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Abstract—A memoryless state-dependent broadcast channel
(BC) is considered, where the transmitter wishes to convey two
private messages to two receivers while simultaneously estimating
the respective states via generalized feedback. The model at
hand is motivated by a joint radar and communication system
where radar and data applications share the same frequency
band. For physically degraded BCs with i.i.d. state sequences, we
characterize the capacity-distortion tradeoff region. For general
BCs, we provide inner and outer bounds on the capacity-
distortion region, as well as a sufficient condition when it
is equal to the product of the capacity region and the set
of achievable distortion. Interestingly, the proposed synergetic
design significantly outperforms a conventional approach that
splits the resource either for sensing or communication.

I. INTRODUCTION

A key-enabler of future high-mobility networks such as

Vehicle-to-Everything (V2X) is the ability to continuously

track the dynamically changing environment, hereafter called

the state, and to react accordingly by exchanging information

between nodes. Although state sensing and communication

have been designed separately in the past, power and spectral

efficiency as well as hardware costs encourage the integration

of these two functions, such that they are operated by sharing

the same frequency band and hardware (see e.g. [1]). A typical

example of such a scenario is joint radar parameter estimation

and communication, where the transmitter equipped with a

monostatic radar wishes to convey a message to a (already

detected) receiver and simultaneously estimate the state param-

eters of interest such as velocity and range [2]. Motivated by

such an application, the first information theoretical model for

joint sensing and communication has been introduced in [3].

By modeling the backscattered signal as generalized feedback

and designing carefully the input signal, the capacity-distortion

tradeoff has been characterized for a single-user channel [3],

while lower and upper bounds on the rate-distortion region

over multiple access channel has been provided in [4].

The current paper extends [3] to the broadcast channel (BC),

where the transmitter wishes to convey private messages to two

receivers and simultaneously estimate their respective states.

For simplicity, the state information is assumed known at each

receiver. Although oversimplified, the scenario at hand relates

to vehicular networks where a transmitter vehicle, equipped

with a monostatic radar, sends (safety-related) messages to

multiple vehicles and simultaneously estimates the parameters

of these vehicles. The full characterization of the capacity-

distortion region is very challenging, because the capacity

region of memoryless BCs with generalized feedback is gen-

erally unknown even without state sensing (see e.g. [5]).

Therefore, we consider first physically degraded BCs where

generalized feedback is only useful for state sensing, like

for the single user channel. The capacity-distortion region

is completely characterized for this class of BCs. Moreover,

closed-form expressions of the region are provided for some

binary examples. The numerical evaluations illustrate inter-

esting tradeoffs between the achievable rates and distortions

across two receivers. For general BCs, we provide a sufficient

condition when the capacity-distortion region is simply the

product of the capacity region and the set of all achievable

distortions, thus no tradeoff between communication and sens-

ing arises. Furthermore, we provide general inner and outer

bounds on the capacity-distortion region, as well as a state-

dependent version of Dueck’s BC. For all these kinds of

BCs, we show though numerical examples that the synergetic

design significantly outperforms the resource-sharing scheme

that splits the resource either for sensing or communication.

The rest of the paper is organized as follows. Section II

introduces our model and Section III presents some cases that

yield no tradeoff between sensing and communication. Section

IV focuses on the physical degraded broadcast channel and

provides some examples. Finally, upper and lower bounds for

the general memoryless broadcast channel are provided along

with an example in Section V.

II. SYSTEM MODEL

Consider a two-user state-dependent memoryless broadcast

channel (SDMBC) with two private messages W1 and W2 as

illustrated in Fig. 1. The model comprises a two-dimensional

memoryless state sequence {(S1,i, S2,i)}i≥1 whose samples at

time i are distributed according to a given joint law PS1S2
over

the state alphabets S1 ×S2. Given input and output alphabets

X ,Y1,Y2,Z , input Xi = x ∈ X and state-realizations S1,i =
s1 ∈ S1 and S2,i = s2 ∈ S2, the SDMBC produces a triple

of outputs (Y1,i, Y2,i, Zi) ∈ Y1×Y2×Z according to a given

time-invariant transition law PY1Y2Z|S1S2X(·, ·, ·|s1, s2, x), for

each time i. A SDMBC is thus entirely specified by the tuple

of alphabets and (conditional) pmfs

(X ,Y1,Y2,Z, PS1S2
, PY1Y2Z|S1S2X). (1)

We will often describe a SDMBC only by the pair of pmfs

(PS1S2
, PY1Y2Z|S1S2X), in which case, the corresponding al-

phabets should be clear from the context.
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Fig. 1. Broadcast model for joint sensing and communication

A (2nR1 , 2nR2 , n) code for an SDMBC PY1Y2Z|S1S2X con-

sists of

1) two message sets W1 = [1 : 2nR1 ] and W2 = [1 : 2nR2 ];
2) a sequence of encoding functions φi : W1 × W2 ×

Zi−1 → X , for i = 1, 2, . . . , n;

3) for each k = 1, 2 a decoding function gk : S
n
k × Ynk →

Wk;

4) for each k = 1, 2 a state estimator hk : X
n×Zn → Ŝnk ,

where Ŝk denotes the given reconstruction alphabet for

state sequence Snk = (Sk,1, · · · , Sk,n).

For a given code, we let the random messages W1 and W2

be uniform over the message sets W1 and W2 and the inputs

Xi = φi(W1,W2, Z
i−1), for i = 1, . . . , n. The corresponding

outputs Y1,iY2,i, Zi at time i are obtained from the states S1,i

and S2,i and the input Xi according to the SDMBC transition

law PY1Y2Z|S1S2X . Further, let Ŝnk := (Ŝk,1, · · · , Ŝk,n) =
hk(X

n, Zn) be the state estimates at the transmitter and let

Ŵk = gk(S
n
k , Y

n
k ) be the decoded message by decoder k, for

k = 1, 2.

