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Abstract—An upper bound on the capacity of multiple-input
multiple-output (MIMO) additive white Gaussian noise fading
channels is derived under peak amplitude constraints. The
tightness of the bound is investigated at high signal-to-noise
ratio (SNR), for any arbitrary convex amplitude constraint
region. Moreover, a numerical simulation of the bound for fading
MIMO channels is analyzed, at any SNR level, for a practical
transmitter configuration employing a single power amplifier for
all transmitting antennas.

I. INTRODUCTION

The ever-growing requirements in data rates and the ubiqui-
tous presence of wireless devices have made energy efficiency
one of the fundamental features in the design of a wireless
system, and power amplifiers are one of the main components
that have a strong impact on its implementation. To prop-
erly exploit the available resources of a wireless channel, it
is fundamental to establish a realistic information theoretic
framework, providing an accurate estimate of attainable data
rates. By imposing a communication under peak amplitude
constraints at the input, one can accurately represent the lim-
itations induced by the non-linear nature of power amplifiers.
Some of the main results about channel capacity under peak
amplitude constraints are presented in [1] and [2], where the
authors consider scalar and quadrature Gaussian channels,
respectively. Then, in [3] and [4] the capacity evaluation is
extended to multiple-input multiple-output (MIMO) channels
subject to a constraint that limits the norm of the input
vector, while in [5] it is introduced a capacity evaluation
for MIMO fading channels subject to any arbitrary peak
amplitude constraint. Finally, in [6] we refined the results
presented in [5] for two particular constraints of practical
interest: one refers to a transmitter configuration employing
multiple power amplifiers, one per transmitting antenna, while
the other employs a single amplifier for all the antennas. Both
constraints correspond to typical transmitter configurations in
MIMO wireless communications, the latter being especially
relevant in the case of massive MIMO systems.

Contribution

In this paper, we provide an asymptotically tight upper
bound on the capacity of MIMO additive white Gaussian
noise (AWGN) fading channels subject to peak amplitude
constraints. We derive an upper bound by extending the results
in [7] to MIMO systems, assuming perfect channel state
information. We prove that the gap between the derived upper

bound and the best lower bound found in the literature is
asymptotically tight. Indeed, as the signal-to-noise ratio (SNR)
goes to infinity, the bounds’ gap vanishes for any channel
matrix, any dimension of the MIMO system, and any convex
constraint region. We also investigate the gap behavior versus
the SNR in MIMO fading channels, for a particular transmitter
configuration, inducing a constraint on the norm of the MIMO
input vector.

In Section II, we introduce some useful mathematical tools
needed throughout the rest of the paper, in Section III we
define the system model, in Section IV we outline previous
results present in the literature, and in Section V we propose
a sphere packing (SP) upper bound and prove that it is
asymptotically tight at high SNR. In Section VI, we apply the
bound to a particular peak amplitude constraint, and finally
Section VII concludes the paper.

Notation

We use bold letters for vectors (x), uppercase letters for
random variables (X), calligraphic uppercase letters for sub-
sets of vector spaces (X ), and uppercase sans serif letters for
matrices (H). We denote by HT the transposed of a matrix H.
Then, CN (µ,Σ) indicates a complex multivariate Gaussian
distribution with mean vector µ and covariance matrix Σ. We
represent the n×1 vector of zeros by 0n and the n×n identity
matrix by In. Moreover, we denote by Bn , {x : ‖x‖ ≤ 1}
the n-dimensional unit ball in Rn centered in 0n, with
volume π

n
2 /Γ

(
n
2 + 1

)
, and δBn , {x : ‖x‖ ≤ δ} as the

n-dimensional ball of radius δ centered in 0n. Finally, we
define HX , {y : y = Hx, x ∈ X}, with [HX ]×M

the Cartesian product of HX with itself M times, and with
Voln (X ) we indicate the n-dimensional volume of the set X .

