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Abstract—We consider the problem of private computation
(PC) in a distributed storage system. In such a setting a user
wishes to compute a function of f messages replicated across n
noncolluding databases, while revealing no information about the
desired function to the databases. We provide an information-
theoretically accurate achievable PC rate, which is the ratio
of the smallest desired amount of information and the total
amount of downloaded information, for the scenario of nonlinear
computation. For a large message size the rate equals the
PC capacity, i.e., the maximum achievable PC rate, when the
candidate functions are the f independent messages and one
arbitrary nonlinear function of these. When the number of
messages grows, the PC rate approaches an outer bound on the
PC capacity. As a special case, we consider private monomial
computation (PMC) and numerically compare the achievable
PMC rate to the outer bound for a finite number of messages.

I. INTRODUCTION

The problem of private information retrieval (PIR) from
public databases, introduced in [1], has been the focus of at-
tention for several decades in the computer science community
(see, e.g., [2], [3]). In PIR, the goal is to privately access an
arbitrary message stored in a database without revealing any
information of the identity of the desired message. If the users
do not have any side information on the data stored in the
database, the best strategy is to store the messages in at least
two databases while ensuring PIR. Hence, the design of PIR
protocols has focused on the case when multiple databases,
i.e., distributed storage systems (DSSs), store the messages.
Recently, the aspect of minimizing the communication cost,
e.g., the required rate or bandwidth of privately querying
the databases with the desired requests and downloading
the corresponding information has attracted a great deal of
attention in the information theory and coding communities.
Thus, the renewed interest in PIR primarily focused on the
study and design of efficient PIR protocols for DSSs. For
example, [4], [5], presented fundamental limits of the PIR
rate when data is replicated over noncolluding and colluding
databases, respectively.

Motivated by privacy concerns in distributed computing,
a generalization of the PIR problem has emerged recently
[6]–[13] to address the private computation (PC) of arbitrary
functions over the stored messages. In PC a user intends
to compute a function of the messages stored at multiple
databases while keeping the identity of the function private
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from each database, as they may be under the control of an
adversary. In [6], [7], the scenario of private linear computation
(PLC) is considered for noncolluding replicated databases. In
these works, the capacity and achievable rates for the commu-
nication overhead needed to privately compute a given linear
function were derived as a function of the number of messages
and the number of databases, respectively. Interestingly, the
PLC capacity is equal to the PIR capacity of [4]. The extension
to the coded case is addressed in [9], [10] and [11]–[13] for
PLC and private polynomial computation (PPC), respectively.

In contrast to our previous work in [13] (and also [11],
[12]), which considered PPC schemes for coded storage for
polynomials of degree at most g, for some fixed integer g, and
only a simplified rate definition, in this work we extend these
considerations to general private nonlinear computation for
replication-based storage and an exact information-theoretic
definition of the PC rate. This complicates the analysis. We
also include a converse result which is absent from [13].
We provide a general achievable scheme for the scenario of
nonlinear computation with rate equal to the PC capacity,
i.e., the maximum achievable PC rate, when the message
size is large and the candidate functions are the independent
messages and one arbitrary nonlinear function of these. When
the number of messages grows, the PC rate approaches an
outer bound on the PC capacity derived from [8, Thm. 1]
and thus becomes the capacity itself. A similar result was
stated in [6, Thm. 2], however for a simplified definition of
the PC rate that does not take into account that the candidate
functions may have different amount of information, referred
to as the function size. Moreover, we discuss how a PC scheme
should be designed to achieve the PC capacity. As a special
case, we consider private monomial computation (PMC) and
numerically compare the achievable PMC rate to the outer
bound for a finite number of messages.

II. PRELIMINARIES

A. Notation

We denote by N the set of all positive integers, [a] ≜
{1, 2, . . . , a}, and [a : b] ≜ {a, a + 1, . . . , b} for a, b ∈ N,
a ≤ b. Random and deterministic quantities are carefully
distinguished as follows. A random variable is denoted by a
capital Roman letter, e.g., X , while its realization is denoted
by the corresponding small Roman letter, e.g., x. Vectors are
boldfaced, e.g., X denotes a random vector and x denotes

ar
X

iv
:2

30
7.