The quality of the state estimates Ŝnk is measured by a given

per-symbol distortion function dk : Sk×Ŝk 7→ [0,∞), and we

will be interested in the expected average per-block distortion

∆
(n)
k ,

1

n

n
∑

i=1

E[dk(Sk,i, Ŝk,i)], k = 1, 2. (2)

For the decoded messages Ŵ1 and Ŵk we focus on their joint

probability of error:

pn(error) := Pr
(

Ŵ1 6=W1 or Ŵ2 6=W2

)

. (3)

Definition 1. A rate-distortion tuple (R1, R2, D1, D2) is said

achievable if there exists a sequence (in n) of (2nR1 , 2nR2 , n)
codes that simultaneously satisfy

lim
n→∞

p(n)(error) = 0 (4a)

lim
n→∞

∆
(n)
k ≤ Dk, for k = 1, 2. (4b)

The closure of the union of all achievable rate-distortion

tuples (R1, R2, D1, D2) is called the capacity-distortion region

and is denoted CD. The current work aims at specifying the

tradeoff between the achievable rates and distortions. As we

will see in Sections III and V, there is no such tradeoff in

some cases, and the resulting region CD is the product of

SDMBC’s capacity region:

C , {(R1, R2) : (R1, R2, D1, D2) ∈ CD for D1, D2 ≥ 0}, (5)

and its distortion region:

D , {(D1, D2) : (R1, R2, D1, D2) ∈ CD for R1, R2 ≥ 0}.(6)

Before presenting our results on the tradeoff region CD in

the following sections, we describe the optimal choice of the

estimators h1 and h2.

Lemma 1. For k = 1, 2 and any i = 1, . . . , n, whenever

Xi = x and Zi = z, the optimal estimator hk that minimizes

the average expected distortion ∆
(n)
k is given by

ŝ∗k,i(x, z) , arg min
s′∈Ŝk

∑

sk∈Sk

PSk,i|XiZi
(sk|x, z)d(sk, s

′). (7)

In above definition (7), ties can be broken arbitrarily.

Notice that the lemma implies in particular that a sym-

bolwise estimator that estimates Sk,i only based on (Xi, Zi)
is optimal; there is no need to resort to previous or past

observations (X i−1, Zi−1) or (Xn
i+1, Z

n
i+1).

Proof of Lemma 1: Recall that Ŝnk is a function of

Xn, Zn and write for each i = 1, · · · , n:

E

[

dk(Sk,i, Ŝk,i)
]

= EXn,Zn

[

E[dk(Sk,i, Ŝk,i)|X
n, Zn]

]

(8)

(a)
=

∑

xn,zn

PXnZn(xn, zn)
∑

ŝk∈Sk

P
Ŝk,i|XnZn(ŝk|x

n, zn)

·
∑

sk

PSk,i|XiZi
(sk|xi, zi)d(sk, ŝk) (9)

≥
∑

xn,zn

PXnZn(xn, zn)

· min
ŝk∈Sk

∑

sk

PSk,i|XiZi
(sk|xi, zi)d(sk, ŝk)

= E[d(Sk,i, ŝ
∗
k,i(Xi, Zi))], (10)

where (a) holds by the Markov chain
(

X i−1, Xn
i+1, Z

i−1, Zni+1, Ŝk,i

)

−
− (Xi, Zi)−
− Sk,i.

III. ABSENCE OF RATE-DISTORTION TRADEOFF

We first consider degenerate cases where the rate-distortion

region CD is given by the Cartesian product between the

capacity region C and the distortions region D.

Proposition 2 (No Rate-Distortion Tradeoff).

Consider a SDMBC (PS1S2
, PY1Y2Z|S1S2X) and let

(X,S1, S2, Y1, Y2, Z) ∼ PXPS1S2
PY1Y2Z|S1S2X for a

given input law PX . If there exist functions ψ1 and ψ2 with

domain Z such that for all PX the Markov chains

(Sk, ψk(Z)) ⊥ X, (11)

Sk −
− ψk(Z)−
− (Z,X), k ∈ {1, 2}, (12)

hold, then for the SDMBC under consideration:

CD = C × D. (13)



In this case, there is no tradeoff between the achievable rate

pairs (R1, R2) and the achievable distortion pairs (D1, D2).

Proof: Notice under the given Markov chain (12):

PSk,i|XiZi
(sk|x, z) = PSk,i|ψk(Zi)(sk|ψk(z)). (14)

Trivially, CD ⊆ C × D. To see that also CD ⊇ C × D holds,

notice that by (14) and Lemma 1 the optimal estimators depend

only on the sequences {ψk(Zi)}
n
i=1, for k = 1, 2, and thus by

(11) are independent of the considered coding scheme and the

produced inputs.

In the following corollary, The following example satisfies

conditions (11) and (12) in Proposition 2 for an appropriate

choice of ψ1 and ψ2.

A. Example: Erasure BC with Noisy Feedback

Let the joint law PS1S2E1E2
(s1, s2, e1, e2) over {0, 1}4

be arbitrary but given, and (E1, E2, S1, S2) ∼ PS1S2E1E2
.

Consider the state-dependent erasure BC

Yk =

{

X if Sk = 0,

? if Sk = 1,
k ∈ {1, 2}, (15)

where the feedback signal Z = (Z1, Z2) is given by

Zk =

{

Yk if Ek = 0,

? if Ek = 1,
k ∈ {1, 2}. (16)

Further consider the Hamming distortion measure dk(s, ŝ) =
s⊕ ŝ, for k = 1, 2. For the choice

ψk(Z) =

{

1, if Zk =?

