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Abstract—We study a class of distributed hypothesis testing
against conditional independence problems. Under the criterion
that stipulates minimization of the Type II error rate subject
to a (constant) upper bound ε on the Type I error rate, we
characterize the set of encoding rates and exponent for both
discrete memoryless and memoryless vector Gaussian settings.

I. INTRODUCTION

Consider the multiterminal detection system shown in Figure 1.
In this problem, a memoryless vector source (X,Y0, Y1, . . . , YK),
K ≥ 1, has joint distribution that depends on two hypotheses,
a null hypothesis H0 and an alternate hypothesis H1. A detector
that observes directly the pair (X,Y0) but only receives summary
information of the observations (Y1, . . . , YK) seeks to determine
which of the two hypotheses is true. Specifically, Encoder k, 1 ≤
k ≤ K, which observes an i.i.d. string Y nk , sends a message Mk

to the detector a finite rate of Rk bits per observation over a noise-
free channel; and the detector makes its decision between the two
hypotheses on the basis of the received messages (M1, . . . ,MK) as
well as the available pair (Xn, Y n0 ). In doing so, the detector can
make two types of error: Type I error (guessing H1 while H0 is
true) and Type II error (guessing H0 while H1 is true). The type
II error probability decreases exponentially fast with the size n
of the i.i.d. strings, say with an exponent E; and, classically, one
is interested is characterizing the set of achievable rate-exponent
tuples (R1, . . . , RK , E) in the regime in which the probability of
the Type I error is kept below a prescribed small value ε. This
problem, which was first introduced by Berger [1], and then studied
further in [2]–[4], arises naturally in many applications (for recent
developments on this topic, the reader may refer to [5]–[11] and
references therein). Its theoretical understanding, however, is far
from complete, even from seemingly simple instances of it.
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Fig. 1. Distributed hypothesis testing against conditional independence.
One important such instances was studied by Rahman and

Wagner in [12]. In [12], the two hypotheses are such that X and
(Y1, . . . , YK) are correlated conditionally given Y0 under the null

hypothesis H0; and they are independent conditionally given Y0

under the alternate hypothesis H1, i.e., 1

H0 : PX,Y0,Y1...,YK
= PY0

PX,Y1,...,YK |Y0
(1a)

H1 : QX,Y0,Y1...,YK
= PY0

PX|Y0
PY1,...,YK |Y0

. (1b)

Note that (Y0, Y1, . . . , YK) and (Y0, X) have the same distributions
under both hypotheses; and the multiterminal problem (1) is a gen-
eralization of the single-encoder test against independence studied
by Ahlswede and Csiszar in [2]. For the problem (1) Rahman
and Wagner provided inner and outer bounds on the rate-exponent
region which do not match in general (see [12, Theorem 1] for
the inner bound and [12, Theorem 2] for the outer bound). The
inner bound of [12, Theorem 1] is based on a scheme, named
Quantize-Bin-Test scheme therein, that is similar to the Berger-
Tung distributed source coding scheme [13], [14].

In this paper, we study a class of the hypothesis testing prob-
lem (1) obtained by restricting the joint distribution of the variables
under the null hypothesis to satisfy the Markov chain

YS −
− (X,Y0)−
− YSc ∀ S ⊆ K := {1, . . . ,K} (2)

i.e., the encoders’ observations {Yk}k∈K are independent con-
ditionally given (X,Y0) under H0. We investigate both discrete
memoryless (DM) and memoryless vector Gaussian models. For
the DM setting, we provide a converse proof and show that it is
achieved using the Quantize-Bin-Test scheme of [12, Theorem 1].
Our converse proof is inspired by that of the rate-distortion region of
the Chief-Executive Officer (CEO) problem under logarithmic loss
of Courtade and Weissman [15, Theorem 10]. We note that, prior to
this work, for general distributions under the null hypothesis (i.e.,
without the Markov chain (2) under this hypothesis) the optimality
of the Quantize-Bin-Test scheme of [12] for the problem of testing
against conditional independence was known only for the special
case of a single encoder, i.e., K = 1, (see [12, Theorem 3]), a result
which can also be recovered from our result in this paper.

For the vector Gaussian setting too we provide a full character-
ization of the rate-exponent region. For the proof of the converse
of this result, we obtain an outer bound by evaluating our outer
bound the DM model by means of a technique that relies on the de
Bruijn identity and the properties of Fisher information. In doing
so, we show that the Quantize-Bin-Scheme of [12, Theorem 1] with
Gaussian test channels and time-sharing is optimal, thus providing

1In fact, the model of [12] also involves a random variable YK+1, which
is chosen here to be deterministic as it is not relevant for the analysis and
discussion that will follow in this paper (see Remark 2).
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what appears to be the first optimality result for the Gaussian
hypothesis testing against conditional independence problem in the
vector case even for the single-encoder case, i.e., K = 1.

