that w(i−1)b+j = W(i, j), where W(i, j) is the element (i, j) of W.

Let C̃i(p, q) be the element (p, q) of the matrix C̃i,

C̃i(p, q) ,

m−1∑

j=0

n−1∑

k=0

[AT

j Bk](p, q)x
j+km
i . (3)

Consider the rr′

mn
× N matrix D , (Γ(C̃1),Γ(C̃2), . . . ,Γ(C̃N )), where the ith column of D, namely

Γ(C̃i), is obtained by applying the vectorizing operator Γ to C̃i. Let (pi, qi) be the unique pair (p, q)

such that i = (p − 1) r
′

n
+ q. Then, the element (i, j) of D is C̃j(pi, qi), and accordingly, the ith row

of D is given by [C̃1(pi, qi), C̃2(pi, qi), . . . , C̃N (pi, qi)], which is a codeword of an RS code. Thus the

matrix D is a codeword of an IRS code with L = rr′

mn
. In particular, the ith worker node computes C̃i

that has dimension r
m
× r′

n
. It is evident from (3) that the element (p, q) of C̃i is the message polynomial

m−1∑

j=0

n−1∑

k=0

[AT

j Bk](p, q)x
j+km evaluated at xi. Thus, C̃i contains rr′

mn
RS codes evaluated at xi by the ith

worker node. That is, the computations returned by the ith worker node constitute the ith column of an

IRS code with N being the number of worker nodes and L = rr′

mn
being the number of RS codes. This

shows that a Polynomial code is a homogeneous IRS code with K(l) = mn for l ∈ [L].
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A. Error Matrix and Error Models

We consider the case when the worker nodes introduce additive errors in their computation. Let

Ei ∈ F
r

m
× r′

n denote the error matrix introduced by the ith worker node. Then the master node receives

the set of matrices R̃i, for i ∈ [N ] where R̃i = C̃i ⊕ Ẽi. Let R be the rr′

mn
× N matrix of values

received by the master node where the ith column of R is given by Γ(R̃i), and let E, referred to as the

error matrix, be the rr′

mn
×N matrix of error values where the ith column of E is given by Γ(Ẽi). Then,

R = D⊕E where D is a codeword of an IRS code. If the ith worker node returns erroneous values, then

the ith column of R will contain errors. Thus, the original problem of fault-tolerant distributed matrix

multiplication reduces to the problem of decoding D from R.

Definition 4. The Hamming weight of the matrix E denoted by WH(E) is defined as the number of

non-zero columns in E.

We consider two different error models. First, we consider the Uniform Random Error for Finite Fields

(UREF) model where the non-zero columns of the error matrix E are assumed to be uniformly distributed

over all the non-zero vectors in F
L
q for a finite field Fq. We further extend this model to the real field

R where each non-zero entry in the error matrix E is assumed to be an independently and identically

distributed Gaussian random variable (with arbitrary mean and variance). This model is referred to as

the Gaussian Random Error (GRE) model.

B. Decoding and Error Events

Let ψ : FL×N → {CIRS, F} be the decoding function, where F is a symbol that denotes decoding

failure. A decoding error is said to have occurred if ψ(R) 6= D. An undetected decoding error is said

to have occurred if ψ(R) 6= D and ψ(R) 6= F , whereas a decoding failure is said to have occurred if

ψ(R) = F .

IV. COLLABORATIVE DECODING OF INTERLEAVED REED-SOLOMON CODES

Simultaneous decoding of all the RS codes in an IRS code is known as collaborative decoding. As

shown in [12] and [13], collaborative decoding of IRS codes has certain advantages. In particular, when

burst errors occur, they occur on the same column of the IRS code. Hence, multiple RS codewords

share the same error positions. Note that an IRS code is actually a set of RS codes stacked together,

each of which yields a set of syndrome equations. Intuitively, when burst errors occur, the error locator

polynomials are more or less the same for all the RS codes but the number of syndrome equations

increases with the number of stacked RS codes. This implies that a much larger set of errors can be

DRAFT June 3, 2019



7

corrected. This is because the rank of the stacked syndrome matrix is greater than or equal to the rank of

the individual syndrome matrices, thus giving rise to the possibility of a greater decoding radius than the

unique decoding bound of 1−R
2 , where R is the code rate. More specifically, it was shown by Schmidt

et al. in [12] that when a set of L RS codes are collaboratively decoded, except for a small probability

of failure and a small probability of error (discussed in Section VI), the fraction of errors that can be

corrected can be as large as L
L+1 (1−R).