0, else,
(17)

the described SDMBC satisfies the conditions in Proposition 2

and its capacity-distortion region is thus given by

CD = C × D. (18)

Remark 1. For the case of output feedback Z = (Y1, Y2) or

E1 = E2 = 0, the transmitter can perfectly estimate the state

(S1, S2), yielding D1 = D2 = 0 regardless of the rate pair

(R1, R2) ∈ C. The capacity region C of the erasure broadcast

channel with output feedback is still unknown in general.

IV. PHYSICALLY DEGRADED BCS

In this section, by focusing on the physically degraded

SDMBC, we fully characterize the capacity-distortion region.

Then, we discuss two binary physically degraded SDMBCs to

illustrate the rate-distortion tradeoff between the two receivers.

Definition 2. An SDMBC (PS1S2
, PY1Y2Z|S1S2X) is called

physically degraded if there are conditional laws PY1|XS1
and

PY2S2|S1Y1
such that

PY1Y2|S1S2XPS1S2
= PS1

PY1|S1XPY2S2|S1Y1
. (19)

That means for any arbitrary input PX , if a tuple

(X,S1, S2, Y1, Y2) ∼ PXPS1S2
PY1Y2|S1S2X , then it satisfies

the Markov chain

X −
− (S1, Y1)−
− (S2, Y2). (20)

Proposition 3. The capacity-distortion region CD of a

physically degraded SDMBC is the closure of the set of

all quadruples (R1, R2, D1, D2) for which there exists a

joint law PUX so that the tuple (U,X, S1, S2, Y1, Y2, Z) ∼
PUXPS1S2

PY1Y2Z|S1S2X satisfies the two rate constraints

R1 ≤ I(U ;Y1|S1) (21)

R2 ≤ I(X ;Y2 | S2, U), (22)

and the distortion constraints

E[dk(Sk, ŝ
∗
k(X,Z)))] ≤ Dk, k ∈ {1, 2}, (23)

where

ŝ∗k(x, z) , arg min
s′∈Ŝk

∑

sk∈Sk

PSk|XZ(sk|x, z)d(sk, s
′). (24)

Proof: The converse follows as a special case of The-

orem 6 ahead where one can ignore constraints (35c) and

(35d). Notice that constraint (35b) is equivalent to (22) because

(U,X) is independent of (S1, S2) and because for a physically

degraded DMBC the Markov chain (20) holds.

Achievability is obtained by simple superposition coding

and using the optimal estimator described in Lemma 1.

We consider two binary state-dependent channels. For the

binary states, we consider the Hamming distortion measure.

A. Example: Binary BC with Multiplicative States

Consider the physically degraded SDMBC with binary

input/output alphabets X = Y1 = Y2 = {0, 1} and binary

state alphabets S1 = S2 = {0, 1}. The channel input-output

relation is described by

Yk = X · Sk, k = 1, 2, (25)

with the joint state pmf

PS1S2
(s1, s2) =



















1− q, if (s1, s2) = (0, 0)

0, if (s1, s2) = (0, 1)

q · γ, if (s1, s2) = (1, 1)

q · (1− γ) if (s1, s2) = (1, 0),

(26)

for γ, q ∈ [0, 1]. Notice that S2 is a degraded version of S1.

We consider output feedback Z = (Y1, Y2).

Corollary 4. The capacity-distortions region CD of the binary

physically degraded SDMBC in (25)–(26) is the set of all

quadruples (R1, R2, D1, D2) satisfying

R1 ≤ q ·Hb(p) · r (27a)

R2 ≤ γ · q ·Hb(p) · (1− r) (27b)

D1 ≥ (1− p) ·min{q, 1− q} (27c)

D2 ≥ (1− p) ·min{γ · q, 1− γ · q}, (27d)

for some choice of the parameters r, p ∈ [0, 1].

Proof. It suffices to evaluate the rate-constraints (21) and (22)

for X = V ⊕ U when U and V are independent Bernoulli

distributed random variables. In (27), we choose the parameter



Fig. 2. Boundary of the capacity-distortion region CD for the example in
Subsection IV-A.

p = Pr[X = 1] and r = 1− H(V )
Hb(p)

. To calculate the distortion,

we determine the optimal estimator ŝ∗k(x, y1, y2) from (24) as

ŝ∗k(1, y1, y2) = yk, (28a)

ŝ∗k(0, y1, y2) = 1{PSk
(1) > 1/2}. (28b)

Remark 2. Fixing r = 1, the capacity-distortion region in

(27) reduces to the capacity-distortion tradeoff of a single user

channel [3, Proposition 1]. Similarly to the single-user case,

we observe the tension between the minimum distortion by

choosing p = 1 (always sending X = 1) and the maximum

rate by choosing p = 1/2. In the BC, the resource is shared

between the two users via the time-sharing parameter r.

We evaluate the capacity-distortion region (27) for γ = 0.5
and q = 0.6. Fig. 2 shows in red colour the dominant boundary

points of the projection of the tradeoff region CD onto the

3-dimensional plane (R1, R2, D1). The tradeoff with D2 is

omitted because D2 is a scaled version of D1.

It is worth comparing the capacity-distortion region CD,

achieved by the proposed co-design scheme that uses a com-

mon waveform for both sensing and communication tasks,

with the rate-distortion region achieved by a baseline scheme,

called resource splitting, that separates the two tasks into

two modes. In the sensing mode, the transmitter estimates

the states via the feedback but does not communicate any

messages to the two receivers. In the communication mode,

it communicates with the receivers but without using the

feedback. Moreover, in this second mode, it also estimates

the states but again without accessing the feedback.

For the example at hand, the resource splitting scheme acts

as follows. During the sensing mode, the transmitter always

sends X = 1 (which is equivalent to setting p = 1 in (27)) so

as to minimize the distortion. This achieves

(R1, R2, D1, D2) = (0, 0, 0, 0). (29)

During the communication mode, the transmitter sets p = 0.5

in (27)1 so as to maximize the communication rate and without

using the feedback it estimates the states as ŝ1 = 1{q > 0.5}
and ŝ2 = 1{q · γ > 0.5}. This achieves

(R1, R2, D1, D2) = (q ·r, γ ·q ·(1−r), D1,max, D2,max) (30)

where D1,max = min{q, 1− q} and D2,max = min{γ · q, 1−
γ ·q}, and where r ∈ [0, 1] denotes the time-sharing parameter

between the two two communication rates. Fig. 2 shows the

time-sharing region between the two modes (29) and (30) in

blue colour.

