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Abstract—For communications in the presence of eavesdrop-
pers, random components are often used in code design to
camouflage information from eavesdroppers. In broadcast chan-
nels without eavesdroppers, Marton error-correcting coding
comprises random components which allow correlation between
auxiliary random variables representing independent messages.
In this paper, we study if Marton coding alone can ensure indi-
vidual secrecy in the two-receiver discrete memoryless broadcast
channel with a passive eavesdropper. Our results show that in
accordance to the principle of Wyner secrecy coding, this is
possible and Marton coding alone guarantees individual secrecy.
However, this comes with a penalty of requiring stricter channel
conditions.

Index Terms—Broadcast channel, individual secrecy, Marton
coding, physical layer security.

I. INTRODUCTION

A. Background

The problem of secure communication over broadcast
channels is always of great importance since broadcast channels
are widely applicable in wireless communication systems. Some
popular works on secure broadcast channel have been presented
by Csiszár and Körner [1], Chia and El Gamal [2] as well as
Schaefer and Boche [3]. These works [1]–[3] studied cases of
two- or three-receiver broadcast channels in which a common
message is transmitted to all receivers and a private message
is protected from certain receivers. Wyner secrecy coding [4]
is employed to achieve security therein. The complexity of
the problem increases as we consider the protection of two
private messages from an eavesdropper which is not one of
the receivers. In this case, Chen et al. [5] proposed a secrecy
coding scheme which combines Wyner secrecy coding [4]
and Carleial-Hellman secrecy coding [6]; whereas Mansour
et al. [7] proposed a secrecy coding scheme which combines
Wyner secrecy coding [4] and one-time pad [8]. The works
discussed above were also extended to more specific broadcast
channels with channel states. For instance, several studies
looked into secure communications in broadcast channels with
receiver side information at the legitimate receivers which is
unknown to the eavesdropper [9]–[13].

From the works discussed above, one can easily notice
that regardless of the channel setup, it seems to be a norm
for secure broadcasting to be achieved by integrating secrecy
techniques into error-correcting coding schemes. Among the
secrecy techniques covered in these works are the secret key
approach (also known as one-time pad) [8], Wyner secrecy
coding [4] and Carleial-Hellman secrecy coding [6]. When

secure broadcasting is necessary, these secrecy techniques are
often integrated independently or as a combination to common
error-correcting coding scheme for broadcast channels such
as the superposition coding scheme [14] and Marton coding
scheme [15]. As a consequence of this common practice, there
is little knowledge on whether secure broadcasting can be
achieved by having only an error-correcting coding scheme.

In regards to this, we have only come across some brief
insights in two works. Although two distinct secrecy coding
schemes have been proposed by Chen et al. [5] and Mansour
et al. [7] for the two-receiver discrete memoryless broadcast
channel with a passive eavesdropper, both schemes presented
the usage of randomness in error-correcting coding schemes
to ensure secrecy. In particular, the random components in
Marton coding were utilized to help in message protection.
However, this protection can only be achieved when the random
components in Marton coding are complemented with other
secrecy techniques.

This motivates us to explore if the dependence on additional
secrecy techniques in secrecy coding scheme construction can
be removed, which means it is possible to use the randomness
in Marton coding alone to provide secure communication. It is
interesting to see how the Marton coding scheme alone extends
itself into the area of secure broadcasting and leads us to new
ways of constructing secrecy coding schemes. Throughout this
paper, we will also be considering the individual secrecy notion
which requires the individual information leakage from each
message to the eavesdropper to be vanishing [5], [9], [11],
[16]. In short, this paper aims to study if Marton coding alone
can ensure individual secrecy and derive the corresponding
individual secrecy rate region for the two-receiver discrete
memoryless broadcast channel with a passive eavesdropper.

B. Contributions

Since the usage of only error-correcting coding schemes to
ensure secure communication has yet been attempted across any
literature in our knowledge, it is necessary for us to identify
a proper starting point to our work. We notice that having
random components, the Marton coding scheme [15] appears
to share structural similarities with the Wyner secrecy coding
scheme [4]. Since Wyner secrecy coding is a popular secrecy
coding technique that has been widely applied to provide
information protection, we draw the hypothesis that Marton
coding alone should be able to guarantee secrecy as well. In
this paper, we prove that the Marton coding scheme alone
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Fig. 1. The two-receiver broadcast channel in the presence of an eavesdropper.

can provide message protection under the notion of individual
secrecy. This is possible when certain channel constraints are
satisfied during codebook generation. Using this strategy, we
derive an inner bound for the two-receiver discrete memoryless
broadcast channel with a passive eavesdropper. The ability of
Marton coding in ensuring secure communication without the
need of additional secrecy techniques is a great observation
since it may lead to the construction of simpler and more
effective secrecy coding schemes in future works.

C. Paper Organization

The entire paper will be organized as follows. Section II will
focus on the system model. Section III will provide the main
results on using Marton coding to ensure individual secrecy.
Next, Section IV will present some discussions and conclude
the paper.

II. SYSTEM MODEL

In this paper, we will denote random variables by uppercase
letters, their corresponding realizations by lowercase letters and
their corresponding sets by calligraphic letters. A n-sequence
of random variables will be denoted by Xn = (X1, . . . , Xn),
where Xi represents the ith variable in the sequence. Rd
represents the d-dimensional real Euclidean space and Rd+
represents the d-dimensional non-negative real Euclidean space.
R will be used to represent a subset of Rd. Z represents the
set of all integers. T (n)

ε represents the set of jointly ε-typical n-
sequences. Meanwhile, [a : b] refers to a set of natural numbers
between and including a and b, for a ≤ b. Lastly, the operator
× denotes the Cartesian product.