V. DECODING ALGORITHMS

A. Collaborative Peterson’s Algorithm

In this section, we propose a collaborative version of the Peterson’s algorithm [16] to correct up to

t ≤ tmax ,
L

L+1(N −K) errors.

Consider t non-zero errors in columns j1, j2, . . . , jt of the matrix R (i.e., the indices of the non-zero

columns of the error matrix E are j1, j2, . . . , jt). Let r(l)(z) ,
∑N−1

j=0 ujR(l, j)zj−1 be the modified

(multiplying component-wise by uj) received polynomial for the lth RS code, where R(l, j) is the element

(l, j) of the matrix R. Then, the syndrome sequence for the lth RS code is given by S(l) , {S
(l)
i }N−K−1

i=0 ,

where S
(l)
i ,

∑N−1
j=0 ujR(l, j)αi

j for i ∈ [0, N −K − 1]. Define the error locator polynomial Λ(z) as

Λ(z) ,

t∏

i=1

(1− zαji) = 1 + λ1z + · · · + λtz
t

and let λ(t) = (λt, λt−1, . . . , λ1)
T be the error locator vector associated with the error locator polynomial

Λ(z). When t errors occur Λ(z) has a degree of t. The syndrome matrix S(l)(t) and a vector a(l)(t) for

the lth RS code are given by

S(l)(t) ,











S
(l)
0 S

(l)
1 · · · S

(l)
t−1

S
(l)
1 S

(l)
2 · · · S

(l)
t

...
...

...

S
(l)
N−K−t−1 S

(l)
N−K−t · · · S

(l)
N−K−2











, a(l)(t) ,











−S
(l)
t

−S
(l)
t+1
...

−S
(l)
N−K−1











(4)

Now we can write the following consistent linear system of equations for the IRS code,










S(1)(t)

S(2)(t)
...

S(L)(t)











︸ ︷︷ ︸

SL(t)











λt

λt−1

...

λ1











︸ ︷︷ ︸

λ(t)

=











a(1)(t)

a(2)(t)
...

a(L)(t)











︸ ︷︷ ︸

aL(t)

(5)

where SL(t), the syndrome matrix for the IRS code, is the stacked matrix of S(l)(t) for l ∈ [L], and

aL(t), a vector for the IRS code, is the stacked vector of a(l)(t) for l ∈ [L]. If t columns of the matrix R
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are in error, then the error locator vector λ(t) can be obtained by the collaborative Peterson’s algorithm,

described in Algorithm 1. The complexity of computing the rank of rank(SL(τ)) is O(Lτ3); computing λ̂

requires O(τ3) operations if the structure of SL(τ) is not exploited, and the Chien search has a complexity

of O(N). Since we have to consider all values of τ ∈ [tmax], the overall complexity is O(Lt4max +N).

Definition 5. (t-valid polynomial Λ(z)): A polynomial Λ(z) over F is called t-valid if it is a polynomial

of degree t and possesses exactly t distinct roots in F.

Algorithm 1 Collaborative Peterson’s algorithm for IRS Decoding

Input: S(l) = {S
(l)
i }N−K−1

i=0 ∀l ∈ [L]

Output: D̂ ∈ {FL×N , F (decoding failure)}

1: D̂ = F

2: if SL(t) = 0 then

3: D̂ = R

4: else

5: for each t from 1 to tmax do

6: if rank(ST

L(t)SL(t)) = t then

7: λ̂ = (ST

L(t)SL(t))
−1ST

L(t))aL(t)

8: if SL(t) λ̂ = aL(t) then

9: (λ̂t, λ̂t−1, . . . , λ̂1) = λ̂
T

10: Λ̂(z) = 1 + λ̂1z + · · ·+ λ̂tz
t

11: if Λ̂(z) is t-valid then

12: Compute error locations ĵi, ĵ2, . . . , ĵt using a Chien search [16]

13: for each l from 1 to L do

14: From ĵ1, . . . , ĵt, and S(l), compute Ê(l, :) using Forney’s algorithm [16]