Fig. 2 also shows the region achieved by a more sophis-

ticated time-sharing scheme that combines the minimum dis-

tortion point (R1, R2, D1, D2) = (0, 0, 0, 0) of the capacity-

distortion region CD with the maximum communication

rate points of CD, (R1, R2, D1, D2) = (q·r, γ · q · (1 −
r),

D1,max

2 ,
D2,max

2 ) for r ∈ [0, 1].
We observe that both resource splitting and time sharing

approaches fail to achieve the entire region CD.

So far, there was no tradeoff between the two distortion

constraints D1 and D2. This is different in the next example,

which otherwise is very similar.

B. Example: Binary BC with Flipping Inputs

Reconsider the same state pmf PS1S2
as in the previous

example, but now a SDMBC with transition law

Y1 = X · S1, Y2 = (1−X) · S2. (31)

Consider output feedback Z = (Y1, Y2).

Corollary 5. The capacity-distortion region CD of the binary

SDMBC with flipping inputs in (31) and output feedback is

the set of all quadruples (R1, R2, D1, D2) satisfying

R1 ≤ q ·Hb(p) · r (32a)

R2 ≤ γ · q ·Hb(p) · (1− r) (32b)

D1 ≥ (1− p) ·min{q(1− γ), (1− q)} (32c)

D2 ≥ p · qmin{γ, 1− γ} (32d)

for some choice of the parameters r, p ∈ [0, 1].

Proof. To achieve this region, we can consider the same

choices of (U,X) as in the previous example. The optimal

estimators are given by (28a) for receiver 1 and

ŝ∗2(0, y1, y2) = y2, (33a)

ŝ∗2(1, y1, y2) = 1{PS2
(1) > 1/2} (33b)

for receiver 2. Contrary to the previous example, we observe

a tradeoff between the achievable distortions D1 and D2.

V. GENERAL BCS

A. General Bounds

Reconsider the general SDMBC (not necessarily physically

degraded). We provide an inner and an outer bound on the

capacity-distortion region.

1Recall that the capacity-distortion region in (27) is achieved without using
the feedback for communication because the BC is physically degraded.



R1 ≤ I(U0, U1;Y1, V1 | S1)− I(U0, U1, U2, Z;V0, V1|S1, Y1) (34a)

R2 ≤ I(U0, U2;Y2, V2 | S2)− I(U0, U1, U2, Z;V0, V2|S2, Y2) (34b)

R1 +R2 ≤ I(U1;Y1, V1|U0, S1) + I(U2;Y2, V2|U0, S2) + min
i∈{1,2}

I(U0;Yi, Vi | Si)− I(U1;U2|U0)

−I(U0, U1, U2, Z;V1|V0, S1, Y1)− I(U0, U1, U2, Z;V2|V0, S2, Y2)− max
i∈{1,2}

I(U0, U1, U2, Z;V0|Si, Yi) (34c)

Theorem 6. If (R1, R2, D1, D2) is achievable on a SDMBC

(PS1S2
, PY1Y2Z|S1S2X), then there exists for each k =

1, 2 a conditional pmf PUk|X such that the random tuple

(Uk, X, S1, S2, Y1, Y2, Z) ∼ PUk|XPXPS1S2
PY1Y2Z|S1S2X

satisfies the rate constraints

R1 ≤ I(U1;Y1 | S1), (35a)

R1 +R2 ≤ I(X ;Y1, Y2 | S1, S2, U1), (35b)

R1 +R2 ≤ I(X ;Y1, Y2 | S1, S2, U2), (35c)

R2 ≤ I(U2;Y2 | S2) (35d)

and the average distortion constraints

E[dk(Sk, ŝ
∗
k(X,Z)))] ≤ Dk, k ∈ {1, 2}, (36)

where the function ŝ∗k(·, ·) is defined in (24).

Proof: See Appendix A.

Achievability results are easily obtained by combining

existing achievability results for SDMBCs with generalized

feedback with the optimal estimator in Lemma 1. For example,

based on [5] we obtain:

Proposition 7. Consider a SDMBC (PS1S2
, PY1Y2Z|S1S2X).

For any (conditional) pmfs PU0U1U2X and PV0V1V2|U0U1U2Z

and tuple (U0, U1, U2, X, S1, S2, Y1, Y2, Z, V0, V1, V2) ∼
PU0U1U2XPS1S2

PY1Y2Z|S1S2XPV0V1V2|U0U1U2Z , the convex

closure of the set of all quadruples (R1, R2, D1, D2) satisfying

inequalities (34) on top of the this page and the distortion

constraints

E[dk(Sk, ŝ
∗
k(X,Z)))] ≤ Dk, k ∈ {1, 2}, (37)

for ŝ∗k(·, ·) defined in (24), is achievable.

B. Example: Dueck’s BC with Binary States

X1

N

•

S1
Y ′
1

X0

Y0

Y0X2

N
Y ′
2

•

S2

Transmitter

Receiver1

Receiver2

Fig. 3. A state-dependent version of Dueck’s BC.