The paper focuses on the two-receiver discrete memoryless
broadcast channel with a passive eavesdropper. The system
model for this case is illustrated in Fig. 1. In this model, we
define (M1,M2) as the source messages, Mi as the message
requested by legitimate receiver i, for all i ∈ {1, 2}. Let X
denote the channel input from the sender, while Yi and Z
denote the channel output to receiver i and the eavesdropper
respectively. In n channel uses, Xn represents the transmitted
codeword, Y ni represents the signal received by legitimate
receiver i and Zn represents the signal received by the
eavesdropper. The memoryless (and without feedback) nature
of the channel also implies that

p(yn1 , y
n
2 , z

n|xn) =

n∏
i=1

p(y1i, y2i, zi|xi). (1)

In this case, the transmitter will be sending messages M1

and M2 to legitimate receiver 1 and 2, respectively through

m1

{

{ {m2

nR1

nR2 nRl2

un1(m1, l1) :

un2(m2, l2) :

l1

{nRl1

l2

{

Arbitrarily
dependent

(a) Marton coding scheme

m1

{nR1

un1(m1, d1) : d1

{nRd1

(b) Wyner secrecy coding scheme

Fig. 2. Comparison between Marton coding scheme and Wyner secrecy coding
scheme.

the channel p(y1, y2, z|x). Besides, both messages M1 and M2

need to be individually protected from the eavesdropper.
Definition 1: A (2nR1 , 2nR2 , n) secrecy code for the two-

receiver discrete memoryless broadcast channel consists of:
• two message sets, where M1 = [1 : 2nR1 ] and M2 =

[1 : 2nR2 ];
• an encoding function, f : M1 ×M2 → Xn, such that
Xn = f(M1,M2); and

• two decoding functions, where g1 : Yn1 →M1, such that
M̂1 = g1(Y n1 ) at receiver 1 and g2 : Yn2 → M2, such
that M̂2 = g2(Y n2 ) at receiver 2.

Both messages, M1 and M2 are assumed to be uniformly
distributed over their respective message set. Hence, we have
Ri = 1

nH(Mi), for all i ∈ {1, 2}. Meanwhile the individual
information leakage rate associated with the (2nR1 , 2nR2 , n)

secrecy code is defined as R(n)
L,i = 1

nI(Mi;Z
n), for all i ∈

{1, 2}. The probability of decoding error for the secrecy code
at each receiver i is defined as P (n)

e,i = P{M̂i 6= Mi}, for
i ∈ {1, 2}.

A rate pair (R1, R2) is said to be achievable if given any
ε > 0 and τ > 0, there exists n′ such that for all n > n′, there
exists a sequence of (2nR1 , 2nR2 , n) codes satisfying

P
(n)
e,i ≤ ε, for all i ∈ {1, 2} and (2)

R
(n)
L,i ≤ τ , for all i ∈ {1, 2}. (3)

III. BRIDGING MARTON CODING AND WYNER SECRECY
CODING

In this section, we will establish a connection between
Marton coding [15] and Wyner secrecy coding [4]. More
precisely, we will show that Marton coding alone can provide
message protection under certain channel conditions even
without additional secrecy techniques.

A. Brief Review of Marton Coding and Wyner Secrecy Coding

Prior to our actual discussion, we will review the Marton
coding scheme [15] and the Wyner secrecy coding scheme [4]
which are illustrated in Fig. 2. The Marton coding scheme is
used while transmitting messages to multiple receivers through
the broadcast channel. Considering the two-receiver broadcast
channel whereby the transmitter sends M1 ∈ [1 : 2nR1 ] and
M2 ∈ [1 : 2nR2 ] to receiver 1 and 2 respectively, we see from
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Fig. 3. Codebook comparison between the Marton coding scheme and the
Wyner secrecy coding scheme.

Fig. 2a that the Marton coding scheme comprises two codeword
layers Un1 and Un2 which carry M1 and M2 respectively. The
codeword layers also contain the random components L1 ∈
[1 : 2nRl1 ] and L2 ∈ [1 : 2nRl2 ] which can be chosen to allow
Un1 and Un2 to be arbitrarily dependent while M1 and M2 are
independent.

Meanwhile, the Wyner secrecy coding scheme is used to
transmit a message to a single receiver through the wiretap
channel in which the message needs to be kept protected from
an eavesdropper. As in Fig. 2b, the Wyner secrecy coding
scheme comprises the codeword layer Un1 which carry M1.
The Wyner random component D1 ∈ [1 : 2nRd1 ] is required
to ensure that the eavesdropper gains almost no information
about the message sent [4].

B. An Intuition and the Challenges

Our idea to establish a connection between Marton coding
and Wyner secrecy coding originates from a simple observation
that both schemes share structural similarities. Notice that both
schemes transmit the desired message to the receivers via
their respective codewords. Besides, the random components in
Marton coding L1 and L2 also share similarties with the Wyner
random component D1 since they are formed by generating
additional sequences for each message. These similarities thus
beg the question: If the Wyner secrecy coding scheme is capable
of ensuring secrecy, shouldn’t the same apply to the Marton
coding scheme?

The answer to this question is not as straightforward as
it seems. Although both schemes have similar structures,
there is a slight difference during codebook generation which
consequently affects the encoding. Applying Wyner secrecy
coding to the broadcast channel [1], as seen in Fig. 3b, we
will be generating a subcodebook Ci(mi) for each message

mi ∈ [1 : 2nRi ], i = 1, 2. Each subcodebook consists of 2nRdi

randomly and independently generated sequences uni (mi, di),
di ∈ [1 : 2nRdi ]. This codebook will then be revealed to all
parties.

On the other hand, as seen in Fig. 3a, the Marton coding
scheme [15] undergoes similar codebook generation steps,
resulting in subcodebooks which each consists of 2nRli

randomly and independently generated sequences uni (mi, li),
li ∈ [1 : 2nRli ]. The difference sets in when the Marton
coding scheme requires the Un1 and Un2 codeword layers to be
dependent according to some chosen joint distribution pU1U2 .
This requires a sequence pair (un1 (m1, l1), un2 (m2, l2)) to be
preselected in each product subcodebook C1(m1)× C2(m2)
for transmission. The codebook together with all preselected
sequence pairs will then be revealed to all parties.