A. Notation
Throughout this paper, we use the following notation. Upper

case letters are used to denote random variables, e.g., X; lower
case letters are used to denote realizations of random variables,
e.g., x; and calligraphic letters denote sets, e.g., X . The cardinality
of a set X is denoted by |X |. The closure of a set A is denoted
by A. The length-n sequence (X1, . . . , Xn) is denoted as Xn;
and, for integers j and k such that 1 ≤ k ≤ j ≤ n, the sub-
sequence (Xk, Xk+1, . . . , Xj) is denoted as Xj

k. Probability mass
functions (pmfs) are denoted by PX(x) = Pr{X = x}; and,
sometimes, for short, as p(x). We use P(X ) to denote the set of
discrete probability distributions on X . Boldface upper case letters
denote vectors or matrices, e.g., X, where context should make
the distinction clear. For an integer K ≥ 1, we denote the set of
integers smaller or equal K as K = {k ∈ N : 1 ≤ k ≤ K}. For
a set of integers S ⊆ K, the complementary set of S is denoted
by Sc, i.e., Sc = {k ∈ N : k ∈ K \ S}. Sometimes, for
convenience we will need to define S̄ as S̄ = {0} ∪ Sc. For a set
of integers S ⊆ K; the notation XS designates the set of random
variables {Xk} with indices in the set S, i.e., XS = {Xk}k∈S . We
denote the covariance of a zero mean, complex-valued, vector X by
Σx = E[XX†], where (·)† indicates conjugate transpose. Similarly,
we denote the cross-correlation of two zero-mean vectors X and
Y as Σx,y = E[XY†], and the conditional correlation matrix of
X given Y as Σx|y = E

[(
X − E[X|Y]

)(
X − E[X|Y]

)†] i.e.,
Σx|y = Σx −Σx,yΣ−1

y Σy,x. For matrices A and B, the notation
diag(A,B) denotes the block diagonal matrix whose diagonal
elements are the matrices A and B and its off-diagonal elements are
the all zero matrices. Also, for a set of integers J ⊂ N and a family
of matrices {Ai}i∈J of the same size, the notation AJ is used to
denote the (super) matrix obtained by concatenating vertically the
matrices {Ai}i∈J , where the indices are sorted in the ascending
order, e.g, A{0,2} = [A†0,A

†
2]†.

II. PROBLEM FORMULATION

Consider a (K + 2)-dimensional memoryless source
(X,Y0, Y1, . . . , YK) with finite alphabet X ×Y0 ×Y1 × . . .×YK .
The joint probability mass function (pmf) of (X,Y0, Y1, . . . , YK)
is assumed to be determined by a hypothesis H that takes one of
two values, a null hypothesis H0 and an alternate hypothesis H1.
Specifically, X and (Y0, Y1, . . . , YK) are correlated under the null
hypothesis H0, with their joint distribution assumed to satisfy the
Markov chain

YS −
− (X,Y0)−
− YSc ∀ S ⊆ K := {1, . . . ,K} (3)

under this hypothesis; and X and (Y1, . . . , YK) are independent
conditionally given Y0 under the alternate hypothesis H1, i.e.,

H0 : PX,Y0,Y1...,YK
= PX,Y0

K∏
i=1

PYk|X,Y0
(4a)

H1 : QX,Y0,Y1...,YK
= PY0

PX|Y0
PY1,...,YK |Y0

. (4b)

Let now {(Xi, Y0,i, Y1,i, . . . , YK,i)}ni=1 be a sequence of n inde-
pendent copies of (X,Y0, Y1, . . . , YK); and consider the detection
system shown in Figure 1. Here, there are K sensors and one

detector. Sensor k ∈ K observes the memoryless source component
Y nk and sends a message Mk = φ̆

(n)
k (Y nk ) to the detector, where

the mapping
φ̆

(n)
k : Ynk → {1, . . . ,M

(n)
k } (5)

designates the encoding operation at this sensor. The detector
observes the pair (Xn, Y n0 ) and uses them, as well as the messages
{M1, . . . ,MK} gotten from from the sensors, to make a decision
between the two hypotheses, based on a decision rule

ψ̆(n) : {1, . . . ,M (n)
1 }×. . .×{1, . . . ,M (n)

K }×X
n×Yn0 → {H0, H1}.