Consider the state-dependent version of Dueck’s BC [6] in

Figure 3 with input X = (X0, X1, X2) ∈ {0, 1}3 and outputs

Yk = (X0, Y
′
k, S1, S2), k ∈ {1, 2}, (38)

for states S1, S2 ∈ {0, 1},

Y ′
k = Sk(Xk ⊕N), k ∈ {1, 2}, (39a)

and N a Bernoulli- 12 noise independent of the inputs and

the states. Assume i.i.d. states such that PS1S2
(s1, s2) =

PS(s1)PS(s2) for a given pmf PS . The feedback signal is

Z = (Y ′
1 , Y

′
2). (40)

Notice that in this example, only the input bits X1 and X2

are corrupted by the state and the noise, but not X0. This latter

is thus completely useless for sensing. In fact, as we will show,

for sensing it is optimal to choose X0 arbitrary and depending

on the state distribution either X1 = X2 or X1 6= X2. In

contrast, for communication without feedback, it is optimal to

send uncoded bits using X0 and to disregard the other two

input bits X1 and X2. The baseline resource splitting scheme

(where feedback is only used for sensing) thus orthogonalizes

the inputs: X0 is used for communication and X1, X2 are used

for sensing. In a traditional resource splitting scheme, the two

modes are never combined, which for this example is clearly

suboptimal because both modes (sensing and communication)

can be performed simultaneously without disturbing each

other. As we will see, in certain cases (depending on the

state distribution PS) the simple approach that performs both

resource splitting modes simultaneously is optimal when one

insists on achieving the smallest possible distortions. For larger

distortions, it can however be improved by also exploiting the

feedback and the inputs X1 and X2 for communication. This

is for example achieved by the scheme leading to Propostion 7,

as we show in the following corollary and the subsequent

numerical evaluation.

Corollary 8. The capacity-distortion region CD of Dueck’s

state-dependent BC is included in the set of quadruples

(R1, R2, D1, D2) that for some choice of the parameters

p, q, β ∈ [0, 1] satisfy the rate-constraints

R1 ≤ 1− p (41a)

R2 ≤ p+ (PS(1))
2 ·Hb(β) (41b)

R1 ≤ q + (PS(1))
2 ·Hb(β) (41c)

R2 ≤ 1− q (41d)



and for each k ∈ {1, 2} the distortion constraint

Dk ≥
1

2
(1− β) ·min{PS(1), PS(0) · (1 + PS(0))}

+
1

2
βPS(1)

[

PS(0) + min{PS(0), PS(1)}
]

. (41e)

Moreover, depending on the values of PS(0) and PS(1), the

following holds:

• When PS(1) ≤ PS(0), distortion constraint (41e) sim-

plifies to Dk ≥ 1
2PS(1) = Dmin and one can restrict to

β = 1 in above outer bound. In this case,

CD = C × D (42)

and the outer bound in (41) coincides with CD.

• When PS(0)(1 + PS(0)) ≥ PS(1) > PS(0), the smallest

achievable distortion in (41e) (obtained for β = 1) is

Dmin = PS(1)PS(0). Moreover, the region CD includes

the set of all quadruples (R1, R2, D1, D2) that for some

β, γ ∈ [0, 1] satisfy the rate-constraints

Rk ≤ 1, k ∈ {1, 2}, (43a)

R1 +R2 ≤ 1 + γPS(1)

(

Hb

(

1−
1− β

γ

)

− PS(0)

)

,

(43b)

and the distortion constraints in (41e), which simplify to

Dk ≥
1

2
(1−β)PS(1)+βPS(1)PS(0), k = 1, 2. (44)

• When PS(1) > PS(0)(1+PS(0)), the smallest achievable

distortion in (41e) (obtained for β = 0) is Dmin =
1
2PS(0)(1 + PS(0)). Moreover, the region CD includes

the set of all quadruples (R1, R2, D1, D2) that for some

γ ∈ [0, 1] and β ∈ [0, γ] satisfy the rate-constraints

Rk ≤ 1, k ∈ {1, 2}, (45a)

R1 +R2 ≤ 1 + γPS(1)

(

Hb

(

β

γ

)

− PS(0)

)

, (45b)

and the distortion constraints in (41e), which simplify to

Dk ≥
1

2
(1−β)PS(0)(1+PS(0))+βPS(1)PS(0), k = 1, 2

(46)

Proof: Based on Theorem 6 and Proposition 7. See

Appendix B for details.

We evaluate the bounds for the state distribution PS(1) =
3
4 and PS(0) = 1

4 , which satisfies the condition PS(1) ≥
PS(0)(1 + PS(0)). Specifically, we analyze the largest sum-

rates RΣ(D) := R1+R2 that our inner and outer bounds admit

under given symmetric distortion constraints D1 = D2 = D,

and compare them to the baseline schemes. Notice first that

for PS(1) =
3
4 and PS(0) =

1
4 the distortion constraint (41e)

specializes to

D ≥
1

2

[

(1− β)
5

16
+ β

6

16

]

=
5 + β

32
, (47)

and so the minimum distortion (obtained for β = 0)

0.16 0.17 0.17 0.18 0.18
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Outer Bound (41)

Inner Bound (45b)

Resource splitting

Time sharing

Fig. 4. Upper and lower bounds of Corollary 8 on the maximum achievable
sum-rate RΣ in function of the admissible distortion D1 = D2 = D for the
state-dependent Dueck BC when PS(1) = 3/4 and PS(0) = 1/4.

is Dmin = 5
32 . For β = 1/2 we obtain D ≥ 11

64 . Turning

back to the sum-rate RΣ, for above state distribution, the outer

bound (41) implies

RΣ(D) ≤



















1 +

(

3

4

)2

Hb(32 ·D − 5), if
5

32
≤ D ≤

11

64
,

25

16
, if D ≥

11

64
(48)

and the inner bound (45) implies

RΣ(D) ≥


































1 + max
32D−5≤γ≤1

3γ

4

(

Hb

(

32D− 5

γ

)

−
1

4

)

,

if
5

32
≤ D ≤

11

64
,

25

16
, if D ≥

11

64
.