15: Compute D̂(l, :) = R(l, :) − Ê(l, :)

B. Multiple Sequence Shift Register algorithm

A more computationally efficient decoding algorithm to achieve error correction up to t ≤ tmax =

L
L+1(N − K) is the Multiple Sequence Shift Register (MSSR) algorithm proposed by Schmidt et al.

in [15]. This algorithm has a complexity of O(Lt2 + N). The MSSR algorithm, reviewed here for

completeness, is described in Algorithm 2.
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Algorithm 2 Collaborative IRS Decoder (Schmidt et. al [12])

Input: S(l) = {S
(l)
i }N−K−1

i=0 ∀l ∈ [L]

Output: D̂ ∈ {FL×N , F (decoding failure)}

1: Synthesize t and Λ̂(z) using the shift register synthesis algorithm in [15]

2: [t, Λ̂(z)] = Shift Register Synthesis Algorithm(S(1), . . . , S(L))

3: D̂ = F

4: if t ≤ tmax and Λ̂(z) is t-valid then

5: for each l from 1 to L do

6: From Λ̂(z) compute Ê(l, :)

7: Compute D̂(l, :) = R̂(l, :) − Ê(l, :)

It can be seen that in the absence of numerical round-off errors, the outputs of the collaborative

Peterson’s algorithm and the MSSR algorithm are identical for every R since both of them compute the

solution to (5).

VI. ANALYSIS OF PROBABILITY OF FAILURE AND ERROR FOR FINITE FIELDS (F = Fq)

In Section III, we showed that Polynomial codes are IRS codes. Hence the fault tolerance of the

Polynomial codes can be analyzed using similar techniques for IRS codes. In this section, we consider

the uniformly random error model for finite fields (UREF), defined in Section III-A, which was originally

considered in [12]. In particular, we define the error events

E1(t) = {E :WH(E) = t and the MSSR/collaborative algorithm fails},

E2(t) = {E :WH(E) = t and the MSSR/collaborative algorithm makes an undetected error},

E(t) = {E : WH(E) = t}.

(6)

Since the outputs of the collaborative Peterson’s algorithm and the MSSR algorithm are identical for

every R, both algorithms have the same probability of failure and the same probability of undetected

error. We denote by PF (t) and PML(t) the probability of failure and the probability of undetected error,

respectively, given that WH(E) = t. Under the UREF model, PF (t) and PML(t) are given by [12]

PF (t) =
|E1(t)|

|E(t)|
, PML(t) =

|E2(t)|

|E(t)|
.

A. Probability of Failure

A necessary condition for the failure of both the collaborative Peterson’s algorithm and the MSSR

algorithm is that the matrix SL(t) is not full rank, as shown in [12]. To calculate an upper bound on

PF (t), we refer to the analysis by schmidt et al. in [12], and recall the following result from [12].

June 3, 2019 DRAFT
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Theorem 6. [12, Theorem 7] Under the UREF model, for all t ≤ tmax = L
L+1(N −K),

PF (t) ≤

(
qL − 1

q

qL − 1

)

q−(L+1)(tmax−t)

q − 1
. (7)

By the result of Theorem 6, it can be readily seen that for all t < tmax, PF (t) diminishes as q−Ω
(
L
)

and for t = tmax, PF (t) decays as q−1 .

B. Probability of Undetected Error

As shown in [12, Theorem 5], the MSSR algorithm has the Maximum Likelihood (ML) certificate

property, i.e., whenever the decoder of [15] does not fail, it yields the ML solution, namely the codeword

at minimum Hamming distance from the received word. The collaborative Peterson’s algorithm has the

same ML certificate property as well. An error matrix E with WH(E) = t is said to be a bad error

matrix of Hamming weight t if there exists a non-zero codeword D ∈ CIRS such that WH(D⊖E) ≤ t.

We now use a result from [17, Page 141] without proof.

Lemma 7. [17, Page 141] Let C ⊆ {0, 1, · · · q− 1}N be a code with relative distance δ = dmin/N , and

let S ⊆ [N ] be such that |S| = (1− γ)N , where 0 < γ ≤ δ − ε for some ε > 0. Let ES be the set of all

error vectors with support Sc, and let BS be the set of all bad error vectors with support Sc. Then,

|BS | ≤ q
N

log2 q
− εN

2
+ 1

2 |ES |.