II. PRELIMINARIES

Given two subsets K and R of a vector space, the
Minkowski sum is denoted by the operator ⊕ and it gives
the set obtained by adding each vector in K to each vector
in R

K⊕R , {k + r|k ∈ K, r ∈ R}. (1)

Moreover, if K is a convex body of Rn, we denote by Vj (K)
the jth intrinsic volume of K. The intrinsic volume represents a
fundamental measure of content for a convex body [8]. Thanks



to the Steiner’s formula [7, Theorem 4] we can evaluate the
n-dimensional volume of a Minkowski sum as follows

Voln (K ⊕ δBn) =

n∑
j=0

Vj (K) Voln−j (δBn−j) . (2)

Since (2) is a convolution, it is useful to introduce the gener-
ating function of the intrinsic volumes of K as [7, Theorem 8]

GK(t) = log

( n∑
j=0

Vj (K) ejt
)
. (3)

An important property of these generating functions is that
given two sets K and R, as shown in [8], it holds

GK×R(t) = GK(t) ·GR(t). (4)

Finally, given a scalar function f(t), we define the convex
conjugate of f(t) as

f∗(θ) , sup
t
{θt− f(t)} . (5)

III. SYSTEM MODEL

Let us consider an N × N complex MIMO system with
input-output relationship given by

Ỹ = H̃ · X̃ + Z̃. (6)

The input vector X̃ is such that X̃ ∈ X̃ with X̃ being a convex
constraint region, Z̃ ∼ CN (0N , 2σ2

z IN ) is the noise vector,
and H̃ is any full rank channel fading matrix. We assume H̃
to be fixed throughout the channel uses and known both at
the transmitter and at the receiver. Let us vectorize the system
in (6) in its real and imaginary components. We obtain the
equivalent model

Y = H ·X + Z, (7)

with H = Re{H̃}⊗I2+Im{H̃}⊗
[
0 −1
1 0

]
, where the operator ⊗

is the Kronecker product, Y is an 2N × 1 vector defined as
Y = [Re{Ỹ1}, Im{Ỹ1}, . . . ,Re{ỸN}, Im{ỸN}]T , and analo-
gously for X and Z. We define the MIMO channel capacity
as

C , max
FX: supp(FX)⊆X

I (X ;Y) , (8)

where FX is the input distribution law. The SNR definition
depends on the specific constraint region X and it is SNR =
(rmax(X ))2/(2Nσ2

z), with rmax(X ) , supx∈X {‖x‖}.

IV. PREVIOUS WORKS

In [5], the authors provide capacity upper and lower bounds
for AWGN MIMO systems with any channel matrix known
at both the transmitter and the receiver and under an ar-
bitrary peak amplitude constraint region X . The resulting
gap between the two bounds depends on the term ρ =
Vol2N (rmax(HX )B2N ) /Vol2N (HX ), referred to as packing
efficiency in [5]. Because of this dependence, as ρ increases,
the capacity gap grows accordingly. As a result, the gap is min-
imized only in ideal and specific cases, for example when X
is a ball and H = I2N at the same time. In [6], we improve the

results of [5] for the per-antenna and total amplitude (TA) con-
straint, by extending the McKellips-Type upper bound of [4]
to MIMO systems affected by fading. Intuitively, we achieve
better results than those in [5] by considering an upper bound
that depends on a smaller constraint region S ⊇ HX such
that Vol2N (HX ) ≤ Vol2N (S) ≤ Vol2N (rmax(HX )B2N ).
Although the resulting asymptotic capacity gap in [6] is the
best in the past literature, it can be far from zero, since it is
given by log Vol2N (S) − log Vol2N (HX ). Moreover, as N
grows larger the gap widens even more. The aim of the next
section is to provide a tighter upper bound and to show that it
provides an asymptotic gap equal to zero, valid for any convex
constraint region.

V. SPHERE PACKING UPPER BOUND

In [7], the authors investigate the capacity of AWGN scalar
channels under average and peak power constraints. They
provide an upper bound based on an SP argument by using
a fundamental result from convex geometry, the Steiner’s for-
mula. We extend their upper bound to MIMO fading channels.
By considering an arbitrarily large number of independent
channel uses, M , for M →∞, the SP bound is

C ≤ CSP , lim sup
M→∞

1

M
log

Voln
(
[HX ]×M ⊕ δBn

)
Voln (δBn)

(9)

= lim sup
M→∞

1

M
log Voln

(
[HX ]×M ⊕ δBn

)
− lim
M→∞

1

M
log Voln (δBn) (10)

= L(σ2
z)−N log

(
2πeσ2

z

)
, (11)

where n = 2NM and δ =
√
nσ2

z . Let us focus on the
evaluation of the term L(σ2

z) in (11). To deal with the convo-
lution in (10) involving the output signal space K = [HX ]