(49)

Fig. 4 compares these two bounds to the maximum admis-

sible sum-rates RΣ attained by the resource splitting baseline

scheme, and by time-sharing the two points of our lower bound

(49) that have minimum distortion (RΣ = 1, D = Dmin =
5/32) and maximum rate (RΣ = 25/16, D = 11/64).

The resource splitting scheme achieves (RΣ = 0, D =
Dmin = 5/32) during the sensing mode, by setting X1 = X2

(either 0 or 1) and not using input X0 at all. (This input

is useless for state sensing.) Moreover, it achieves (RΣ =
1, D = 1/4) in the communication mode, by completely

ignoring the feedback, sending uncoded bits using inputs X0,

and estimating Ŝ1 = Ŝ2 = 1. (This estimator is optimal

without feedback because PS(1) > PS(0).)

VI. CONCLUSION

Motivated by a joint radar and communication system, we

studied joint sensing and communication over memoryless



state-dependent broadcast channels (BC). First, we presented

a sufficient condition under which there is no tradeoff be-

tween sensing and communication. Then, we characterized

the capacity-distortion tradeoff region of the physically de-

graded BC. We further presented inner and outer bounds

on the capacity-distortion region of general BCs with states

and showed at hand of an example that they can be tight.

Our numerical examples demonstrate that the proposed co-

design schemes significantly outperforms the traditional co-

exist scheme where resources are split between communication

and state sensing.

ACKNOWLEDGEMENT

M. Ahmadipour and M. Wigger acknowledge funding from

the ERC under grant agreement 715111. The work of M.

Kobayashi is supported by DFG Grant KR 3517/11-1.

REFERENCES

[1] L. Zheng, M. Lops, Y. C. Eldar, and X. Wang, “Radar and Communication
Coexistence: An Overview: A Review of Recent Methods,” IEEE Signal

Processing Magazine, vol. 36, no. 5, pp. 85–99, 2019.
[2] L. Gaudio, M. Kobayashi, G. Caire, and G. Colavolpe, “On the Effective-

ness of OTFS for Joint Radar Parameter Estimation and Communication,”
IEEE Trans. Wireless Commun., vol. 19, no. 9, pp. 5951–5965, 2020.

[3] M. Kobayashi, G. Caire, and G. Kramer, “Joint State Sensing and
Communication: Optimal Tradeoff for a Memoryless Case,” in 2018
IEEE ISIT, 2018, pp. 111–115.

[4] M. Kobayashi, H. Hamad, G. Kramer, and G. Caire, “Joint State Sensing
and Communication over Memoryless Multiple Access Channels,” in
IEEE ISIT, 2019, pp. 270–274.

[5] O. Shayevitz and M. Wigger, “On the Capacity of the Discrete Memo-
ryless Broadcast Channel With Feedback,” IEEE Trans. IT, vol. 59, no.
3, pp. 1329–1345, 2013.

[6] G. Dueck, “Partial feedback for two-way and broadcast channels,”
Information and Control, vol. 46, no. 1, pp. 1–15, 1980.

APPENDIX A

PROOF OF THEOREM 6

Fix a sequence of (2nR1 , 2nR2 , n) codes satisfying (4). Fix

a blocklenth n and start with Fano’s inequality:

R1 =
1

n
H(W1)

≤
1

n

n
∑

i=1

I(W1;Y1i, S1i | Y
i−1
1 , Si−1

1 ) + ǫn

≤
1

n

n
∑

i=1

I(W1, Y
i−1
1 , Si−1

1 ;Y1,i, S1,i) + ǫn

= I(W1, Y
T−1
1 , ST−1

1 ;S1,T , Y1,T | T ) + ǫn

≤ I(W1, Y
T−1
1 , ST−1

1 , T ;S1,T , Y1,T ) + ǫn

= I(U ;Y1|S1) + ǫn (50)

where T is chosen uniformly over {1, · · · , n} and independent

of Xn, Y n1 , Y
n
2 ,W1,W2, S

n
1 , S

n
2 ; ǫn is a function that tends to

0 as n→ ∞; U , (W1, Y
T−1
1 , ST−1

1 , T ); and Y1 , Y1,T and

S1 , S1,T . Notice that S1 ∼ PS1
and it is independent of

(U,X), where we define X , XT .

Following similar steps, we obtain:

R2 =
1

n
H(W2)

≤
1

n
I(W2;Y

n
2 , S

n
2 ) + ǫn

(a)

≤
1

n
I(W2;Y

n
1 , S

n
1 , Y

n
2 , S

n
2 |W1) + ǫn

=
1

n

n
∑

i=1

I(W2;Y1i, Y2i, S1i, S2i | Y
i−1
1 , Y i−1

2 ,

Si−1
1 , Si−1

2 ,W1) + ǫn

≤
1

n

n
∑

i=1

I(Xi,W2, Y
i−1
2 , Si−1

2 ;Y1,i, Y2,i, S1,i, S2,i

| Y i−1
1 , Si−1

1 ,W1) + ǫn

=
1

n

n
∑

i=1

I(Xi;Y1,i, Y2,i, S1,i, S2,i | Y
i−1
1 , Si−1

1 ,W1) + ǫn

= I(XT ;Y1T , Y2T , S1,T , S2,T | Y T−1
1 ,

ST−1
1 ,W1, T ) + ǫn

= I(X ;Y1, Y2 | S1, S2, U) + ǫn, (51)

where (a) follows by the physically degradedness of the

SDMBC and where we defined Y2 , Y2,T and S2 , S2,T .