Theorem 8. Under the UREF model, for all t ≤ N − K − 1 (and in particular, for all t ≤ tmax =

L
L+1(N −K)), PML(t) → 0 as qL → ∞.

Proof. It is easy to see that an IRS code can be viewed as a single code over FqL , i.e. CIRS is a
(
FqL , N,K,N −K+1

)
code. Lemma 7 holds for a single code and, hence, can be applied to CIRS with

q being replaced by qL. Since the upper bound in Lemma 7 depends only on the cardinality of ES , it

follows that the probability of having a bad error matrix with WH(E) = t for the
(
FqL, N,K,N−K+1

)

code (replacing q by qL since CIRS is over qL) which we denote by Pe(t) is upper bounded by

Pe(t) =
|BS|

|ES |
≤ q

L( N

log2 qL
− εN

2
+ 1

2
)
. (8)

By setting δ = N−K+1
N

and ε = 2
N

, it is easy to see that Pe(t) → 0 as qL → ∞. For this choice of δ

and ε, it follows that γ ≤ δ − ε = N−K−1
N

, which implies that (8) holds for all t ≤ N −K − 1.

Note that the algorithms in Section V have the ML certificate property. Note, also, that the fraction of

error matrices that give rise to an undetected error is upper bounded by the fraction of bad error matrices.

This is simply because without a bad error matrix of Hamming weight up to (δ − ε)N , an undetected
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error cannot occur. Thus, PML(t) ≤ Pe(t). Since Pe(t) vanishes as qL → ∞, then PML(t) vanishes as

qL → ∞. Moreover, N and K are fixed and finite, and hence,
∑N−K−1

t=1 PML(t) → 0 as qL → ∞.

VII. ANALYSIS OF PROBABLITY OF FAILURE AND PROBABILITY OF ERROR FOR THE REAL FIELD

In this section, we analyze the probability of failure and probability of error under the GRE model

when the computations are performed over the real field. In particular, we consider the case that the error

values are independently and identically distributed standard Gaussian random variables (with zero mean

and unit variance). Note, however, that this assumption does not limit the generality of the results, and is

made for the ease of exposition only. For this model, conditioned on t errors occurring, the probability

of failure (PF (t)) and the probability of undetected error (PML(t)) are given by

PF (t) =

∫

E1(t)
φ(x) dx

∫

E(t) φ(x) dx
, PML(t) =

∫

E2(t)
φ(x) dx

∫

E(t) φ(x) dx
,

where E1(t), E2(t), E(t) are defined as in (6), and φ(x) is the probability density function of an Lt-

dimensional standard Gaussian random vector (with zero-mean vector and identity covariance matrix).

A. Probability of Failure

It should be noted that the results of [12] for finite fields cannot be directly extended to the real field,

simply because the counting arguments used in [12] for finite fields do not carry over to the real field.

In this section, we propose a new approach to derive the probability of failure for the real field case.

For simplifying the notation, hereafter, we use ρ , N −K− t. Suppose that t ≤ tmax = L
L+1(N −K)

errors occur at positions j1, j2, · · · , jt with values e
(l)
j1
, e

(l)
j2
, · · · , e

(l)
jt

for the lth RS code. Recall the

syndrome matrix S(l)(t) for the lth RS code (see (4)). As shown in [12], S(l)(t) can be decomposed as

S(l)(t) = H(l)(t) · F(l)(t) ·D(t) ·Y(t),

where H(l)(t) , (α
(i−1)
jk

)i∈[ρ],k∈[t] is an ρ× t matrix, F(l)(t) , diag((e
(l)
ji
)i∈[t]) is a t× t diagonal matrix,

D(t) , diag((αji)i∈[t]) is a t× t diagonal matrix, and Y(t) , (α
(k−1)
ji

)i∈[t],k∈[t] is a t× t matrix.

Theorem 9. Under the GRE model, for all t ≤ tmax = L
L+1(N − K), PF (t) = 0. In particular, for

L ≥ N −K − 1, for all t ≤ N −K − 1, PF (t) = 0.