01
77

2v
1 

 [
cs

.I
T

] 
 4

 J
ul

 2
02

3



a deterministic vector. In addition, sets are denoted by calli-
graphic uppercase letters, e.g., X . The notation X ∼ Y is
used to indicate that X and Y are identically distributed.
For a given index set S, we also write XS to represent{
X(v) : v ∈ S

}
. Furthermore, some constants and functions

are also depicted by Greek letters or a special font, e.g., X.
The function H(X) represents the entropy of X , and I(X ;Y )
the mutual information between the random variables X and
Y . The binomial coefficient of a over b is denoted by

(
a
b

)
.

A monomial zi in m variables z1, . . . , zm with degree g is
written as zi = zi11 · · · zimm , where i ≜ (i1, . . . , im) ∈ ({0} ∪
N)m is the exponent vector with wt(i) ≜

∑m
j=1 ij = g. The

set {zi : i ∈ ({0} ∪ N)m, 1 ≤ wt(i) ≤ g} of all monomials
in m variables of degree at most g has size

M(m, g) ≜
g∑

h=1

(
h+m− 1

h

)
=

(
g +m

g

)
− 1.

B. Problem Statement

The PC problem for replicated DSSs is described as fol-
lows. We consider a DSS that stores in total f independent
messages W (1), . . . ,W (f), where each message W (m) =(
W

(m)
1 , . . . ,W

(m)
βL

)
, m ∈ [f ], is a random length-βL vector

with independent and identically distributed symbols that are
chosen at random from the field Fq for some β,L ∈ N.
The messages are replicated and stored in the j-th database,
j ∈ [n]. Without loss of generality, we assume that the symbols
of each message are selected uniformly over the field Fq . Thus,

H
(
W (m)

)
= βL, ∀m ∈ [f ],

H
(
W (1), . . . ,W (f)

)
= fβL (in q-ary units).

We consider the case of n noncolluding databases. In PC, a
user wishes to privately compute exactly one function image
X

(v)
i ≜ ϕ(v)(W

(1)
i , . . . ,W

(f)
i ), ∀ i ∈ [βL], out of µ arbi-

trary candidate functions ϕ(1), . . . , ϕ(µ) : (Fq)
f → Fq , where

X
(v)
1 , . . . , X

(v)
βL are independent and identically distributed ac-

cording to a prototype random variable X(v) with probability
mass function PX(v) . Now, let X(v) ≜

(
X

(v)
1 , . . . , X

(v)
βL

)
.

With some abuse of language, in the following, we of-
ten refer to the image X(v) as the function ϕ(v). With-
out loss of generality, we assume that the candidate func-
tions are ordered descendingly with respect to their entropy,
i.e., H

(
X(1)

)
= maxv∈[µ] H

(
X(v)

)
≜ Hmax and H

(
X(µ)

)
=

minv∈[µ] H
(
X(v)

)
≜ Hmin. Thus, in q-ary units, we have

H(X(v)) = βLH
(
X(v)

)
, ∀ v ∈ [µ],

H(X(1), . . . ,X(µ)) = βLH
(
X(1), . . . , X(µ)

)
,

H(X(1)) ≥ H(X(2)) ≥ · · · ≥ H(X(µ)) ≥ 0.

The user privately selects an index v ∈ [µ] and wishes
to compute the v-th function while keeping the requested
function index v private from each database. In order to
retrieve the desired function X(v), v ∈ [µ], from the DSS,
the user sends a random query Q

(v)
j to the j-th database for

all j ∈ [n]. The queries are generated by the user without any

prior knowledge of the realizations of the stored messages,
and they are independent of the candidate functions. In other
words, I

(
X(1), . . . ,X(µ) ;Q

(v)
1 , . . . , Q

(v)
n

)
= 0, ∀ v ∈ [µ].

In response to the received query, the j-th database sends the
answer A

(v)
j back to the user, where A

(v)
j is a deterministic

function of Q
(v)
j and the data stored in the database. Thus,

H
(
A

(v)
j

∣∣Q(v)
j ,W [f ]

)
= 0, ∀ v ∈ [µ] and ∀ j ∈ [n].