(6)
The mapping (6) is such that ψ̆(n)(m1, . . . ,mK , x

n, yn0 ) = H0 if
(m1, . . . ,mK , x

n, yn0 ) ∈ An and H1 otherwise, with

An ⊆
n∏
k=1

{1, . . . ,M (n)
k } × X

n × Yn0

designating the acceptance region for H0. The encoders {φ̆(n)
k }

K
k=1

and the detector ψ̆(n) are such that the Type I error probability does
not exceed a prescribed level ε ∈ [0, 1], i.e.,

P
φ̆

(n)
1 (Y n

1 ),...,φ̆
(n)
K (Y n

K),Xn,Y n
0

(Acn) ≤ ε (7)

and the Type II error probability does not exceed β, i.e.,

Q
φ̆

(n)
1 (Y n

1 ),...,φ̆
(n)
K (Y n

K),Xn,Y n
0

(An) ≤ β. (8)

Definition 1. A rate-exponent tuple (R1, . . . , RK , E) is achievable
for a fixed ε ∈ [0, 1] if for any positive δ and sufficiently large n
there exist encoders {φ̆(n)

k }
K
k=1 and a detector ψ̆(n) such that

1

n
logM

(n)
k ≤ Rk + δ for all k ∈ K, and (9a)

− 1

n
log β ≥ E − δ. (9b)

The rate-exponent regionRHT is defined as

RHT :=
⋂
ε>0

RHT,ε, (10)

where RHT,ε is the set of all achievable rate-exponent vectors for a
fixed ε ∈ [0, 1].

III. DISCRETE MEMORYLESS CASE

We start with an entropy characterization of the rate-exponent
regionRHT as defined by (10). Let

R? =
⋃
n

⋃
{φ̆(n)

k }k∈K

R?
(
n, {φ̆(n)

k }k∈K
)

(11)

where

R?
(
n, {φ̆(n)

k }k∈K
)

=
{

(R1, . . . , RK , E) s.t.

Rk ≥
1

n
log |φ̆(n)

k (Y nk )| for all k ∈ K, and (12a)

E ≤ 1

n
I({φ̆(n)

k (Y nk )}k∈K;Xn|Y n0 )
}
. (12b)

We have the following proposition the proof of which is essentially
similar to that of [2, Theorem 5]; and, hence, is omitted.

Proposition 1. RHT =R?.



We now have the following theorem which provides a single-letter
characterization of the rate-exponent regionRHT.

Theorem 1. The rate-exponent regionRHT is given by the union of
all non-negative tuples (R1, . . . , RK , E) that satisfy, for all subsets
S ⊆ K,

E ≤ I(USc ;X|Y0, Q) +
∑
k∈S

(
Rk − I(Yk;Uk|X,Y0, Q)

)
for some auxiliary random variables (U1, . . . , UK , Q) with distri-
bution PUK,Q(uK, q) such that

PX,Y0,YK,UK,Q(x, y0, yK, uK, q) = PQ(q)PX,Y0
(x, y0)

=

K∏
k=1

PYk|X,Y0
(yk|x, y0)

K∏
k=1

PUk|Yk,Q(uk|yk, q). (13)

Proof. The proof of Theorem 1 is given in Section V-A.

Remark 1. As we mentioned in the introduction section, Rahman
and Wagner [12] study the hypothesis testing problem of Figure 1
in the case in whichX is replaced by a two-source (YK+1, X) such
that, like in our setup (which corresponds to YK+1 deterministic),
Y0 induces conditional independence between (Y1, . . . , YK , YK+1)
and X under the alternate hypothesis H1. Under the null hy-
pothesis H0, however, the model studied by Rahman and Wagner
in [12] assumes a more general distribution than ours in which
(Y1, . . . , YK , YK+1) are arbitrarily correlated among them and
with the pair (X,Y0). More precisely, the joint distributions of
(X,Y1, . . . , YK , YK+1) under the null and alternate hypotheses as
considered in [12] are

H0 : P̃X,Y0,Y1...,YK ,YK+1
= PY0

PX,Y1,...,YK ,YK+1|Y0
(14a)

H1 : Q̃X,Y0,Y1...,YK ,YK+1
= PY0

PX|Y0
PY1,...,YK ,YK+1|Y0

.

(14b)

For this model, they provide inner and outer bounds on the rate-
exponent region which do not mach in general (see [12, Theorem
1] for the inner bound and [12, Theorem 2] for the outer bound).
The inner bound of [12, Theorem 1] is based on a scheme, named
Quantize-Bin-Test scheme therein, that is similar to the Berger-
Tung distributed source coding scheme [13], [14]; and whose
achievable rate-exponent region can be shown through submodu-
larity arguments to be equivalent to the region stated in Theorem 1
(with YK+1 set to be deterministic). The result of Theorem 1 then
shows that if the joint distribution of the variables under the null
hypothesis is restricted to satisfy (4a), i.e., the encoders’ observa-
tions {Yk}k∈K are independent conditionally given (X,Y0), then
the Quantize-Bin-Test scheme of [12, Theorem 1] is optimal. We
note that, prior to this work, for general distributions under the null
hypothesis (i.e., without the Markov chain (3) under this hypothesis)
the optimality of the Quantize-Bin-Test scheme of [12] for the
problem of testing against conditional independence was known
only for the special case of a single encoder, i.e., K = 1, (see [12,
Theorem 3]), a result which can also be recovered from Theorem 1.