×M ,
we define the limiting normalized generating function of the
intrinsic volumes of K, f(t), as follows

f(t) , lim
M→∞

1

2NM
GK(t) (12)

= lim
M→∞

1

2NM
G[HX ]×M (t) (13)

(4)
= lim

M→∞

M

2NM
GHX (t) (14)

=
1

2N
log

( 2N∑
j=0

Vj (HX ) ejt
)
. (15)

Following the steps in [7, Lemma 14], we define Ṽθ (K) ,
Ṽj/n (K) = Vj (K) with 0 ≤ j ≤ n and θ ∈ [0, 1]. We extend
one of the upper bounds of [7] to a MIMO channel by noticing
that

lim
M→∞

1

M
log Ṽθ (K) = lim

n
2N→∞

2N

n
log Ṽθ (K) (16)

= 2N lim
n→∞

1

n
log Ṽθ (K) (17)

= 2N sup
θ
{−f∗(θ)} , (18)



where (18) holds by [7, Lemma 15], which builds
on the Gärtner-Ellis large deviations theorem. Let f∗(θ)
be the convex conjugate of f(t) defined in (5), then
from [7, Theorem 8] we have

L(σ2
z) = lim sup

M→∞

1

M
log Voln

(
[HX ]×M ⊕ δBn

)
(19)

(18)
= sup

θ∈[0,1]

{
−2Nf∗(θ) + (1− θ)N log

2πeσ2
z

1− θ

}
(20)

(5)
= sup

θ∈[0,1]

{
− 2N sup

t
{θt− f(t)}+ (1− θ)N log

2πeσ2
z

1− θ

}
(21)

(15)
= sup

θ∈[0,1]

{
− 2N sup

t

{
θt− 1

2N
log

( 2N∑
j=0

Vj (HX ) ejt
)}

+ (1− θ)N log
2πeσ2

z

1− θ

}
. (22)

Finally, by plugging (22) into (11) we derive the final bound.

A. Asymptotic Gap

Let us now evaluate the asymptotic tightness of the gap
between the SP bound CSP and the entropy power inequal-
ity (EPI) lower bound, which is derived in [5] as

CEPI = N log

(
1 +

Vol2N (HX )
1
N

2πeσ2
z

)
. (23)

Since in the interval [0,∞) the function L(σ2
z) is continu-

ous [7], and since Voln
(
[HX ]×M

)
= MVol2N (HX ), it holds

lim
σ2
z→0

L(σ2
z) = L(0) = lim sup

M→∞

1

M
log Voln

(
[HX ]×M

)
(24)

= log Vol2N (HX ) . (25)

The gap at high SNR results in

ga , lim
σ2
z→0

CSP − CEPI (26)

= lim
σ2
z→0

L(σ2
z)−N log

(
Vol2N (HX )

1
N

)
= 0. (27)

Therefore, we proved that the SP upper bound is asymptoti-
cally tight at high SNR for any dimension N of the MIMO
system, any channel matrix H, and any convex constraint
region X . In the following section, we refine and investigate
the bounding gap as a function of the SNR for the TA
constraint.

VI. TOTAL AMPLITUDE CONSTRAINT

We evaluate the SP upper bound of Sec. V for the input
constraint region X = aB2N . The TA constraint occurs, for
instance, when the transmitter employs a single amplifier for
all of the transmitting antennas. As shown in (22), to evaluate
the bound we need to compute the intrinsic volumes Vj (HX ),
for j = 0, . . . , 2N . Since X is a ball, and by using the singular
value decomposition of H = UΛVT , it holds Vj (HX ) =
Vj (ΛX ), for any j. We denote the diagonal elements of Λ
as λ1, . . . , λ2N and we assume that λ1 ≥ λ2 ≥ · · · ≥ λ2N ,

Figure 1. Two sphere packing examples under a peak amplitude constraint
and different SNR values. For both figures, the red dashed line is the border
of K = B2, in dark gray the result of the Minkowski sum between K and
the noise ball for each specific SNR. On the left, the light gray noise balls
are translated replicas of δ1B2, while on the right of δ2B2 with δ1 > δ2.

since it is always possible to rearrange the MIMO system in
such a way that this condition is satisfied. In [9], it is shown
that given an ellipsoid

E =
{
x = [x1, . . . , x2N ]