To maintain user privacy, the query-answer function must be
identically distributed for all possible function indices v ∈ [µ]
from the perspective of each database. In other words, the
scheme’s queries and answer strings must be independent from
the desired function index. Moreover, the user must be able to
reliably decode the desired function X(v) from the received
database answers.

Consider a DSS with n noncolluding replicated databases
storing f messages. The user wishes to retrieve the v-th
function X(v), v ∈ [µ], from the queries Q

(v)
j and answers

A
(v)
j , j ∈ [n]. For a PC protocol, the following conditions

must be satisfied ∀ v, v′ ∈ [µ], v ̸= v′, and ∀ j ∈ [n],

[Privacy]

(Q
(v)
j , A

(v)
j ,X [µ]) ∼ (Q

(v′)
j , A

(v′)
j ,X [µ]),

[Recovery]

H
(
X(v)

∣∣A(v)
1 , . . . , A(v)

n , Q
(v)
1 , . . . , Q(v)

n

)
= o(L),

where any function of L, say λ(L), is said to be o(L) if
limL→∞ λ(L)/L = 0.

To measure the efficiency of a PC protocol, we consider the
required number of downloaded symbols for retrieving the βL
symbols of the desired function.

Definition 1 (PC rate and capacity for replicated DSSs). The
rate of a PC protocol, denoted by R, is defined as the ratio of
the smallest desired function size βLHmin to the total required
download cost D, i.e.,1

R ≜
βLHmin

D
.

The PC capacity, denoted by CPC, is the maximum achievable
PC rate over all possible PC protocols.

III. A CONVERSE BOUND AND AN ACHIEVABLE SCHEME

In this section, we first derive an outer bound on the PC rate
of any PC protocol from [8, Thm. 1] (Theorem 1 below) and
then an achievable rate for the special case of large message
sizes (Theorem 2 below).

A. Converse Bound
Theorem 1. Consider a DSS with n noncolluding replicated
databases storing f messages, where the number of arbitrary
candidate functions to be computed is µ ≥ 1. Then, the PC
capacity CPC is upperbounded as

CPC ≤ nµ Hmin
µ∑

v=1
nµ−v+1

[
H(X [v])−H(X [v−1])

] , (1)

1We adopt the rate definition of the dependent PIR (DPIR) problem [8].



where X [0] is the empty set and H(∅) = 0.

Proof: From the converse proof of either [6] or [8], it is
not difficult to see that the total download cost D of a PC
protocol is lowerbounded as

D ≥ H
(
X(1)

)
+

H
(
X(2)

∣∣X(1)
)

n
+

H
(
X(3)

∣∣X(1),X(2)
)

n2

+ · · ·+ 1

nµ−1
H
(
X(µ)

∣∣X(1), . . . ,X(µ−1)
)
,

from which the result follows directly from Definition 1.

Corollary 1. The outer bound from (1) equals

Hmin
1− 1

n

1− ( 1n )
f
≜ HminCPIR (2)

when µ ≥ f and the candidate functions include the f in-
dependent messages W (1), . . . ,W (f), where CPIR =

1− 1
n

1−( 1
n )f

is the PIR capacity for a DSS with n noncolluding replicated
databases storing f messages [4].

B. Achievability

Theorem 2. Consider a DSS with n noncolluding replicated
databases storing f messages of length βL, where the number
of arbitrary candidate functions to be computed is µ ≥ 1.
Then, as L → ∞, the PC rate

R =
Hmin

µ−1∑
v=1

1
nv−1 H(X(v)) + 1

nµ−1

[
H(X [µ])−

µ−1∑
v=1

H(X(v))
] (3)

is achievable.

Corollary 2. The PC rate R from (3) is lowerbounded as

R ≥ Hmin

Hmax

1− 1
n

1− ( 1n )
µ .

Corollary 3. Consider a DSS with n noncolluding replicated
databases storing f messages of length βL. Then, as L → ∞,
the PC rate

R =



Hmin
1− 1

n

1−
(

1
n

)f = HminCPIR,

if µ = f + 1,

Hmin(1− 1
n )

1−
(

1
n

)f
+
(
1− 1

n

) µ−1∑
v=f+1

H(X(v))
[

1

nv−1 − 1

nµ−1

] ,
if µ ≥ f + 2

(4)

is achievable when the candidate functions include the f
independent messages W (1), . . . ,W (f).