The difference above directly impacts the encoding stage.
For this discussion, we assume that M1 = 1 is sent and
consider only the subcodebook C1(1). We will also assume
2nRd1 = 2nRl1 . As illustrated in Fig. 4b, to transmit the
message, Wyner secrecy coding [4] allows the encoder to
randomly choose one of the 2nRl1 un1 (1, l1) sequences in the
subcodebook C1(1) according to the uniform distribution. The
large number of remaining un1 (1, l1) sequences can then act
as random components to confuse the eavesdropper. This is
the essence behind ensuring message protection Wyner secrecy
coding.

In Marton coding [15], the encoder does not enjoy the
same freedom in sequence selection which is observed in
Wyner secrecy coding [4]. For instance, assume that we also
fix M2 = 1, from subcodebook C1(1), the encoder can only
choose the un1 (1, l1) sequence that forms a preselected sequence
pair with un2 (1, l2). For ease of discussion, we let the sequence
be un1 (1, 1).

In order for Marton coding [15] to achieve message protec-
tion in the same manner as Wyner secrecy coding [4], we need
to ensure that aside from the sequence un1 (1, 1), we still have
additional un1 (1, l1), l1 6= 1, sequences that can act as random
components to confuse the eavesdropper. This is possible if
upon considering C1(1) across all C2(m2), we have a large

{

C1(1)

≤ 2nRl1 (fixed)
preselected

un1(1, l1) sequences

(a) Subcodebook C1(1) of the Marton coding scheme{

C1(1)

un1(1, l1) sequences
2nRl1 (free)

(b) Subcodebook C1(1) of the Wyner secrecy coding scheme

Fig. 4. Single subcodebook comparison between the Marton coding scheme
and the Wyner secrecy coding scheme.
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Fig. 5. Problem model.

number of or ideally 2nRl1 distinct un1 (1, l1) sequences that
form preselected sequence pairs with un2 (m2, l2). A sample of
this scenario is illustrated in Fig. 4a.

As a continuity of the idea, if we aim to bridge Marton
coding [15] and Wyner secrecy coding [4], the following
questions need to be answered: Considering each subcodebook
Ci(mi), i ∈ 1, 2, in n channel uses, are there sufficiently large
numbers of distinct uni (mi, li) sequences that form preselected
sequence pairs? Is each uni (mi, li) sequence equally likely to
be in the preselected sequence pairs? Are there any conditions
that we must impose to achieve these requirements?

C. Problem Model

Since each subcodebook Ci(mi) is randomly and indepen-
dently generated for each message mi, i = 1, 2, it is sufficient
for us to consider a single C1 subcodebook. The analysis will
apply to all remaining C1 and C2 subcodebooks as well. Our
problem model is illustrated in Fig. 5. This is part of the Marton
coding codebook in Fig. 3a after preselecting the sequence pairs.
In this case, we consider the C1(1) subcodebook across all 2nR2

C2(m2) subcodebooks. Note that the product subcodebook
C1(1)×C2(m2) for each m2 contains one preselected sequence
pair as required by Marton coding. Our goal here is to identify
the number of distinct un1 (1, l1) sequences that form preselected
sequence pairs and to determine if each un1 (1, l1) sequence is
equally likely to be in the preselected sequence pairs across
all 2nR2 C2(m2) subcodebooks.

In order to simplify our analysis, it is important to take note
that our problem model only considers codebook generations
which have approximately all un1 and un2 sequences in their re-
spective typical sets. More precisely, the codebook generations
of interest satisfy the following properties:
• In every v = 2nR1 C1(m1) subcodebook that contains t′ =

2nRl1 un1 sequences, with probability ≥ 1 − ε′1, we have
t = (1−ε′1)2nRl1 typical un1 sequences, i.e., un1 ∈ T

(n)
ε′1

(U1),
• In every s = 2nR2 C2(m2) subcodebook that contains q′ =

2nRl2 un2 sequences, with probability ≥ 1 − ε′2, we have
q = (1−ε′2)2nRl2 typical un2 sequences, i.e., un2 ∈ T

(n)
ε′2

(U2),

where we set ε′1 → 0 and ε′2 → 0 as n → ∞. By the
union of events bound [14], with probability of at least

{t = (1− ε′1)2nRl1 bins

s = 2nR2

trials

{

A single bin S(j)

Ball

Fig. 6. Equivalent ball placement experiment.

1− (vε′1 + sε′2), all C1(m1) and C2(m2) subcodebooks satisfy
the two properties above, for all m1 ∈ [1 : v] and m2 ∈ [1 : s].

Our definition of the problem model originates from a
simple observation. Note that the main criteria for sequence
pair preselection in Marton coding requires some un1 and un2
sequences to be jointly typical, i.e., (un1 , u

n
2 ) ∈ T (n)

ε′ . By the
properties of jointly typical sequences [14], this also implies
that the preselected un1 and un2 sequences should be in their
respective typical sets, i.e., un1 ∈ T

(n)
ε′1

(U1) and un2 ∈ T
(n)
ε′2

(U2)

with ε′ = min{ε′1, ε′2}. By limiting our problem model to such
specific codebook generations, we gain the advantage of using
existing numerical bounds to aid in our calculations. Although
this also indicates that we are only working with a subset of
all codebook generations, we will show that it is sufficient
to prove the existence of at least one codebook that is both
decoding-good and secrecy-good.

D. Equivalent Ball Placement Experiment

In order to simplify the notations in our proofs, we tem-
porarily represent our problem model with the ball placement
experiment illustrated in Fig. 6. Defining each un1 (1, j) po-
sition across all C2(m2) as a single bin S(j), each product
subcodebook C1(1)×C2(m2) is now equivalent to a collection
of t bins, i.e., {S(j) : j ∈ [1 : t]}. Mimicking the outcome of
sequence pair preselection in Marton coding, the experiment
then involves placing a ball randomly and uniformly into one
of the t bins. This process will be repeated independently for
s times, corresponding to the independence of sequence pair
preselection between each product subcodebook.

Ideally, in order to achieve a similar degree of randomness
provided by Wyner secrecy coding, we would like the s number
of balls to be uniformly distributed across the t bins after s
trials. Let p(s)Sj be defined as

p
(s)
Sj :=

number of balls in the jth bin after s trials
s trials

. (4)

For all j ∈ [1 : t], we want p(s)Sj → 1/t, with probability
tending to one, as n→∞.