IV. MEMORYLESS VECTOR GAUSSIAN CASE

We now turn to a continuous example of the hypothesis testing
problem studied in this paper. Here, (X,Y0,Y1, . . . ,YK) is a
zero-mean Gaussian random vector such that

Y0 = H0X + N0 (15)

where H0 ∈ Cn0×nx , X ∈ Cnx and N0 ∈ Cn0 are independent
Gaussian vectors with zero-mean and covariance matrices Σx � 0
and Σ0 � 0, respectively. The vectors (Y1, . . . ,YK) and X are
correlated under the null hypothesis H0 and are independent under
the alternate hypothesis H1, with

H0 : Yk = HkX + Nk, for all k ∈ K (16a)
H1 : (Y1, . . . ,YK) independent from X conditionally given Y0.

(16b)

The noise vectors (N1, . . . ,NK) are jointly Gaussian with zero
mean and covariance matrix ΣnK � 0. They are assumed to be
independent from X but correlated among them and with N0, with
for every S ⊆ K,

NS −
−N0 −
−NSc . (17)

Let Σk denote the covariance matrix of noise Nk, k ∈ K. Also,
let RVG-HT denote the rate-exponent region of this vector Gaussian
hypothesis testing against conditional independence problem.
For convenience, we now introduce the following notation which
will be instrumental in what follows. Let, for every set S ⊆ K, the
set S̄ = {0} ∪ Sc. Also, for S ⊆ K and given matrices {Ωk}Kk=1
such that 0 � Ωk � Σ−1

k , let ΛS̄ designate the block-diagonal
matrix given by

ΛS̄ :=

[
0 0
0 diag({Σk −ΣkΩkΣk}k∈Sc)

]
(18)

where 0 in the principal diagonal elements is the n0×n0-all zero
matrix.
The following theorem gives an explicit characterization ofRVG-HT.

Theorem 2. The rate-exponent regionRVG-HT of the vector Gaus-
sian hypothesis testing against conditional independence problem
is given by the set of all non-negative tuples (R1, . . . , RK , E) that
satisfy, for all subsets S ⊆ K,

E ≤
∑
k∈S

(
Rk + log |I−ΩkΣk|

)
− log

∣∣∣I + ΣxH†0Σ−1
0 H0

∣∣∣
+ log

∣∣∣I + ΣxH†S̄Σ−1
nS̄

(
I−ΛS̄Σ−1

nS̄

)
HS̄

∣∣∣
for matrices {Ωk}Kk=1 such that 0 � Ωk � Σ−1

k , where S̄ =
{0} ∪ Sc and ΛS̄ is given by (18). �

Proof. The proof of Theorem 2 is given in Section V-B.

In what follows, we elaborate on two special cases of Theorem 2,
i) the one-encoder vector Gaussian testing against conditional in-
dependence problem (i.e., K = 1) and ii) the K-encoder scalar
Gaussian testing against independence problem.

i) Let us first consider the case K = 1. In this case, the Markov
chain (17) which is to be satisfied under the null hypothesis is non-
restrictive; and Theorem 2 then provides a complete solution of the
(general) one-encoder vector Gaussian testing against conditional
independence problem. More precisely, in this case the optimal
trade-off between rate and Type II error exponent is given by the
set of pairs (R1, E) that satisfy

E ≤ R1 + log |I−Ω1Σ1| (19a)

E ≤ log
∣∣∣I + ΣxH†{0,1}Σ

−1
n{0,1}

(
I−Λ{0,1}Σ

−1
n{0,1}

)
H{0,1}

∣∣∣
− log

∣∣∣I + ΣxH†0Σ−1
0 H0

∣∣∣ , (19b)



for some n1×n1 matrix Ω1 such that 0 � Ω1 � Σ−1
1 , where

H{0,1} = [H†0,H
†
1]†, Σn{0,1} is the covariance matrix of noise

(N0,N1) and

Λ{0,1} :=

[
0 0
0 Σ1 −Σ1Ω1Σ1

]
(20)

with the 0 in its principal diagonal denoting the n0×n0-all zero
matrix. In particular, for the setting of testing against independence,
i.e., Y0 = ∅ and the decoder’s task reduced to guessing whether
Y1 and X are independent or not, the optimal trade-off expressed
by (19) reduces to the set of (R1, E) pairs that satisfy, for some
n1×n1 matrix Ω1 such that 0 � Ω1 � Σ−1

1 ,

E ≤ min
{
R1 + log |I−Ω1Σ1| , log

∣∣∣I + ΣxH†1Ω1H1

∣∣∣} .
(21)