Remark 1.
• For µ = f + 1 the PC rate from Corollary 3 equals the

outer bound from Corollary 1. Thus, the proposed scheme
is capacity-achieving.

• The PC rate from Corollary 3 and the outer bound from
Corollary 1 converge to Hmin(1 − 1/n) as f → ∞. A

similar result was stated in [6, Thm. 2], however for a
simplified definition of the PC rate.

• The rate of (3) extends the elementary capacity result
for the case of two arbitrary correlated functions [6,
Sec. VII], while the lower bound from Corollary 2
matches the lower bound on the capacity of DPIR [8,
Sec. III-B].

• If all the µ functions are uniformly distributed, Hmin =
Hmax and we obtain the PC rate

R =
1− 1

n

1− ( 1n )
µ .

A PMC problem is a PC problem where the candidate
functions to be computed are restricted to a subset of all
possible multivariate monomials in f variables (or messages)
with degree at most g which includes W (1), . . . ,W (f), where
f ≤ µ ≤ M(f, g), g ∈ N. The goal here is to find a scheme
that achieves the outer bound in (2). Towards this goal, we
state the following remark.

Remark 2.
• For multivariate monomials in f variables with degree at

most g, it can be seen that the PMC rate

1− 1
n

1− ( 1n )
µ (5)

can be achieved via the PIR protocol from [4] by con-
sidering each candidate monomial as a virtual message.

• In the case of monomials with degree at most g = 1,
µ = f (since M(f, g) = f ) and Hmin = Hmax, and the
PMC rate reduces to the PIR capacity CPIR.

• Finally, for monomials with higher degree, i.e., g ≥ 2,
we can achieve a PMC rate R strictly larger than (5)
by Corollary 3, using a similar approach of redundancy
elimination as in the schemes in [13, Sec. III-C]. More-
over, the gap between the achievable PMC rate and the
outer bound from (2) decreases with the degree of the
monomials and the number of messages (see Section V).

C. Achievable Scheme for Theorem 2

We start with a PIR query scheme for µ virtual messages,
where the µ arbitrary candidate functions of the PC problem
are considered as µ arbitrary correlated messages. Given that µ
virtual messages are replicated over n noncolluding databases,
we require the length of each message to be βL = nµL with
a sufficiently large L. Let X(v) = (X

(v)
1 , . . . ,X

(v)
β ), where

each segment X(v)
i , i ∈ [β], contains L symbols. For τ ∈ [µ],

a sum X
(v1)
i1

+ · · · + X
(vτ )
iτ

of τ distinct candidate function
segments is called a τ -sum for any (i1, . . . , iτ ) ∈ [β]τ , and
{v1, . . . , vτ} ⊆ [µ] determines the type of the τ -sum.

Here, we rely on lossless data compression of large-enough
message segments to achieve the PC rate presented in Theo-
rem 2. However, due to possible dependency across message
symbols associated with the same subindex, we follow similar
index assignment and message symmetry principles as for the
PLC schemes in [6], [9], [10].



TABLE I
QUERY SETS FOR A DSS WITH n NONCOLLUDING REPLICATED

DATABASES STORING f MESSAGES AND WHERE THE FIRST (v = 1) OUT
OF µ CANDIDATE FUNCTIONS IS PRIVATELY COMPUTED. FOR SIMPLICITY,

U
(v)
∗ INDICATES THAT THE EXACT REQUESTED SUBINDEX t ∈ [β] IS

OMITTED.

j 1 . . . n

Q
(1)
j (D; 1) U

(1)
1 . . . U

(1)
n

Q
(1)
j (U ; 1) U

(2)
1 , . . . ,U

(µ)
1 · · · U

(2)
n , . . . ,U

(µ)
n

Q
(1)
j (D; 2)

U
(1)
n+1 +U

(2)
2 · · · U

(1)

n+(µ−1)(n−1)2+1
+U

(2)
1

...
...

...

U
(1)
n+µ−1 +U

(µ)
2 · · · U

(1)

n+(µ−1)(n−1)2+(µ−1)
+U

(µ)
1

...
...

...