Recall that we assume the optimal estimators (7) in

Lemma 1. Using the definitions of T , X , Sk above and defin-

ing Z , ZT , we can write the average expected distortions

as:

1

n

n
∑

i=1

E[dk(Sk,i, ŝ
∗
k,i(Xi, Zi)] = E[dk(Sk, ŝ

∗
k,T (X,Z)]. (52)

Combining (50), (51), and (52) and letting n → ∞, we

obtain that there exists a limiting pmf PUX such that the tuple

(U,X, S1, S2, Y1, Y2, Z) ∼ PUXPS1S2
PY1Y2Z|S1S2X satisfies

the rate-constraints

R1 ≤ I(U ;Y1 | S1) (53)

R2 ≤ I(X ;Y1, Y2 | S1, S2, U) (54)

and the distortion constraints

E[dk(Sk, Ŝk,T (X,Z)] ≤ Dk, k = 1, 2, (55)

for a possibly probabilistic estimator Ŝk,T (X,Z). Similar to

the proof of Lemma 1 one can however show optimality of

the estimator in (24). This complete the proof.

APPENDIX B

PROOF OF COROLLARY 8

A. Proof of the Outer Bound

The outer bound is based on Theorem 6, as detailed out in

the following. From (35a) and (35b) we obtain:

R1 ≤ I(U1;Y
′
1 , X0 | S1, S2)

= H(U1)−H(U1 | Y ′
1 , X0, S1, S2)

= H(U1)−H(U1 | X0)

= I(U1;X0)

= H(X0)−H(X0 | U1)

≤ 1− p, (56)



where we defined p := H(X0 | U1), and

R2 ≤ I(X0, X1, X2;Y
′
1 , Y

′
2 | S1, S2, U1)

≤ H(X0 | U1) + I(X1, X2;Y
′
1 , Y

′
2 | S1, S2, U1)

= H(X0 | U1) + I(X1, X2;Y
′
2 | S1, S2, U1)

+I(X1, X2;Y
′
1 | S1, S2, Y

′
2 , U1)

≤ H(X0 | U1) + PS1S2
(1, 1) ·H(X1 ⊕X2)

= p+ PS1S2
(1, 1) ·Hb(β). (57)

where we defined β := Pr[X1 6= X2].

In a similar way, we obtain (41c) and (41d) from (35c) and

(35d).

Distortion constraint (41e) can be shown by evaluating the

optimal estimator in (24) for this example, as we detail out in

the following.

We first derive the optimal estimator ŝ∗k((x1, x2), z) for a

given realization of channel inputs and the feedback defined in

(7). Denote the distortion resulting from this optimal estimator

for a given triple (x1, x2, z) by

d′k((x1, x2), z) = PSk|X1X2Z(ŝ
∗
k

(

(x1, x2), z)⊕ 1
∣

∣x1, x2, z
)

(58)

= min
s

∑

sk∈{0,1}

(sk ⊕ s)PSk|X1X2Z(sk|x1, x2, z).

(59)

The expected distortion can then be expressed as:

∑

x1,x2,z

PX1X2Z(x1, x2, z)d
′
k((x1, x2), z). (60)

In the following we identify ŝ∗k((x1, x2), z).
Case z = (1, 1): In this case, S1 = A2 = 1 and

ŝ∗k((x1, x2), (1, 1)) = 1, ∀x1 = x2, k = 1, 2, (61)

which yields for any k = 1, 2 and (x1, x2):

d′k((x1, x2), (1, 1)) = 0. (62)

Case z = (1, 0): In this case, S1 = 1 and the optimal

estimator produces ŝ∗1((x1, x2), (1, 0)) = 1, irrespective of

x1, x2. Consequently, as before, for any (x1, x2):

d′1(x1, x2, (1, 0)) = 0. (63)

For receiver 2, we distinguish whether x1 = x2 or x1 6= x2.

When, x1 = x2, then S2 = y′2 = 0 because in this case

x2⊕N = x1⊕N and this latter equals 1 because y′1 = 1. The

optimal estimator thus sets ŝ∗2((x1, x2), z) = 0 when x1 = x2,

which achieves 0 distortion d′2((x1, x2), z) = 0 .

When x1 6= x2, then x2 ⊕N = 1 ⊕ (x1 ⊕N) = 0 and the

feedback z is independent of the state S2 because this latter

is independent of state S1. The optimal estimator for x1 6= x2
is thus ŝ∗2((x1, x2), (1, 0)) = 1{PS(1) ≥ PS(0)}. This yields

the distortion for any (x1, x2):

d′2(x1, x2, (1, 0)) = min{PS(0), PS(1)} · 1{x1 6= x2}. (64)

Case z = (0, 1): This case is similar to the case z = (1, 0)
but with exchanged roles for indices 1 and 2. So,

d′1((x1, x2), (0, 1)) = min{PS(0), PS(1)} · 1{x1 6= x2}
(65a)

d′2((x1, x2), (0, 1)) = 0. (65b)

Case z = (0, 0): We again distinguish the two cases x1 =
x2 and x1 6= x2 and start by considering x1 = x2. In this

case, x1 ⊕ N = x2 ⊕ N , and so if Sk = 1 then Z = (0, 0)
only if x1⊕N = x2⊕N = 0, which happens with probability

1/2. By the independence of the states and the inputs we then

have:

PSk|X1X2Z(1|x1, x2, (0, 0))

=
PSk

(1)PY ′

1
Y ′

2
|X1X2Sk

(0, 0|x1, x2, 1)

PY ′

1
Y ′

2
|X1X2

(0, 0|x1, x2)

=
PS(1)1/2

PY ′

1
Y ′

2
|X1X2

(0, 0|x1, x2)
.

If Sk = 0, then z = (0, 0) happens when x1⊕N = x2⊕N = 0
or when x1⊕N = x2⊕N = 1 and Sk̄ = 0, where Sk̄ = 1−Sk.