Observe that (19) is the counter-part, to the vector Gaussian setting,
of the result of [12, Theorem 3] which provides a single-letter
formula for the Type II error exponent for the one-encoder DM
testing against conditional independence problem. Similarly, (21) is
the solution of the vector Gaussian version of the one-encoder DM
testing against independence problem which is studied, and solved,
by Ahlswede and Csiszar in [2, Theorem 2]. Also, we mention
that, perhaps non-intuitive, in the one-encoder vector Gaussian
testing against independence problem swapping the roles of Y1

and X (i.e., giving X to the encoder and the noisy (under the null
hypothesis) Y1 to the decoder) does not result in an increase of
the Type II error exponent which is then identical to (21). Note
that this is in sharp contrast with the related2 setting of standard
lossy source reproduction, i.e., the decoder aiming to reproduce
the source observed at the encoder to within some average squared
error distortion level using the sent compression message and its
own side information, for which it is easy to see that, for given
R1 bits per sample, smaller distortion levels are allowed by having
the encoder observe X and the decoder observe Y1, instead of the
encoder observing the noisy Y1 = H1X + N1 and the decoder
observing X.

ii) Consider now the special case of the setup of Theorem 2 in
which K ≥ 2, Y0 = ∅, and the sources and noises are all scalar
complex-valued, i.e., nx = 1 and nk = 1 for all k ∈ K. The vector
(Y1, . . . , YK) and X are correlated under the null hypothesis H0

and independent under the alternate hypothesis H1, with

H0 : Yk = X +Nk, for all k ∈ K (22a)
H1 : (Y1, . . . , YK) independent from X. (22b)

The noises N1, . . . , NK are zero-mean jointly Gaussian, mutually
independent and independent from X. Also, we assume that the
variances σ2

k of noise Nk, k ∈ K, and σ2
X of X are all positive. In

this case, it can be easily shown that Theorem 2 reduces to

RSG-HT =
{

(R1, . . . , RK , E) : ∃ (γ1, . . . , γK) ∈ RK+ such that

γk ≤
1

σ2
k

, ∀k ∈ K, and ∀ S ⊆ K∑
k∈S

Rk ≥ E + log
[((

1 + σ2
X

∑
k∈Sc

γk

) ∏
k∈S

(1− γkσ2
k)
)−1]}

.

(23)

2The connection, which is sometimes misleading, consists in viewing the
decoder in the hypothesis testing against independence problem considered
here as one that computes a binary-valued function of (X,Y1).

The regionRSG-HT as given by (23) can be used to, e.g., characterize
the centralized rate region, i.e., the set of rate vectors (R1, . . . , RK)
that achieve the centralized Type II error exponent

I(Y1, . . . , YK ;X) =

K∑
k=1

log
σ2
X

σ2
k

. (24)

We close this section by mentioning that, implicit in Theorem 2,
the Quantize-Bin-Test scheme of [12, Theorem 1] with Gaussian
test channels and time-sharing is optimal for the vector Gaussian
K-encoder hypothesis testing against conditional independence
problem (16). Furthermore, we note that Rahman and Wagner also
characterized the optimal rate-exponent region of a different3 Gaus-
sian hypothesis testing against independence problem, called the
Gaussian many-help-one hypothesis testing against independence
problem therein, in the case of scalar valued sources [12, Theorem
7]. Specialized to the case K = 1, the result of Theorem 2 recovers
that of [12, Theorem 7] in the case of no helpers; and extends it to
vector-valued sources and testing against conditional independence
in that case.

V. PROOFS

A. Proof of Theorem 1

1) Convese part: Let a non-negative tuple (R1, . . . , RK , E) ∈
RHT be given. Since RHT = R?, then there must exist a series of
non-negative tuples {(R(m)

1 , . . . , R
(m)
K , E(m))}m∈N such that

(R
(m)
1 , . . . , R

(m)
K , E(m)) ∈ R? for all m ∈ N, and (25a)

lim
m→∞

(R
(m)
1 , . . . , R

(m)
K , E(m)) = (R1, . . . , RK , E). (25b)

Fix δ′ > 0. Then, ∃ m0 ∈ N such that for all m ≥ m0, we have

Rk ≥ R
(m)
k − δ′ for all k ∈ K, and (26a)

E ≤ E(m) + δ′. (26b)

For m ≥ m0, there exist a series {nm}m∈N and functions
{φ̆(nm)
k }k∈K such that

R
(m)
k ≥ 1

nm
log |φ̆(nm)

k | for all k ∈ K, and (27a)

E(m) ≤ 1

nm
I({φ̆(nm)

k (Y nm

k )}k∈K;Xnm |Y nm
0 ). (27b)

Combining (26) and (27) we get that for all m ≥ m0,

Rk ≥
1

nm
log |φ̆(nm)

k (Y nm

k )| − δ′ for all k ∈ K, and (28a)