U
(1)
n+(µ−1)(n−1)

+U
(µ)
n · · · U

(1)
n+n(µ−1)(n−1)

+U
(µ)
n−1

Q
(1)
j (U ; 2)

U
(2)
n+2 +U

(3)
n+1 · · · U

(2)
∗ +U

(3)

n+(µ−1)(n−1)2+1

...
...

...

U
(µ−1)
n+(µ−1)(n−1)

+U
(µ)
∗ · · · U

(µ−1)
n+n(µ−1)(n−1)

+U
(µ)
∗

...
...

...
...

Q
(1)
j (D;µ)

U
(1)
∗ + · · ·+U

(µ)
∗ · · · U

(1)
∗ + · · ·+U

(µ)
∗

...
...

...

U
(1)
∗ + · · ·+U

(µ)
∗ · · · U

(1)
nµ + · · ·+U

(µ)
∗

The overall protocol is composed of µ rounds. For a desired
function indexed by v ∈ [µ], a query set Q

(v)
j , j ∈ [n], is

composed of µ disjoint subsets, one generated by each round
τ ∈ [µ]. For each round τ the query subset is further subdi-
vided into two subsets. The first subset Q(v)

j (D; τ) consists of
τ -sums with a single symbol from the desired message and
τ − 1 symbols from undesired messages, while the second
subset Q

(v)
j (U ; τ) contains τ -sums with symbols only from

undesired messages.2 We let π be a random permutation over
the β message segments. For v ∈ [µ],

U
(v)
t ≜ X

(v)
π(t), t ∈ [β],

denotes a permuted segment from the virtual message X(v),
where the permutation π is selected privately by the user and
is applied as a one-time pad to all messages. Without loss
of generality, let the desired virtual message be X(1). The
construction of the queries for arbitrary n and µ is done round-
wise for each round τ ∈ [µ] and each database as shown in
Table I. The answer string of each database is generated as
follows.

• For the first round (τ = 1), optimally compress the
length-L segments

{
U

(1)
t ,U

(2)
t , . . . ,U

(µ)
t

}
, t ∈ [β],

jointly, which results in LH(X [µ]) + o(L) units.
• In the second round (τ = 2), for the 2-sum

U
(v)
t + U

(v′)
t′ , ∀ v, v′ ∈ [µ], v < v′, and t, t′ ∈

[β], compress each message segment independently
based on max{H(X(v)),H(X(v′))} and then return the
sum of the two compressed segments, which results

2With some abuse of notation, the generated queries are sets containing
their answers.

in Lmax{H(X(v)),H(X(v′))} + o(L) units. For this
round, one can show that in total (n − 1)

∑µ−1
v=1 (µ −

v)LH(X(v)) + o(L) units are downloaded.
• For the following rounds (τ > 2), each database com-

presses the segments of each queried τ -sum
∑τ

l=1 U
(vl)
tl

,
where {v1, . . . , vτ} ⊆ [µ] and (t1, . . . , tτ ) ∈ [β]τ , sep-
arately based on max{H(X(v1)), . . . ,H(X(vτ ))}. Each
database then returns the sum of the compressed seg-
ments in Lmax{H(X(v1)), . . . ,H(X(vτ ))}+ o(L) units.
By the end of each round, one can show that in total
(n − 1)τ−1

∑µ−(τ−1)
v=1

(
µ−v
τ−1

)
LH(X(v)) + o(L) units are

downloaded for each τ ∈ [3 : µ].
1) Recovery and Privacy: The scheme inherently satisfies

the recovery and privacy conditions stated in Section II-B.
Privacy is guaranteed by satisfying the index, message, and
database symmetry principles as for the PLC schemes in [6],
[9], [10]. As for the recovery, one can easily see from the
PIR query structure that the user is able to obtain all β
segments of the desired function based on the answers received
from the n databases. Then, each segment is decoded (or
optimally decompressed) to obtain in total βL symbols with
a probability of decoding error that is arbitrarily close to zero
for a sufficiently large L.