Since these are exclusive events and have total probability of

1/2 + 1/2 · PS(0), we obtain:

PSk|X1X2Z(0|x1, x2, (0, 0))

=
PSk

(0)PY ′

1
Y ′

2
|X1X2Sk

(0, 0|x1, x2, 0)

PY ′

1
Y ′

2
|X1X2

(0, 0|x1, x2)
(66)

=
PS(0)(1/2 + 1/2 · PS(0))

PY ′

1
Y ′

2
|X1X2

(0, 0|x1, x2)
. (67)

We conclude that for z = (0, 0) and x1 = x2, the optimal

estimator is

ŝ∗k((x1, x2), (0, 0)) = 1 {PS(0)(1 + PS(0)) < PS(1)} , (68)

and the corresponding distortion

d′k((x1, x2), (0, 0)) =
1

2
·
min {PS(0)(1 + PS(0)), PS(1)}

PY ′

1
Y ′

2
|X1X2

(0, 0|x1, x2)
,

x1 = x2. (69)

We turn to the case x1 6= x2, where x1⊕N = 1⊕(x2⊕N).
As before, if Sk = 1, then Y ′

k = 0 only if x1 ⊕N = 0, which

happens with probability 1/2. Now this implies x2 ⊕ N =
1, and thus Y ′

k̄
= 0 only if Sk̄ = 0, which happens with

probability PS(0). We thus obtain for x1 6= x2:

PSk|X1X2Z(1|x1, x2, (0, 0))

=
PSk

(1)PY ′

1
Y ′

2
|X1X2Sk

(0, 0|x1, x2, 1)

PY ′

1
Y ′

2
|X1X2

(0, 0|x1, x2)
(70)

=
PS(1)1/2PS(0)

PY ′

1
Y ′

2
|X1X2

(0, 0|x1, x2)
. (71)

If Sk = 0, then z = (0, 0) happens when xk̄⊕N = 0 or when

xk̄⊕N = 1 and Sk̄ = 0. Since these are exclusive events with

total probability 1/2 + 1/2 · PS(0), we obtain:

PSk|X1X2Y
′

1
Y ′

2
(0|x1, x2, 0, 0)



=
PSk

(0)PY ′

1
Y ′

2
|X1X2Sk

(0, 0|x1, x2, 0)

PY ′

1
Y ′

2
|X1X2

(0, 0|x1, x2)
(72)

=
PS(0)(1/2 + 1/2 · PS(0))

PY ′

1
Y ′

2
|X1X2

(0, 0|x1, x2)
. (73)

We conclude that for z = (0, 0) and x1 6= x2, the optimal

estimator is

ŝ∗k((x1, x2), (0, 0)) = 1{(1 + PS(0)) < PS(1)}, x1 6= x2,
(74)

and the corresponding distortion

d′k((x1, x2), (0, 0)) =
1

2
·
PS(0)min{(1 + PS(0)), PS(1)}

PY ′

1
Y ′

2
|X1X2

(0, 0|x1, x2)
,

x1 6= x2.
(75)

We now turn to the conditional probabilities of the feed-

backs given the inputs that are required to evaluate (60).

Whenever the inputs x1 = x2,

PY ′

1
Y ′

2
|X1X2

(0, 0|x1, x2) =
1 + (PS(0))

2

2
, (76)

because Y ′
1 = Y ′

2 = 0 happens only when either N = x1 = x2
or when N = x1 ⊕ 1 = x2 ⊕ 1 and S1 = S2 = 0. These

two are exclusive events and happen with total probability

1/2 + 1/2(PS(0))
2. Whenever, x1 6= x2:

PY ′

1
Y ′

2
|X1X2

(0, 1|x1, x2) = PY ′

1
Y ′

2
|X1X2

(1, 0|x1, x2) (77)

=
PS(1)

2
, (78)

by symmetry and because for x1 6= x2 the event Y ′
1 = 1

and Y2 = 0 happens only when S1 = 1 and N = x1 ⊕ 1.

(Notice that since x1 6= x2, this latter condition implies that

N ⊕ x2 = 0 and thus Y ′
2 = 0 independent of S2.) Moreover,

when x1 6= x2:

PY ′

1
,Y ′

2
|X1,X2

(0, 0|x1, x2) = PS(0), (79)

because for x1 6= x2, the event Y ′
1 = 0 and Y ′

2 = 0 happens

when either N = x1 = x2 ⊕ 1 and S2 = 0 or when N =
x1 ⊕ 1 = x2 and S1 = 0. These are exclusive events and

happen with total probability 1/2PS(0)+1/2PS(0) = PS(0).
Plugging (63), (64), (65), (69), (75) and (76)–(79) into

(60) establishes the desired distortion constraint (41e) and

concludes the proof of the outer bound.

B. Proof of Achievability Results

The achievability results can be obtained by evaluating

Proposition 7 for the following choices: X0, X1, X2 Bernoulli-
1
2 with X0 independent of (X1, X2) and X1 = X2 = x with

probability 1−β′

2 for all x ∈ {0, 1}; Ui = Xi, for i = 0, 1, 2;

and one of the following three choices: V1 = (X0, X1), V2 =
(X0, X2), V0 = X1 ⊕ Y ′

1 or V1 = (X0, X1), V2 = (X0, X2),
V0 = X2 ⊕ Y ′

2 or V1 = V2 = V0 = 0. The last choice corre-

sponds to not using feedback for communication and achieves

all quadruples (R1, R2, D1, D2) satisfying R1 + R2 ≥ 1 and

Dk ≥ Dmin, where the value of Dmin depends on the state

probabilities PS(0) and PS(1) and is specified in the theorem.

More specifically, achievability of C × D when PS(1) ≤
PS(0) can be established by time-sharing between the first

two choices where we set β′ = 0 in both of them. (That

means we choose X1 and X2 to be independent.)

Achievability of (43) can be established by time-sharing one

of the first two choices with parameter β′ = 1− 1−β
γ

over the

fraction γ of time with the third choice over the remaining

fraction 1− γ of time.

Achievability of (45) can be established by time-sharing

one of the first two choices with parameter β′ = β
γ

over the

fraction γ of time with the third choice over the remaining

fraction 1− γ of time.
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