Using the ball placement experiment as a reference, we will
derive Lemma 1 and Lemma 2. First, we provide a bound on
the probability for a ball to be placed in a bin as shown in
Lemma 1.



Lemma 1: The probability for a ball to be placed in the jth
bin in the ith trial is lower bounded by pl

t and upper bounded
by pu

t , where pl = (1 − ε′)22−n2ε
′γ , pu = (1 − ε′)−22n2ε

′γ

and γ = H(U2|U1) +H(U2).
Proof of Lemma 1: Refer to Appendix A.

Using Lemma 1, we now provide a bound on the uniformity
of p(s)Sj across the t bins after s trials as follows:

Lemma 2: For any real number k > 0,

P

 t⋂
j=1

∣∣∣p(s)Sj − E
[
p
(s)
Sj

]∣∣∣ < kσj

 ≥ 1− t′

k2
, (5)

where σj is the standard deviation of p(s)Sj .
Proof of Lemma 2: Refer to Appendix B.

E. Sufficient Conditions to Bridge Marton Coding and Wyner
Secrecy Coding

Reverting from the ball placement experiment to the problem
model, we apply Lemma 2 to all remaining C1 and C2

subcodebooks. With this, we will bound the entropy term
H(Li|Mi) and obtain the sufficient conditions to bridge Marton
coding and Wyner secrecy coding. For some choice of ε′1, ε′2
and k, Lemma 3 holds true.

Lemma 3: If

R1 > 2Rl2 and R2 > 2Rl1, (6)

then

P (H(Li|Mi) ≥ nplRli − εi) ≥ 1− ε0, (7)

where pl → 1, εi → 0 and ε0 → 0 as n → ∞, for all
i ∈ {1, 2}.

Proof of Lemma 3: Refer to Appendix C.
Satisfying the constraints in (6) ensures that for all i ∈ {1, 2},

the probability of each of the following events tends to one as
n→∞:
• The number of distinct uni (mi, li) sequences that form

preselected sequence pairs tends to 2nRli ,
• Over a random selection of Mj , j 6= i, Li for which
uni (mi, Li) form a preselected sequence pair is asymptoti-
cally uniformly distributed.
This shows that asymptotically, with probability tending

to one, in each message subcodebook of the Marton cod-
ing scheme, approximately all un1 (m1, l1) and un2 (m2, l2)
sequences are equally likely to form the preselected sequence
pairs. This indicates that the random components in Marton
coding can play the role of Wyner random components to
confuse the eavesdropper. This in turn shows that the Marton
coding scheme alone is capable of providing some basic
message protection.

F. Achievable Individual Secrecy Rate Region

The Marton coding scheme achieves the individual secrecy
rate region R in Theorem 1.

Theorem 1: Using Marton coding, the following individual
secrecy rate region is achievable for the two-receiver discrete
memoryless broadcast channel with a passive eavesdropper:

R ,



(R1, R2)

∈ R2
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R1 < min{I(U1;Y1)− I(U1;Z),

2I(U1, Y1)− 2I(U1, U2)},
R2 < min{I(U2;Y2)− I(U2;Z),

2I(U2, Y2)− 2I(U1, U2)},
R1 +R2 < I(U1;Y1) + I(U2;Y2)

− I(U1;U2),

R1 > 2I(U2;Z),

R2 > 2I(U1;Z),

R1 +R2 > 2I(U1;U2),

over all p(u1, u2)p(x|u1, u2).


Proof of Theorem 1: Refer to Appendix D for the complete

proof.
Remark 1: The individual secrecy rate region in Theorem 1

imposes three lower bounds that seemingly bound the region
away from the R1 and R2 axes. However, we note that any rate
points that are potentially excluded due to these lower bounds
can be recovered by noting that if (R1, R2) is achievable, so
is (R1−λ1, R2−λ2) for any 0 ≤ λ1 ≤ R1 and 0 ≤ λ2 ≤ R2.
In order to see this, simply inject additional randomness to
the transmitted messages, i.e., by taking M ′i = (Mi, Ti) where
Mi ∈ [1 : 2nRi ], Ti ∈ [1 : 2nRti ] and R′i = Ri + Rti, for all
i ∈ {1, 2}.

IV. DISCUSSION AND CONCLUSION

Ultimately, the results in this paper shows that Marton
coding [15] allows us to achieve message protection through
individual secrecy. Here, we once again emphasize that the
random components in Marton coding L1 and L2 can play
a role in message protection at the cost of two additional
constraints in (6). By satisfying these additional constraints,
we can guarantee that in each message subcodebook, approx-
imately all un1 (m1, l1) and un2 (m2, l2) sequences form the
preselected sequence pairs required by Marton coding. This
scenario provides us with sufficient un1 (m1, l1) and un2 (m2, l2)
sequences which can act as random components to confuse
the eavesdropper even when the encoder has a strict encoding
rule. Our results provides us with an individual secrecy rate
region that is potentially larger than those by Chen et al. [5]
and Mansour et al. [7]. This can be observed since the secrecy
coding schemes by Chen et al. [5] and Mansour et al. [7] do
not achieve any positive rate when reduced to Marton coding
only.

In addition, we provide an intuition that with Marton
coding alone, joint secrecy might not be achieved. The joint
secrecy notion requires the joint information leakage from both
message to the eavesdropper to be vanishing [11], [16]. This
requirement is difficult to be satisfied by Marton coding due
to the dependency between the Un1 and Un2 codewords.

In conclusion, the utilization of the Marton coding
scheme [15] to ensure individual secrecy is desirable since it



may provide additional message protection, complementing
other secrecy techniques. This reduces the complexity of coding
schemes, especially when we are dealing with channels with
a large number of receivers. It thus opens the opportunity
to derive new secrecy coding schemes that performs better
than existing ones. Nonetheless, we will further investigate the
ease of implementation and compare the performance of this
strategy in future works.