Proof. The decoding algorithms described in Section V fail when the stacked matrix SL(t) defined in

(5) is rank deficient, i.e., there exists a non-zero row-vector v such that SL(t) · v
T = 0. Alternatively,

SL(t) is rank deficient iff there exists a non-zero row-vector v such that

S(l)(t) · vT = (H(l)(t) · F(l)(t) ·D(t) ·Y(t)) · vT = 0 ∀l ∈ [L]. (9)
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Since D(t) and Y(t) are invertible, the condition (9) holds iff there is a non-zero row-vector v such that

(H(l)(t) · F(l)(t)) · vT = 0 ∀l ∈ [L]. (10)

Let v = (v1, v2, . . . , vt), and let fi,l , e
(l)
ji

for all i ∈ [t]. Expanding (10), it is easy to see that














v1 v2 · · · vt

v1 · αj1 v2 · αj2 · · · vt · αjt

v1 · α
2
j1

v2 · α
2
j2

· · · vt · α
2
jt

...
...

...

v1 · α
(ρ−1)
j1

v2 · α
(ρ−1)
j2

· · · vt · α
(ρ−1)
jt














︸ ︷︷ ︸

H











f1,l

f2,l
...

ft,l











︸ ︷︷ ︸

f (l)

= 0. (11)

Combining the condition (11) for all the RS codes in the IRS code (for all l ∈ [L]), it holds that

H · F = 0, (12)

where H is defined in (11), and F , (f (1), f (2), . . . , f (L)) is a t × L matrix where f (l) for l ∈ [L] is

defined in (11). Alternatively, (12) can be written as

v ·Φ = 0, (13)

where Φ is a t× ρL matrix given by

Φ ,











f1,1 · · · f1,L (αj1f1,1) · · · (αj1f1,L) · · · (α
(ρ−1)
j1

f1,1) · · · (α
(ρ−1)
j1

f1,L)

f2,1 · · · f2,L (αj2f2,1) · · · (αj2f2,L) · · · (α
(ρ−1)
j2

f2,1) · · · (α
(ρ−1)
j2

f2,L)
...

...
...

...
...

...

ft,1 · · · ft,L (αjtft,1) · · · (αjtft,L) · · · (α
(ρ−1)
jt

ft,1) · · · (α
(ρ−1)
jt

ft,L)











. (14)

Let F be the set of all t× L matrices F = (fi,l)i∈[t],l∈[L] for each of which the condition (12) holds

for some non-zero vector v. We need to show that F is a set of measure zero.

We consider two cases as follows: (i) t ≤ L, and (ii) t > L.

Case (i): For the condition (12) to hold, there must exist a non-zero vector v in the left null space of

F. It is easy to see that, under the GRE model, the set of all matrices F that have a row-rank of t is a set

of measure 1. This implies that the set of all matrices F for each of which there exists some non-zero

vector v in the left null space of F is a set of measure zero. Thus, for t ≤ L, F is a set of measure zero.

Case (ii): For a vector v, let the weight of v, denoted by wt(v), be the number of non-zero elements

in v. For any integer 1 ≤ w ≤ t, let Fw be the set of all matrices F for each of which there exists a

non-zero vector v such that wt(v) = w and the condition (12) holds.

We consider two cases as follows: (1) w ≤ ρ, and (2) w > ρ. (Recall that ρ = N −K − t.)

DRAFT June 3, 2019



13

(1) w ≤ ρ: Assume, without loss of generality, that v1, v2, · · · , vw are the non-zero elements of v. Let

Hw , ((vk · α
(i−1)
jk

)i∈[w],k∈[w]) be the w × w sub-matrix of H (defined in (12)) corresponding to

the first w rows and the first w columns, and let Fw , ((fi,l)i∈[w],l∈[L]) be the w×L sub-matrix of

F corresponding to the first w rows. Then, the condition (12) reduces to

Hw · Fw = 0.

It is easy to see that the matrix Hw generates a Generalized Reed-Solomon code with distinct pa-

rameters {αji}i∈[w] and non-zero multipliers {vi}i∈[w]. Thus, Hw is full rank (and hence, invertible).

This implies that for each l ∈ [L] the column-vector f (l) (defined in (11)) is an all-zero vector. Thus,

every matrix in Fw for w ≤ ρ contains a w × L all-zero sub-matrix. In particular, every matrix in

Fw for w ≤ ρ has at least one fixed (zero, in this case) entry. Under the GRE model, it is then easy

to see that Fw for w ≤ ρ is a set of measure zero.