2) Achievable Rate: The PC rate of the scheme, assuming
L → ∞, is given by

R
(a)
=

βLHmin

D

=
nµLHmin

nL

[
H(X [µ]) +

µ∑
τ=2

(n− 1)
τ−1

µ−(τ−1)∑
v=1

(
µ−v
τ−1

)
H(X(v))

]
=

nµ Hmin

n

[
H(X [µ]) +

µ∑
τ=2

(n− 1)
τ−1

µ−(τ−1)∑
v=1

(
µ−v
τ−1

)
H(X(v))

] (6)

(b)
=

nµ−1 Hmin

H(X [µ]) +
µ−1∑
v=1

µ−(v−1)∑
τ=2

(n− 1)τ−1
(
µ−v
τ−1

)
H(X(v))

(c)
=

nµ−1 Hmin

H(X [µ]) +
µ−1∑
v=1

H(X(v))
µ−v∑
τ ′=1

(
µ−v
τ ′

)
(n− 1)τ ′

(d)
=

nµ−1 Hmin

H(X [µ]) +
µ−1∑
v=1

H(X(v))(nµ−v − 1)

=
Hmin

µ−1∑
v=1

1
nv−1 H(X(v)) + 1

nµ−1

[
H(X [µ])−

µ−1∑
v=1

H(X(v))
] ,

where (a) follows from Definition 1, (b) follows from chang-
ing the order of the two summations, (c) results by defining
τ ′ = τ − 1 of the second summation term, and (d) follows
from the binomial identity.

For the scenario of Corollary 3, by a similar approach of
redundancy elimination as in the schemes in [13, Sec. III-
C], the PC scheme above can be modified by removing the



redundant 1-sums. Using [13, Lem. 1] and H(X(v)) = Hmax =
1, ∀ v ∈ [f ], the PC rate can be shown to be equal to (4).

IV. DISCUSSION OF THE OUTER BOUND OF THEOREM 1

By expanding the denominator of (1), denoted by Dopt, we
get

Dopt =

µ∑
v=1

nµ−v+1
[
H(X [v])−H(X [v−1])

]
= nH

(
X [µ]

)
+ n(n− 1)H

(
X [µ−1]

)
+ n(n− 1) · nH

(
X [µ−2]

)
+ · · ·

+ n(n− 1) · nµ−2 H(X(1)).

Next, consider the total download cost of the achievable
scheme for Theorem 2 divided by L, i.e., the denominator of
(6), and denote it by D1. We have

D1 = nH(X [µ]) +

µ∑
τ=2

n(n− 1)τ−1

µ−(τ−1)∑
v=1

(
µ−v
τ−1

)
H(X(v))

= nH(X [µ]) + n(n− 1)

µ−1∑
v=1

(
µ−v
1

)
H(X(v))

+ n(n− 1)

µ−2∑
v=1

(n− 1)
(
µ−v
2

)
H(X(v)) + · · ·

+ n(n− 1) · (n− 1)µ−2 H(X(1)).

By comparing Dopt with D1, it can be seen that because
joint compression of the virtual message segments is not
utilized, the outer bound of Theorem 1 is not achieved. An
open question is to design an optimal scheme that achieves a
download cost of Dopt.

V. SPECIAL CASE: PRIVATE MONOMIAL COMPUTATION

In this section, we consider the special case of PMC. One
can easily see that the assumption of Corollary 3 covers the
scenario of PMC, which includes the f independent messages
as candidate functions. Hence, as L → ∞, the rate in (4) is
achievable for PMC.

In Fig. 1, for the field F3 and n = 3 and 5, we plot the
PMC rate computed from (4) and the outer bound from (2)
as a function of the number of messages f for µ = ĂM(f, g)

with g = 2 and g = 3, where ĂM(f, g) denotes the number
of nonparallel monomials [13, Sec. III-E]. Note that the PMC
rate is close to the outer bound even for a small number of
messages. As f → ∞, it follows from Remark 1 that the PMC
rate approaches Hmin(1− 1/n).

VI. CONCLUSION

We presented a novel PC scheme for noncolluding repli-
cated databases and the scenario of nonlinear computation and
showed that the resulting PC rate equals the PC capacity as the
message size grows for the case when the candidate functions
are the independent messages and one arbitrary nonlinear
function of these. Moreover, the PC rate approaches an outer
bound on the PC capacity and thus becomes the capacity itself
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Fig. 1. PMC rate R versus the number of messages f for the retrieval of
nonparallel monomials over the field F3.

when the number of messages grows. Finally, we compared
the outer bound and the achievable rate for the special case of
PMC.
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