APPENDIX A

In this section, we will present the proof of Lemma 1.
Proof of Lemma 1: By the properties of jointly typical

sequences [14], given any sequence un1 ∈ T
(n)
ε′1

(U1), we define
pb as the probability that a un2 sequence is jointly typical with
un1 such that

pb :=

∣∣∣T (n)
ε′ (U2|un1 )

∣∣∣∣∣∣T (n)
ε′ (U2)

∣∣∣ . (8)

Using existing bounds on the terms in the numerator and
denominator [14], we have the lower bound on pb as

pb ≥
(1− ε′)2n(1−ε′)H(U2|U1)

2n(1+ε′)H(U2)

= (1− ε′)2−n[I(U1;U2)+ε
′(H(U2|U1)+H(U2))]

(a)
= (1− ε′)2−n[I(U1;U2)+ε

′γ] (9)

and the upper bound on pb as

pb ≤
2n(1+ε

′)H(U2|U1)

(1− ε′)2n(1−ε′)H(U2)

= (1− ε′)−12−n[I(U1;U2)−ε′(H(U2|U1)+H(U2))]

(b)
= (1− ε′)−12−n[I(U1;U2)−ε′γ], (10)

where (a) and (b) follows by defining γ := H(U2|U1)+H(U2).
Now, referring to the ball placement experiment, for all

i ∈ [1 : s] and j ∈ [1 : t], we define Ai,j as the random
variable representing the number of jointly typical sequence
pairs (before preselection) in the jth bin in the ith trial. The
expected value of Ai,j , E[Ai,j ] is calculated as

E[Ai,j ] =
∑

un2∈S(j)

pb

= pbq. (11)

Upon substituting (9) into (11), we have the lower bound on
E[Ai,j ] as

E[Ai,j ] ≥ (1− ε′)2−n[I(U1;U2)+ε
′γ]q. (12)

Upon substituting (10) into (11), we have the upper bound on
E[Ai,j ] as

E[Ai,j ] ≤ (1− ε′)−12−n[I(U1;U2)−ε′γ]q. (13)

We also define Bi as the random variable representing the
number of jointly typical sequence pairs (before preselection)
in all t bins in the ith trial. The expected value of Bi, E[Bi] is

E[Bi] = t

 ∑
un2∈S(j)

pb


= pbqt. (14)

Upon substituting (9) into (14), we have the lower bound on
E[Bi] as

E[Bi] ≥ (1− ε′)2−n[I(U1;U2)+ε
′γ]qt. (15)

Upon substituting (10) into (14), we have the upper bound on
E[Bi] as

E[Bi] ≤ (1− ε′)−12−n[I(U1;U2)−ε′γ]qt. (16)

Next, we define the indicator random variable Gi,j such that

Gi,j :=

{
1 if a ball is placed in the jth bin in the ith trial,
0 otherwise.

We are interested in calculating the upper and lower bound on
P(Gi,j = 1) which can be defined as

P(Gi,j = 1) :=
E[Ai,j ]

E[Bi]
. (17)

Upon substituting (12) and (16) and into (17), we have the
lower bound on P(Gi,j = 1) as

P(Gi,j = 1) ≥ (1− ε′)2−n[I(U1;U2)+ε
′γ]q

(1− ε′)−12−n[I(U1;U2)−ε′γ]qt

=
(1− ε′)22−n2ε

′γ

t
(c)
=
pl
t
, (18)

where (c) follows by defining pl := (1 − ε′)22−n2ε
′γ . Upon

substituting (13) and (15) into (17), we have the upper bound
on P(Gi,j = 1) as

P(Gi,j = 1) ≤ (1− ε′)−12−n[I(U1;U2)−ε′γ]q

(1− ε′)2−n[I(U1;U2)+ε′γ]qt

=
(1− ε′)−22n2ε

′γ

t
(d)
=
pu
t
, (19)

where (d) follows by defining pu := (1 − ε′)−22n2ε
′γ . This

completes the proof of Lemma 1.

APPENDIX B
In this section, we will present the proof of Lemma 2.

Proof of Lemma 2: Corresponding to the numerator in
definition (4), we define Jj as the random variable representing
the number of balls in the jth bin after s trials such that

Jj :=

s∑
i=1

Gi,j , (20)



where Gi,j is the indicator random variable defined in Ap-
pendix A.

Now, we calculate the expected value of Jj .

E[Jj ]
(a)
= E

[
s∑
i=1

Gi,j

]
(b)
=

s∑
i=1

E[Gi,j ]

=

s∑
i=1

P(Gi,j = 1)

(c)
≥

s∑
i=1

pl
t

=
pls

t
, (21)

where (a) follows from substituting (20), (b) follows from the
linearity of expected value and (c) follows from Lemma 1.
This gives us the lower bound on the expected value of Jj .

Next, we calculate the variance of Jj which is defined as

Var[Jj ] := E
[
J2
j

]
− (E[Jj ])

2
. (22)

Calculating the first term E
[
J2
j

]
, we have

E
[
J2
j

] (d)
= E

( s∑
i=1

Gi,j

)2


= E

[(
s∑
i=1

Gi,j

)(
s∑

k=1

Gk,j

)]

= E

( s∑
i=1

Gi,j

)Gi,j +

s∑
k 6=i

Gk,j


= E

 s∑
i=1

G2
i,j +

s∑
i=1

s∑
k 6=i

Gi,jGk,j


(e)
= E

[
s∑
i=1

G2
i,j

]
+ E

 s∑
i=1

s∑
k 6=i

Gi,jGk,j


(f)
=

s∑
i=1

E
[
G2
i,j

]
+

s∑
i=1

s∑
k 6=i

E [Gi,jGk,j ] , (23)

where (d) follows from substituting (20) while both (e) and
(f) follows from the linearity of expected value. Moving on,
we need to calculate E

[
G2
i,j

]
and E [Gi,jGk,j ]. Since Gi,j ∈

{0, 1},

E
[
G2
i,j

]
= E [Gi,j ]

= P(Gi,j = 1)
(g)
≤ pu

t
, (24)

where (g) follows from Lemma 1. Since each trial is indepen-
dent,

E [Gi,jGk,j ] = E [Gi,j ] E [Gk,j ]

≤ p2u
t2
. (25)