(2) w > ρ: Assume, without loss of generality, that v1, . . . , vw are the non-zero elements of v, and let

ṽ , (v1, v2, · · · , vw). Let Φw be the w × ρL sub-matrix of Φ (defined in (14)) corresponding to

the first w rows,

Φw ,











f1,1 · · · f1,L (αj1f1,1) · · · (αj1f1,L) · · · (α
(ρ−1)
j1

f1,1) · · · (α
(ρ−1)
j1

f1,L)

f2,1 · · · f2,L (αj2f2,1) · · · (αj2f2,L) · · · (α
(ρ−1)
j2

f2,1) · · · (α
(ρ−1)
j2

f2,L)
...

...
...

...
...

...

fw,1 · · · fw,L (αjwfw,1) · · · (αjwfw,L) · · · (α
(ρ−1)
jw

fw,1) · · · (α
(ρ−1)
jw

fw,L)











.

Then, the condition (13) reduces to

ṽ ·Φw = 0. (15)

Since in (5) the number of variables must be less than the number of equations, then w ≤ t ≤ ρL.

Note that Φw is a w × ρL matrix. Thus, rank(Φw) ≤ w. Moreover, there exists a non-zero vector

ṽ in the left null space of Φw. This implies that rank(Φw) ≤ w − 1. Since the row-rank and the

column-rank are equal, there exists a non-zero column-vector u such that

Φw · u = 0.

Let αi , αji for i ∈ [w], and let α
(k) = (αk−1

1 , αk−1
2 , · · · , αk−1

w )T for k ∈ [ρ]. We define the

product operator ⊙ between the two vectors α
(k) and f (l) as

α
(k) ⊙ f (l) , (α

(k−1)
1 f1,l, α

(k−1)
2 f2,l, . . . , α

(k−1)
w fw,l)

T.

Then, we can rewrite Φw as

(

α
(1) ⊙ f (1), . . . ,α(1) ⊙ f (L),α(2) ⊙ f (1), . . . ,α(2) ⊙ f (L), . . . ,α(ρ) ⊙ f (1) . . . ,α(ρ) ⊙ f (L)

)

.
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Since u = (u1, . . . , uL, uL+1, . . . , uL+L, . . . , u(ρ−1)L+1, . . . , u(ρ−1)L+L) 6= 0, there exist l ∈ [L] and

k ∈ [ρ] such that u(k−1)L+l is non-zero. Assume, without loss of generality, that u1 6= 0. Consider the

columns α(1)⊙ f (1),α(2)⊙ f (1), . . . ,α(ρ)⊙ f (1) in the matrix Φw, and their corresponding elements

u1, uL+1, . . . , u(ρ−1)L+1 in the vector u. Let ũk , u(k−1)L+1 for k ∈ [ρ], and let ũ , (ũ1, . . . , ũρ).

Note that ũ 6= 0 (by construction). Consider the vector

g , ũ1(α
(1) ⊙ f (1)) + ũ2(α

(2) ⊙ f (1)) + · · · + ũρ(α
(ρ) ⊙ f (1)).

Expanding g = (g1, . . . , gw)
T, we get gi = (ũ1α

0
i + ũ2α

1
i + · · ·+ ũρα

ρ−1
i )fi,1 for all i ∈ [w]. Note

that there exists i ∈ [w] such that the coefficient of fi,1 in gi, i.e., ũ1α
0
i + ũ2α

1
i + · · · + ũρα

ρ−1
i ,

is non-zero. The proof is by the way of contradiction. Suppose that for all i ∈ [w] the coefficient

of fi,1 in gi is zero. Let M , ((αk−1
i )i∈[w],k∈[ρ]). Then it is easy to see that M · ũ = 0. Since M

is a w × ρ Vandermonde matrix with ρ < w, then rank(M) = ρ. This implies that ũ = 0. This is

however a contradiction because ũ 6= 0 (by assumption). Thus, for some i ∈ [w] the coefficient of

fi,1 in gi must be non-zero. Thus, every matrix in Fw for w > ρ contains at least one entry which

can be written as a linear combination of the rest of the entries. Under the GRE model, this readily

implies that Fw is a set of measure zero.