E ≤ 1

nm
I({φ̆(nm)

k (Y nm

k )}k∈K;Xnm |Y nm
0 ) + δ′. (28b)

The second inequality of (28) implies that

H(Xnm |{φ̆(nm)
k (Y nm

k )}k∈K, Y nm
0 ) ≤ nm(H(X|Y0)−E)+nmδ

′.
(29)

Let S ⊆ K a given subset of K and Jk := φ̆
(nm)
k (Y nm

k ). Also,
define, for i = 1, . . . , nm, the following auxiliary random variables

Uk,i := (Jk, Y
i−1
k ), Qi := (Xi−1, Xnm

i+1, Y
i−1
0 , Y nm

0,i+1). (30)

3This problem is related to the Gaussian many-help-one problem [16]–[18].
Here, different from the setup of Figure 1, the source X is observed directly
by a main encoder who communicates with a detector that observes Y in
the aim of making a decision on whether X and Y are independent or not.
Also, there are helpers that observe independent noisy versions of X and
communicate with the detector in the aim of facilitating that test.



Note that, for all k ∈ K, it holds that Uk,i −
− Yk,i −
− (Xi, Y0,i)−

− YK\k,i −
− UK\k,i is a Markov chain in this order.
We have

nm
∑
k∈S

Rk ≥
∑
k∈S

H(Jk)

≥ H(JS)

≥ H(JS |JSc , Y nm
0 )

≥ I(JS ;Xnm , Y nm

S |JSc , Y nm
0 )

= I(JS ;Xnm |JSc , Y nm
0 ) + I(JS ;Y nS |X

nm , JSc , Y nm
0 )

= H(Xnm |JSc , Y nm
0 )−H(Xnm |JK, Y nm

0 )

+ I(JS ;Y nm

S |Xnm , JSc , Y nm
0 )

(a)
≥ H(Xnm |JSc , Y nm

0 )−H(Xnm |Y nm
0 )

+ I(JS ;Y nm

S |Xnm , JSc , Y nm
0 ) + nmE − nmδ′

=

nm∑
i=1

H(Xi|JSc , Xi−1, Y nm
0 )−H(Xnm |Y nm

0 )

+ I(JS ;Y nm

S |Xnm , JSc , Y nm
0 ) + nmE − nmδ′

(b)
≥

nm∑
i=1

H(Xi|JSc , Xi−1, Xnm
i+1, Y

i−1
Sc , Y nm

0 )−H(Xnm |Y nm
0 )

+ I(JS ;Y nm

S |Xnm , JSc , Y nm
0 ) + nmE − nmδ′

(c)
=

nm∑
i=1

H(Xi|USc,i, Y0,i, Qi)−H(Xnm |Y nm
0 )

+ I(JS ;Y nm

S |Xnm , JSc , Y nm
0 ) + nmE − nmδ′

(d)
= I(JS ;Y nm

S |Xnm , JSc , Y nm
0 )−

nm∑
i=1

I(USc,i, Xi|Y0,i, Qi)

+ nmE − nmδ′ (31)

where (a) follows by using (29); (b) holds since conditioning
reduces entropy; and (c) follows by substituting using (30); and (d)
holds since (Xnm , Y nm

0 ) is memoryless and Qi is independent of
(Xi, Y0,i) for all i = 1, . . . , nm.
The term I(JS ;Y nm

S |Xnm , JSc , Y nm
0 ) on the RHS of (31) can be

lower bounded as

I(JS ;Y nm

S |Xnm , JSc , Y nm
0 )

(a)
≥
∑
k∈S

I(Jk;Y nm

k |Xnm , Y nm
0 )

=
∑
k∈S

nm∑
i=1

I(Jk;Yk,i|Y i−1
k , Xnm , Y nm

0 )

(b)
=
∑
k∈S

nm∑
i=1

I(Jk, Y
i−1
k ;Yk,i|Xnm , Y nm

0 )

(c)
=
∑
k∈S

nm∑
i=1

I(Uk,i;Yk,i|Xi, Y0,i, Qi) (32)

where (a) follows due to the Markov chain Jk −
− Y nm

k −
−
(Xnm , Y nm

0 )−
−Y nm

S\k−
−JS\k under the hypothesisH0; (b) follows
due to the Markov chain Yk,i −
− (Xnm , Y nm

0 )−
− Y i−1
k under the

hypothesis H0; and (c) follows by substituting using (30).
Then, combining (31) and (32), we get

nmE ≤
nm∑
i=1

I(USc,i, Xi|Y0,i, Qi) + nm
∑
k∈S

Rk

−
∑
k∈S

nm∑
i=1

I(Uk,i;Yk,i|Xi, Y0,i, Qi) + nmδ
′. (33)

Noticing that δ′ in (33) can be chosen arbitrarily small, a standard
time-sharing argument completes the proof of the converse part.