Upon substituting (24) and (25) into (23), we have

E
[
J2
j

]
≤

s∑
i=1

pu
t

+

s∑
i=1

s∑
k 6=i

p2u
t2

=
pus

t
+
s(s− 1)p2u

t2
. (26)

Upon substituting (21) and (26) into (22), we have

Var[Jj ] ≤
pus

t
+
p2us(s− 1)

t2
− p2l s

2

t2

=
pus

t
− p2us

t2
+
p2us

2

t2
− p2l s

2

t2
, (27)

giving us the upper bound on the variance of Jj .
With the bounds on E[Jj ] and Var[Jj ], we proceed to

calculate the bounds on the expected value and the variance
of p(s)Sj , i.e., E

[
p
(s)
Sj

]
and Var

[
p
(s)
Sj

]
. As a consequence of the

definitions (4) and (20), we have

E
[
p
(s)
Sj

]
=

E[Jj ]

s
(h)
≥ pl

t
, (28)

where (h) follows from substituting (21). Similarly,

Var
[
p
(s)
Sj

]
=

Var[Jj ]

s2
(i)
≤ pu
st
− p2u
st2

+
p2u
t2
− p2l
t2
, (29)

where (i) follows from substituting (27).

Now, we bound P

(
t⋂

j=1

∣∣∣p(s)Sj − E
[
p
(s)
Sj

]∣∣∣ < kjσj

)
, where

σj =

√
Var

[
p
(s)
Sj

]
is the standard deviation of p(s)Sj for any

real number kj > 0.

P

 t⋂
j=1

∣∣∣p(s)Sj − E
[
p
(s)
Sj

]∣∣∣ < kjσj


= 1− P

 t⋃
j=1

∣∣∣p(s)Sj − E
[
p
(s)
Sj

]∣∣∣ ≥ kjσj


(j)
≥ 1− P

 t⋃
j=1

∣∣∣p(s)Sj − E
[
p
(s)
Sj

]∣∣∣ ≥ kσj


(k)
≥ 1− t

k2

≥ 1− t′

k2
, (30)

where (j) follows by defining k := min
j
kj and (k) follows from

the union of events bound and Chebyshev inequality [14]. This
completes the proof of Lemma 2.



APPENDIX C

In this section, we will present the proof of Lemma 3.
Proof of Lemma 3: Before proceeding, notice that several

error events can be identified from our discussions so far:
• From Section III-C, un1 /∈ T (n)

ε′1
(U1) and un2 /∈ T (n)

ε′2
(U2)

with probability vε′1 + sε′2,
• From Lemma 2, L1 is not uniformly distributed after

sequence pair preselection with probability t′

k2 .
By the union of events bound [14], we define ε0 as the upper
bound on the mentioned probabilities of error such that ε0 :=
vε′1 + sε′2 + t′

k2 .
Now, we bound the entropy terms H(L1|M1) and

H(L2|M2). By the definition of entropy,

H(L1|M1)

=
∑

m1∈M1

pM1
(m1)H(L1|M1 = m1)

= −
∑

m1∈M1

pM1(m1)
∑
l1∈L1

pL1|M1
(l1|m1) log pL1|M1

(l1|m1)

(a)
= −

2nR1∑
m1=1

1

2nR1

∑
l1∈L1

pL1|M1
(l1|m1) log pL1|M1

(l1|m1)

= −
∑
l1∈L1

pL1|M1
(l1|m1) log pL1|M1

(l1|m1)

(b)
= −

t′∑
j=1

p
(s)
Sj log p

(s)
Sj

≥ −
t∑

j=1

p
(s)
Sj log p

(s)
Sj ,

where (a) follows from the fact that M1 is generated over a
uniform distribution and (b) follows from the fact that the
definition of p(s)Sj in (4) maps directly to pL1|M1

(l1|m1) when
we consider the message subcodebook C1(m1).

As a consequence of Lemma 2, with probability ≥ 1− ε0,

−
t∑

j=1

p
(s)
Sj log p

(s)
Sj

≥ −
t∑

j=1

(
E
[
p
(s)
Sj

]
− kσj

)
log
(

E
[
p
(s)
Sj

]
− kσj

)
(c)
≥ −t

(pl
t
− kσ

)
log
(pl
t
− kσ

)
= pl log t− (pl − ktσ) log(pl − ktσ)− ktσ log t

= pl log t′ + pl log(1− ε′)− (pl − ktσ) log(pl − ktσ)

− ktσ log t
(d)
= nplRl1 − ε1, (31)

where (c) follows from substituting (28) and from (29) in which

we define σ :=
(
pu
st −

p2u
st2 +

p2u
t2 −

p2l
t2

) 1
2

as the upper bound
on σj and (d) follows by defining ε1 := −pl log(1−ε′)+(pl−
ktσ) log(pl − ktσ) + ktσ log t.

Note that we want pl → 1, ε1 → 0 and ε0 → 0 as
n → ∞. Choose ε′1 = 2−n(R1+λ), ε′2 = 2−n(R2+λ) and

k = 2
n
(
Rl1
2 +λ

2

)
for an arbitrarily small λ > 0. Suppose

ε′ = min{ε′1, ε′2} = ε′2, we have

pl = (1− ε′)22−n2ε
′γ

= (1− ε′)22−n2γ2
−n(R2+λ)

. (32)

From (32), we calculate the limit of pl as n→∞ as follows:

lim
n→∞

(1− ε′)22−n2γ2
−n(R2+λ)

= lim
n→∞

(1− ε′)2 · lim
n→∞

2−n2γ2
−n(R2+λ)

(e)
= lim
n→∞

2−n2γ2
−n(R2+λ)

, (33)

where (e) follows since lim
n→∞

(1− ε′)2 = 1. From (33), letting

lim
n→∞

2−n2γ2
−n(R2+λ)

= eD, (34)

gives us

D = lim
n→∞

ln
[
2−n2γ2

−n(R2+λ)
]

= lim
n→∞

−n2γ2−n(R2+λ) ln(2)

= −2γ ln(2) lim
n→∞

n2−n(R2+λ)

= −2γ ln(2) lim
n→∞

n

2n(R2+λ)