T ∈ R2N : xTΣ−1x ≤ 1
}
, (28)

by defining j independent and identically distributed random
vectors Q1, . . . ,Qj ∼ N (02N ,Σ) and the random matrix
Q = [Q1, . . . ,Qj ], it is possible to compute the jth intrinsic
volume of E as

Vj (E) =
(2π)j/2

j!
E

[√
det
(

QT ·Q
)]

. (29)

Let us set Σ = Λ2. Then, the intrinsic volumes for the TA
configuration are given by

Vj (HX ) = Vj (E) aj , j = 0, . . . , 2N. (30)

By plugging the intrinsic volumes (30) into (22), we obtain
the TA upper bound on the capacity.

Although the SP upper bound is asymptotically tight, it can
be loose at low-to-intermediate SNR. Indeed, since the SP
bound is based on geometric arguments, its reliability depends
on how accurately the Minkowski sum approximates the true
channel output region. Intuitively, the Minkowski sum in (9) is
obtained by taking the union of the noise balls δBn centered
on each point in K = [HX ]×M . Conversely, a true sphere
packing problem would take the union of non-overlapping
replicas of δBn, filling [HX ]×M ⊕ δBn. Therefore, as the
noise balls get smaller, the Minkowski sum becomes a good
approximation of the output signal space [HX ]×M , as shown
in Fig. 1. Nonetheless, whenever it is possible to decompose
the constraint in separate independent contributions on differ-
ent MIMO subspaces, we can obtain a family of SP bounds
that improves upon the one proposed in Sec. V. Specifically,
we can separate the MIMO channel into two independent
subchannels: we apply the SP upper bound on one and the
Gaussian maximum-entropy property on the other. Given the
MIMO channel capacity

C = max
FX:‖X‖≤a

{h (Y)} − h (Z) , (31)



an upper bound on the first term is given by

max
FX:‖X‖≤a

{h (Y)} = max
FX:‖X‖≤a

{h (Yu,Yl)} (32)

≤ max
FX:‖X‖≤a

{h (Yu) + h (Yl)} , (33)

where Y = [Yu,Yl]
T , with Yu = [Y1, . . . , YU ]

T ∈ RU , and
Yl = [YU+1, . . . , YU+L]

T ∈ RL, and U + L = 2N . We want
to treat independently the contributions of h (Yu) and h (Yl),
to upper bound them with different techniques. Since we
assumed that the singular values of Λ are sorted in descending
order, the subsystem to which Yu belongs perceives larger
singular values, and therefore higher SNR. On the contrary,
Yl refers to the subsystem with smaller singular values and
affected by a lower SNR. Then, we expect the SP upper
bound to be tighter on h (Yu), where the transmitted signal is
stronger compared to the noise level, while we expect it to be
looser on h (Yl). Since in the subsystem of Yl the Gaussian
noise is dominant, a tighter upper bound on h (Yl) can be
provided by the differential entropy of a normally distributed
vector Yl ∼ N (02N ,Σl), with Σl = ΛlE

[
XlX

T
l

]
+σ2

z IL and
with Λl being the L×L submatrix of Λ with diagonal elements
λU+1, . . . , λ2N . Finally, to separate the capacity contributions
of the two subsystems, we need to reformulate the input
constraint in such a way that it can be separated as well. Since

‖X‖2 = ‖Xu‖2 + ‖Xl‖2 ≤ a2, (34)

we can reinterpret a2 as a2(1 − ρ) + a2ρ with ρ ∈ [0, 1].
Therefore, the constraint ‖X‖ ≤ a becomes equivalent to{

‖Xu‖ ≤ a
√

1− ρ
‖Xl‖ ≤ a

√
ρ.

(35)

Plugging this equivalent constraint into (33), we obtain

max
FX:‖X‖≤a

{h (Yu) + h (Yl)} (36)

= max
ρ∈[0,1]

{
max

FX:

{
‖Xu‖ ≤ a

√
1− ρ

‖Xl‖ ≤ a
√
ρ

{h (Yu) + h (Yl)}
}
(37)

= max
ρ∈[0,1]

{
max

FXu :‖Xu‖≤a
√
1−ρ
{h (Yu)}

+ max
FXl

:‖Xl‖≤a
√
ρ
{h (Yl)}

}
. (38)