2) Direct part: The achievability follows by applying the
Quantize-Bin-Test scheme of Rahman and Wagner [12, Appendix
B]. Applied to our model, the rate-exponent region achieved by this
scheme, which we denote asRQBT, is given by the union of all non-
negative rate-exponent tuples (R1, . . . , RK , E) for which∑

k∈S
Rk ≥ I(US ;YS |USc , Y0, Q), ∀S ⊆ K, (34a)

E ≤ I(UK;X|Y0). (34b)

Through submodularity arguments that are essentially similar to
in [15, Appendix B] (see also [19] and [20, Appendix IV]), and
which we omit here for brevity, the region RQBT can be shown to
be equivalent to the regionRHT as stated in Theorem 1.

B. Proof of Theorem 2

Let an achievable tuple (R1, . . . , RK , E) for the memroryless
vector Gaussian hypothesis testing against conditional indepen-
dence problem of Section IV be given. By a standard exten-
sion of the result of Theorem 1 to the continuous alphabet case
(through standard discretezation arguments), there must exist a.r.v.
(U1, . . . , UK , Q) with distribution that factorizes as

PX,Y0,YK,UK,Q(x,y0,yK, uK, q) = PQ(q)PX,Y0
(x,y0)

=

K∏
k=1

PYk|X,Y0
(yk|x,y0)

K∏
k=1

PUk|Yk,Q(uk|yk, q). (35)

such that for all S ⊆ K,

E −
∑
k∈S

Rk ≤ I(USc ; X|Y0, Q)−
∑
k∈S

I(Yk;Uk|X,Y0, Q).

(36)
The converse proof of Theorem 2 relies on deriving an upper bound
on the RHS of (36). In doing so, we use the technique of [21,
Theorem 8] which relies on the de Bruijn identity and the properties
of Fisher information; and extend the argument to account for the
time-sharing variable Q and side information Y0.

For convenience, we first state the following lemma.

Lemma 1. [21], [22] Let (X,Y) be a pair of random vectors with
pmf p(x,y). We have

log |(πe)J−1(X|Y)| ≤ h(X|Y) ≤ log |(πe)mmse(X|Y)|

where the conditional Fisher information matrix is defined as

J(X|Y) := E[∇ log p(X|Y)∇ log p(X|Y)†]

and the minimum mean squared error (MMSE) matrix is

mmse(X|Y) := E[(X− E[X|Y])(X− E[X|Y])†]. �

Fix q ∈ Q, S ⊆ Q. Also, let 0 � Ωk,q � Σ−1
k and

mmse(Yk|X, Uk,q,Y0, q) = Σk −ΣkΩk,qΣk. (37)

Such Ωk,q always exists since

0 � mmse(Yk|X, Uk,q,Y0, q) � Σyk|(x,y0) = Σk.



Then, we have

I(Yk;Uk|X,Y0, Q = q)

= log |(πe)Σk| − h(Yk|X, Uk,q,Y0, Q = q)

(a)
≥ log |Σk| − log |mmse(Yk|X, Uk,q,Y0, Q = q)|
(b)
= − log |I−Ωk,qΣk| (38)

where (a) is due to Lemma 1; and (b) is due to (37).
Now, let the matrix ΛS̄,q be defined as

ΛS̄,q :=

[
0 0
0 diag({Σk −ΣkΩk,qΣk}k∈Sc)

]
. (39)

Then, we have

I(USc ; X|Y0, Q = q) = h(X|Y0)− h(X|USc,q,Y0, Q = q)

(a)
≤ h(X|Y0)− log |(πe)J−1(X|USc,q,Y0, q)|
(b)
= h(X|Y0)

− log

∣∣∣∣(πe)(Σ−1
x + H†S̄Σ−1

nS̄

(
I−ΛS̄,qΣ

−1
nS̄

)
HS̄

)−1
∣∣∣∣
(40)

where (a) follows by using Lemma 1; and for (b) holds by using
the equality

J(X|USc,q,Y0, q) = Σ−1
x + H†S̄Σ−1

nS̄

(
I−ΛS̄,qΣ

−1
nS̄

)
HS̄ . (41)

the proof of which uses a connection between MMSE and Fisher
information as shown next. More precisely, for the proof of (41)
first recall de Brujin identity which relates Fisher information and
MMSE.