(f)
= −2γ ln(2) lim

n→∞

d
dnn

d
dn2n(R2+λ)

= −2γ ln(2) lim
n→∞

1

(R2 + λ) 2n(R2+λ) ln(2)

= 0, (35)

where (f) follows from applying L’Hôpital’s Rule. Upon
substituting (35) into (34),

lim
n→∞

pl = 1. (36)

Using a similar approach, we can also show that

lim
n→∞

pu = 1. (37)

For ε0, we have

ε0 = vε′1 + sε′2 +
t′

k2

= 2nR12−n(R1+λ) + 2nR22−n(R2+λ) + 2nRl12
−n2

(
Rl1
2 +λ

2

)
= 3 · 2−nλ. (38)



From (38), it is straightforward that ε0 → 0 as n → ∞. For
ε1, we have

ε1 = −pl log(1− ε′) + (pl − ktσ) log(pl − ktσ) + ktσ log t
(g)
≤ −pl log(1− ε′) + ktσ log t

= −pl log(1− ε′) + ktσ log t′ + ktσ log(1− ε′)
(h)
≤ −pl log(1− ε′) + ktσ log t′

= −pl log(1− ε′)

+ (nRl1)

(
k2put

s
− k2p2u

s
+ k2p2u − k2p2l

) 1
2

, (39)

where (g) follows since pl log(1 − ε′) ≤ 0, 0 ≤ pl − ktσ ≤
1 and (pl − ktσ) log(pl − ktσ) ≤ 0 and (h) follows since
ktσ log(1− ε′) ≤ 0. From (39), we calculate the limit of the
two terms as n→∞ as follows:

lim
n→∞

−pl log(1− ε′)

= − lim
n→∞

pl · lim
n→∞

log(1− ε′)
(i)
= −1(0)

= 0, (40)

where (i) follows since lim
n→∞

(1− ε′) = 1 and by substituting
(36);

lim
n→∞

(nRl1)

(
k2put

s
− k2p2u

s
+ k2p2u − k2p2l

) 1
2

=

 lim
n→∞

n2R2
l1(

k2put
s − k2p2u

s + k2p2u − k2p2l
)−1


1
2

(j)
=

[
lim
n→∞

n2R2
l1(

k2t
s −

k2

s

)−1
] 1

2

<

[
lim
n→∞

n2R2
l1(

k2t
s

)−1
] 1

2

= lim
n→∞

nRl1

2−n(Rl1−R2
2 +λ

2 )
· lim
n→∞

(1− ε′)
1
2

(k)
= lim

n→∞

d
dnnRl1

d
dn2−n(Rl1−R2

2 +λ
2 )

= lim
n→∞

Rl1

−
(
Rl1 − R2

2 + λ
2

)
2−n(Rl1−R2

2 +λ
2 ) ln 2

, (41)

where (j) follows by substituting (36) and (37) and (k) follows
since lim

n→∞
(1− ε′)

1
2 = 1 and from applying L’Hôpital’s

Rule. Hence, if R2 > 2Rl1, the limit in (41) equals to
zero. Combining this fact with (40), we show that ε1 → 0
as n → ∞. Similarly, we show that if R1 > 2Rl2, then
P (H(L2|M2) ≥ nplRl2 − ε2) ≥ 1−ε0 where pl → 1, ε2 → 0
and ε0 → 0 as n→∞. This completes the proof of Lemma 3.

APPENDIX D

In this section, we will present the proof of Theorem 1.
Proof of Theorem 1: Sequence generation. Fix a pmf

p(u1, u2)p(x|u1, u2). For each message m1 ∈ [1 : 2nR1 ], gen-
erate a subcodebook C1(m1) consisting of 2nRl1 randomly and
independently generated sequences un1 (m1, l1), l1 ∈ [1 : 2nRl1 ],

each according to
n∏
i=1

pU1(u1i). Once again, for each message

m2 ∈ [1 : 2nR2 ], generate a subcodebook C2(m2) consisting
of 2nRl2 randomly and independently generated sequences

un2 (m2, l2), l2 ∈ [1 : 2nRl2 ], each according to
n∏
i=1

pU2(u2i).

Note that since we would like to ensure individual secrecy with
this codebook using Wyner secrecy coding [4], the constraints
in (6) need to be satisfied.

Sequence pair preselection. For each message
pair (m1,m2), find an index pair (l1, l2) such that
(un1 (m1, l1), un2 (m2, l2)) ∈ T (n)

ε′ . If there is more than one
such jointly typical pair, the encoder chooses an arbitrary one
among those. If no such pair exists, choose (l1, l2) uniformly
at random from all possible pairs. Lastly, given the preselected
sequence pair (un1 , u

n
2 ), randomly generate the codeword

Xn(m1,m2) ∼
n∏
i=1

pX|U1,U2
(xi|u1i(m1, l1), u2i(m2, l2)).

This codebook is revealed to all parties (including the
eavesdropper).

Encoding. To send the message pair (m1,m2), the encoder
transmits xn(m1,m2).

Decoding. Let ε > ε′. Receiver 1 declares that m̂1 is sent
if it is the unique message such that (un1 (m1, l1), yn1 ) ∈ T (n)

ε

for some l1; otherwise it declares an error. Similarly, receiver
2 declares that m̂2 is sent if it is the unique message such that
(un2 (m2, l2), yn2 ) ∈ T (n)

ε for some l2; otherwise it declares an
error.

Analysis of the probability of error. Assume without loss
of generality that the transmitted messages are equal to one
and (l1, l2) = (l′1, l

′
2). Receiver 1 makes an error only if one

or more of the error events (42)–(44) occur. On the other hand,
receiver 2 makes an error only if one or more of the error
events (42), (45) and (46) occur.