Then, we can apply the SP upper bound in (9) on the
subsystem of Yu to get

max
FXu :‖Xu‖≤a

√
1−ρ
{h (Yu)} ≤ Lu(ρ) (39)

= sup
θ∈[0,1]

{
− U sup

t

{
θt− 1

U
log

U∑
j=0

Vj (ΛuXu) ejt
}

+ (1− θ)U
2

log
2πeσ2

z

1− θ

}
, (40)
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Figure 2. Numerical evaluation of the capacity gap in bit per channel use
(bpcu) versus SNR, for N = 1, . . . , 10. For each N the filled circles are
the gaps resulting from each random channel realization, while the solid lines
show the averaged behavior.

where Xu = a
√

1− ρBU , and Λu is the U × U submatrix
of Λ with diagonal elements λ1, . . . , λU . For the subsystem
associated with Yl, the upper bound is given by

max
FXl

:‖Xl‖≤a
√
ρ
{h (Yl)} ≤ max

FXl
:‖Xl‖≤a

√
ρ

{
h
(
Yl

)}
(41)

= max
E[|Xl|2]:
‖Xl‖≤a

√
ρ

2N∑
j=U+1

1

2
log
(
2πe

(
λ2jρE

[
|Xj |2

]
+ σ2

z

))
(42)

=

2N∑
j=U+1

1

2
log
(
2πe

(
λ2jρPj + σ2

z

))
, (43)

where Pj is the power allocation given by the water-filling
algorithm, which maximizes (42) for the given constraint
‖Xl‖ ≤ a

√
ρ. Notice that we obtain a valid upper bound for

any combination of positive integers U and L with sum equal
to 2N , therefore the final upper bound for the TA configuration
results in

C ≤ CTA = min
U :

U+L=2N

max
ρ

{
Lu(ρ)

+

2N∑
j=U+1

1

2
log
(
2πe

(
λ2jρPj + σ2

z

))}
−N log(2πeσ2

z). (44)

To evaluate the gap we consider the piecewise-EPI (p-EPI)
lower bound proposed in [6] and we denote it with CTA. Let
us define the gap as g , CTA−CTA. We evaluate g numerically
by Monte Carlo simulation for N = 1, . . . , 10, where the
entries of H̃ in (6) are drawn as H̃i,j ∼ CN (0, 2), ∀i, j.
The results are presented in Figs. 2 and 3. In Fig. 2, we
show a scatter plot of the gap realizations and the average gap
versus SNR, for any N . As expected, when the SNR goes to
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Figure 3. Numerical evaluation of the average ratio between the capacity gap
g and the upper bound CTA versus SNR, for N = 1, . . . , 10.
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Figure 4. Capacity gap (dashed blue curve) and capacity bounds (dotted
and solid red curves) vs SNR. The channel realization H̃ has singular values
λ̃ = [2.6, 0.9].

zero the gap is small, because (44) is optimized by U = 0
and CTA turns into the Gaussian maximizing entropy bound,
which is tight at low SNR. Moreover, the gap is vanishing at
high SNR as proven in Section V. Even in the worst case, g
is ∼ 3 bit per channel use (bpcu) and it moderately increases
with N . In fact, in Fig. 3 we show that as N increases, the
ratio between the bounding gap and the upper bound decreases
and, therefore, that the bounds provide a proportionally more
accurate estimate of the channel capacity for larger values
of N . The curves shown in Fig. 2 are smooth and regular
due to averaging. On the contrary, the gap curve for a single
channel matrix typically exhibits a much more irregular trend,
with a number of spikes increasing with N . For instance,
the gap shown in Fig. 4 for N = 2 presents a spike around

SNR = 2.5 dB. This trend is due to the piecewise nature of the
p-EPI lower bound in [6], which produces discontinuities in
the lower bound curve and consequently affects the resulting
gap as well. Such an effect becomes more evident when the
singular values of H are strongly dissimilar.

VII. CONCLUSION

We derived an upper bound on the channel capacity of
multiple-input multiple-output (MIMO) systems affected by
fading and subject to amplitude constraints at the transmitter,
that is asymptotically tight at high signal-to-noise ratio (SNR)
for any channel matrix realization, any peak amplitude convex
constraint region, and any dimension of the MIMO system.
Moreover, for a specific scenario where the total input power
of the MIMO system is peak-constrained, we refined the
capacity upper bound and evaluated numerically the bounding
gap for a broad range of SNR levels.
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