Lemma 2. [21] Let (V1,V2) be a random vector with finite
second moments and Z ∼ CN (0,Σz) independent of (V1,V2).
Then

mmse(V2|V1,V2 + Z) = Σz −ΣzJ(V2 + Z|V1)Σz. �

From MMSE estimation of Gaussian random vectors, we have

X = E[X|YS̄ ] + WS̄ = GS̄YS̄ + WS̄ (42)

where GS̄ := ΣwS̄H†S̄Σ−1
nS̄ , and WS̄ ∼ CN (0,ΣwS̄ ) is a

Gaussian vector that is independent of YS̄ and

Σ−1
wS̄ := Σ−1

x + H†S̄Σ−1
nS̄ HS̄ . (43)

Next, we show that the cross-terms of
mmse

(
YSc |X, USc,q,Y0, q

)
are zero. For i ∈ Sc and j 6= i, we

have

E
[
(Yi − E[Yi|X, USc,q,Y0, q])(Yj − E[Yj |X, USc,q,Y0, q])

†]
(a)
= E

[
E
[
(Yi − E[Yi|X, USc,q,Y0, q])

×(Yj − E[Yj |X, USc,q,Y0, q])
†|X,Y0

]]
(b)
= E

[
E
[
(Yi − E[Yi|X, USc,q,Y0, q])|X,Y0

]
×E
[
(Yj − E[Yj |X, USc,q,Y0, q])

†|X,Y0

]]
= 0, (44)

where (a) is due to the law of total expectation; (b) is due to the
Markov chain Yk −
− (X,Y0)−
−YK\k. Then, we have

mmse
(
GS̄YS̄

∣∣X, USc,q,Y0, q
)

= GS̄ mmse
(
YS̄ |X, USc,q,Y0, q

)
G†S̄

(a)
= GS̄

[
0 0
0 diag({mmse(Yk|X, USc,q,Y0, q)}k∈Sc)

]
G†S̄

(b)
= GS̄ΛS̄,qG

†
S̄ (45)

where (a) follows since the cross-terms are zero as shown in (44);
and (b) follows due to (37) and the definition of ΛS̄,q given in (39).

We note that WS̄ is independent of YS̄ = (Y0,YSc); and, with
the Markov chain USc −
−YSc −
− (X,Y0), which itself implies
USc−
−YSc−
−(X,Y0,WS̄), this yields that WS̄ is independent of
USc . Thus, WS̄ is independent of (GS̄YS̄ , USc ,Y0, Q). Applying
Lemma 2 with V1 := (USc ,Y0, Q), V2 := GS̄YS̄ and Z :=
WS̄ , we get

J(X|USc,q,Y0, q)

= Σ−1
wS̄ −Σ−1

wS̄ mmse
(
GS̄YS̄

∣∣X, USc,q,Y0, q
)
Σ−1

wS̄

(a)
= Σ−1

wS̄ −Σ−1
wS̄GS̄ΛS̄,qG

†
S̄Σ−1

wS̄

(b)
= Σ−1

x + H†S̄Σ−1
nS̄ HS̄ −H†S̄Σ−1

nS̄ ΛS̄,qΣ
−1
nS̄ HS̄

= Σ−1
x + H†S̄Σ−1

nS̄

(
I−ΛS̄,qΣ

−1
nS̄

)
HS̄S̄ ,

where (a) is due to (45); and (b) follows due to the definitions of
Σ−1

wS̄ and GS̄ .
Next, we average the expression in (38) and (40) over the time-
sharing Q and letting Ωk :=

∑
q∈Q p(q)Ωk,q , we obtain the lower

bound

I(Yk; Uk|X,Y0, Q) =
∑
q∈Q

p(q)I(Yk; Uk|X,Y0, Q = q)

(a)
≥ −

∑
q∈Q

p(q) log |I−Ωk,qΣk|

(b)
≥ − log |I−

∑
q∈Q

p(q)Ωk,qΣk|

= − log |I−ΩkΣk| (46)

where (a) follows from (38); and (b) follows from the concavity of
the log-det function and Jensen’s Inequality.
Besides, we have

I(USc ; X|Y0, Q = q) = h(X|Y0)−
∑
q∈Q

p(q)h(X|USc,q,Y0, Q = q)

(a)
≤ h(X|Y0)

−
∑
q∈Q

p(q) log

∣∣∣∣(πe)(Σ−1
x + H†S̄Σ−1

nS̄

(
I−ΛS̄,qΣ

−1
nS̄

)
HS̄

)−1
∣∣∣∣

(b)
≤ h(X|Y0)− log

∣∣∣∣(πe)(Σ−1
x + H†S̄Σ−1

nS̄

(
I−ΛS̄Σ−1

nS̄

)
HS̄

)−1
∣∣∣∣ ,

(47)

where (a) is due to (40); and (b) is due to the concavity of the log-
det function and Jensen’s inequality and the definition of ΛS̄ given
in (18).



Finally, combining (46) and (47), noting that Ωk =∑
q∈Q p(q)Ωk,q � Σ−1

k since 0 � Ωk,q � Σ−1
k , and taking the

union over Ωk satisfying 0 � Ωk � Σ−1
k .
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