Noting that F = ∪t
w=1Fw and taking a union bound over all w (1 ≤ w ≤ t), it follows that for t > L,

F is a set of measure zero. This completes the proof.

B. Probability of Undetected Error

Similarly as in the case of the finite fields, both the MSSR decoding algorithm and the collaborative

Peterson’s decoding algorithm give an error locator polynomial Λ(z) over the real field (R) of the

least possible degree which satisfies all the syndrome equations in (5). This implies that these decoding

algorithms have the ML certificate property (for details, see Section VI-B).

As was shown by Dutta et al. in [3, Theorem 3], under the GRE model, when the number of errors (i.e.,

the Hamming weight of the error matrix) is less than N −K, with probability 1 the closest codeword to

the received vector is the transmitted codeword. This implies that for any decoding algorithm satisfying

the ML certificate property, the set of all bad error matrices (defined in Section VI-B) is of measure zero,

and thereby, the probability of undetected error is zero.

Theorem 10. Under the GRE model, for all t ≤ N − K − 1 (and in particular, for all t ≤ tmax =

L
L+1(N −K)), PML(t) = 0.
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Fig. 1: Probability of error for CPDA and ℓ1-minimization decoders, N = 8 K = 2

VIII. NUMERICAL RESULTS

We present simulation results for N = 8, K = 2, and αi = 0.9i for different L. Fig. 1 shows the

probability of error (Pe(t) = PF (t) + PML(t)) for decoding RS codes individually using Peterson’s

algorithm (L = 1), decoding RS codes individually using the ℓ1 minimization decoder, and collaborative

decoding using the CPDA algorithm with L = 6. For each data point, 12500 IRS codewords were

simulated. It can be seen that the CPDA with L = 6 corrects all t errors for t ≤ N −K − 1, which is

a significant improvement over decoding RS codes individually. This is consistent with the theoretical

results. The probability of error for the ℓ1 minimization decoder remains fairly high for several values of

t ≤ N−K−1. These results are consistent with the results of Candes and Tao (Figures 2 and 3 in [14]).

This shows that individually decoding RS decoder using the ℓ1-minimization decoder does not suffice to

achieve small probability of error as suggested in [3]; whereas, collaborative decoding can achieve the

decoding radius bound of N −K − 1 with polynomial complexity.

For larger values of N and K, we noticed that computing the rank of SL(t) had numerical inaccuracies.

This is a well-known issue with decoding RS codes over the real field. Interestingly, from simulations,

we observe that collaborative decoding seems to alleviate this issue. Table I shows the probability of error

(Pe(t) = PF (t) + PML(t)) for N = 20, K = 12 and αi = i. For a fixed number of errors, increasing L

improved the condition number of SL(t)
TSL(t). With L = 20, we were able to decode up to N −K− 1

errors with Pe(t) = 0 in 12500 trials.

Our results have shown that collaborative decoding of Polynomial codes can correct up to tmax =

L
L+1(N −K) errors. It can be seen that tmax = N−K−1 for all L ≥ N−K−1 and hence, it is natural

to wonder if there is any advantage in increasing L beyond N −K − 1. Here we empirically show that

increasing L improves the numerical stability of the collaborative Peterson’s algorithm for determining
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TABLE I: Probability of error for the CPDA, N = 20 K = 12, 12500 trials

L\t 1 2 3 4 5 6 7

1 0 0 0 0.0008 - - -

2 0 0 0 0 0 - -

3 0 0 0 0 0 0 -

4 0 0 0 0 0 0 -

5 0 0 0 0 0 0 -

6 0 0 0 0 0 0 -

7 0 0 0 0 0 0 0.0026

8 0 0 0 0 0 0 0.0008

20 0 0 0 0 0 0 0
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Fig. 2: Average condition number of ST
L(t)SL(t), N = 8 K = 2

the error locator polynomial. Fig. 2 (N = 8, K = 2, αi = 0.9i) shows a plot of the average condition

number of the stacked syndome matrix SL(t) (defined in (5)) as a function of t for different L. It can

be seen from simulations that for all t, increasing L decreases the average condition number. Since the

collaborative Peterson’s algorithm requires inversion of the matrix ST

L(t)SL(t), the numerical stability of

the algorithm will improve with increasing L.
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