E0 : (Un1 (1, l1), Un2 (1, l2)) /∈ T (n)
ε′ for all l1 and l2 (42)

E11 : (Un1 (1, l′1), Y n1 ) /∈ T (n)
ε (43)

E12 : (Un1 (m1, l1), Y n1 ) ∈ T (n)
ε for some m1 6= 1 and l1

(44)

E21 : (Un2 (1, l′2), Y n2 ) /∈ T (n)
ε (45)

E22 : (Un2 (m2, l2), Y n1 ) ∈ T (n)
ε for some m2 6= 1 and l2

(46)

Considering the error events, we apply the mutual covering
lemma and the packing lemma to show that if

Rl1 +Rl2 > I(U1;U2), (47)
R1 +Rl1 < I(U1;Y1), (48)
R2 +Rl2 < I(U2;Y2), (49)



then the average probability of decoding error over all codebook
generations P(E)→ 0 as n→∞.

Analysis of individual secrecy. In order to ensure the
individual secrecy of both messages, we need to satisfy (3),
i.e., show that I(M1;Zn) ≤ nτ and I(M2;Zn) ≤ nτ .

For the individual secrecy of M1, we have

I(M1;Zn)

= H(M1)−H(M1|Zn)

= nR1 −H(M1, L1|Zn) +H(L1|Zn,M1). (50)

We establish a lower bound on the equivocation term
H(M1, L1|Zn) in (50).

H(M1, L1|Zn)

= H(M1, L1)− I(M1, L1;Zn)

= H(M1) +H(L1|M1)− I(M1, L1;Zn).

As a consequence of Lemma 3, over all codebook genera-
tions, with probability ≥ 1− ε0, where ε0 → 0 as n→∞,

H(M1) +H(L1|M1)− I(M1, L1;Zn)

≥ n[R1 +Rl1]− I(M1, L1;Zn)− ε1
= n[R1 +Rl1]− I(Un1 ,M1, L1;Zn)− ε1
(a)
= n[R1 +Rl1]− I(Un1 ;Zn)− ε1
(b)
= n[R1 +Rl1]− nI(U1;Z)− ε1, (51)

where (a) follows since (M1, L1) → Un1 → Zn forms
a Markov chain and (b) follows since by construction

p(un1 , z
n) =

n∏
i=1

pU1,Z(u1i, zi).

We establish an upper bound on the equivocation term
H(L1|Zn,M1) in (50). By [14, Lemma 22.1],

H(L1|Zn,M1) ≤ n[Rl1 − I(U1;Z)] + nδ1 (52)

where δ1 → 0 as n→∞ if

Rl1 ≥ I(U1;Z). (53)

Upon substituting (51) and (52) into (50), we show that over
all codebook generations, with probability ≥ 1− ε0,

I(M1;Zn) ≤ ε1 + nδ1
(c)
= nτ,

where (c) follows by defining τ := ε1
n + δ1.

Similarly, for the individual secrecy of M2, we show that if

Rl2 ≥ I(U2;Z), (54)

then over all codebook generations, with probability ≥ 1− ε0,
I(M2;Zn) ≤ nτ .

Achievable rate region: Considering only decoding error,
we know that by satisfying (47)–(49), we show the existence
of at least one decoding-good codebook that satisfies (2) over
all codebook generations. However, this argument might not
be sufficient in showing the existence of codebooks that satisfy
both (2) and (3), i.e., being both decoding-good and secrecy-
good. From the analysis of individual secrecy in this appendix,

we show that ≥ 1− ε0 of the codebooks generated are secrecy-
good. This incurs a problem due to the possibility of all
decoding-good codebooks not being secrecy-good, indicating
that a secrecy code does not exist.

We hereby prove that for all sufficiently large n, there exists
at least one codebook that is both decoding-good and secrecy-
good. Let Cn be the set of all codebooks for a fixed n. Each
codebook C ∈ Cn has the proability of decoding error P (n)

e,i (C),
for all i ∈ 1, 2. Given an arbitrary decoding error ε > 0, define
the following:

• Set of decoding-good codebooks C1n := {C ∈ Cn : 0 ≤
P

(n)
e,i (C) ≤ ε};

• Set of decoding-bad codebooks C2n := {C ∈ Cn : ε <

P
(n)
e,i (C) ≤ 1};

• α := min
C∈C1n

P
(n)
e,i (C) ; and

• β := min
C∈C2n

P
(n)
e,i (C)− ε.

This also gives us the fraction of decoding-good codebooks
fd =

|C1n|
|Cn| . Then, the average probability of decoding error

over all codebook generations is

P(E) =
1

|Cn|
∑
C∈Cn

P
(n)
e,i (C)

=
1

|Cn|
∑
C∈C1n

P
(n)
e,i (C) +

1

|Cn|
∑
C∈C2n

P
(n)
e,i (C)

≥ |C
1
n|
|Cn|

α+
|C2n|
|Cn|

(β + ε)

= fdα+ (1− fd)(β + ε)

= β + ε− fd(β + ε− α).

Rearranging the terms,

fd ≥
β + ε− P(E)

β + ε− α

≥ β + ε− P(E)

β + ε

= 1− P(E)

β + ε

≥ 1− P(E)

ε
.

Combining with the fact that the fraction of secrecy-good
codebooks ≥ 1 − ε0, the probability of decoding-good and
secrecy-good codebooks P(decoding-good ∩ secrecy-good) is

P(decoding-good ∩ secrecy-good)

= 1− P(decoding-bad ∪ secrecy-bad)

≥ 1− P(decoding-bad)− P(secrecy-bad)

≥ 1−
(

P(E)

ε
+ ε0

)
.



Thus, the number of decoding-good and secrecy-good code-
books Cn,good is

Cn, good = |Cn|P(decoding-good ∩ secrecy-good)

≥ |Cn|
[
1−

(
P(E)

ε
+ ε0

)]
.

Notice that P(E) → 0, ε0 → 0 and |Cn| → ∞ as n → ∞.
Hence, Cn, good > 1, showing the existence of at least one
codebook that is both decoding-good and secrecy-good.

The individual secrecy rate region can then be obtained from
the following constraints on:
• the non-negativity of rates;
• the rate constraints which enable Wyner secrecy coding (6);
• the achievability conditions (47)–(49); and
• the individual secrecy conditions (53), (54).
Applying the Fourier-Motzkin procedure [14, Appendix D]
to eliminate the terms Rl1 and Rl2 we obtain the individual
secrecy rate region R in Theorem 1.
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