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Abstract—Constructing efficient low-rate error-correcting
codes with low-complexity encoding and decoding have become
increasingly important for applications involving ultra-low-power
devices such as Internet-of-Things (IoT) networks. To this end,
schemes based on concatenating the state-of-the-art codes at
moderate rates with repetition codes have emerged as practical
solutions deployed in various standards. In this paper, we propose
a novel mechanism for concatenating outer polar codes with inner
repetition codes which we refer to as polar coded repetition. More
specifically, we propose to transmit a slightly modified polar
codeword by deviating from Arıkan’s standard 2 × 2 Kernel
in a certain number of polarization recursions at each repetition
block. We show how this modification can improve the asymptotic
achievable rate of the polar-repetition scheme, while ensuring
that the overall encoding and decoding complexity is kept almost
the same. The achievable rate is analyzed for the binary erasure
channels (BEC).

I. INTRODUCTION

Recently, the Third Generation Partnership Project (3GPP)

has introduced various features including Narrow-Band Inter-

net of Things (NB-IoT) and enhanced Machine-Type Commu-

nications (eMTC) into the cellular standard in order to address

the diverse requirements of massive IoT networks including

low-power and wide-area (LPWA) cellular connectivity [4].

In general, devices in IoT networks have strict limitations

on their total available power and are not equipped with

advanced transceivers due to cost constraints. Consequently,

they often need to operate at very low signal-to-noise ratio

(SNR) necessitating ultra-low-rate error-correcting codes for

reliable communications. For instance, the SNR of −13 dB

is translated to capacity being 0.03 bits per transmission. The

solution adopted in the 3GPP standard is to use the legacy

turbo codes or convolutional codes at moderate rates, e.g., the

turbo code of rate 1/3, together with up to 2048 repetitions to

support effective code rates as low as 1.6 × 10−4. Although

this repetition leads to efficient implementations with reduced

computational complexity, repeating a high-rate code to enable

low-rate communication will result in rate loss and mediocre

performance. As a result, studying efficient channel coding

strategies for reliable communication in this low SNR regime,

where channel coding is the only choice, is necessary [1].

The fundamental non-asymptotic laws for channel coding

in the low-capacity regimes have been recently studied in [1].

Furthermore, the optimal number of repetitions with negligible

rate loss, in terms of the code block length and the underlying

channel capacity, is characterized in [1]. It is also shown in

[1] that the state-of-the-art polar codes, proposed by Arıkan

[2], naturally invoke this optimal number of repetitions when

constructed for low-capacity channels. In another related work,

low-rate codes for binary symmetric channels are constructed

by concatenating high-rate i.e., rate close to 1, polar codes

with repetitions [5].

In this paper, we propose an alternative mechanism called

coded repetition, for the repetition concatenation scheme.

A slightly modified codeword in each repetition block is

transmitted instead of identical codewords in all repetition

blocks. The goal is to reduce the rate loss due to the repetition

while keeping the overall encoding and decoding complexity

the same as in a standard repetition concatenation scheme. In

particular, we consider polar codes as the outer code. In the

proposed polar coded repetition scheme, a slightly modified

polar codeword is transmitted in each repetition block by de-

viating from Arıkan’s standard 2×2 Kernel in a certain number

of polarization recursions at each repetition block. We show

that our proposed scheme outperforms the straightforward

polar-repetition scheme, in terms of the asymptotic achievable

rate, for any given number of repetitions over the binary

erasure channel (BEC). The proposed polar coded repetition

has almost the same encoding and decoding complexity as the

straightforward repetition scheme.

A. Background

Consider two copies of a binary discrete memoryless chan-

nel (B-DMC) W : X → Y with binary inputs x1, x2 ∈ X

and outputs y1, y2 ∈ Y . The transformation G2 =
(

1 0

1 1

)

is

applied on the inputs of these two channels and u1 and u2

are generated. Then, x1 and x2 are transmitted through the

independent copies of W . At the decoder side, u1 is decoded

by using two observations y1, y2 and then u2 is decoded by

using the decoded sequence, û1, and the observations y1, y2.

The transformation G2 along with this successive decoding,

referred to as successive cancellation (SC), transforms the

two copies of the channel W into two synthetic channels

W 0 : W ∗ W : X → Y2 and W 1 : W ∗ W : X → Y2 × X
as follows:

W ∗ W (y1, y2|u1) =
∑

u2∈X

1

2
W (y1|u1 + u2)W (y2|u2),

W ∗ W (y1, y2, u1|u2) =
1

2
W (y1|u1 + u2)W (y2|u2).

(1)

Here, the channel W 0 is weaker (i.e., less reliable) compared

to W , while the channel W 1 is stronger (i.e., more reliable)

compared to the channel W . The quality of a channel is
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measured by a reliability metric such as the Bhattacharyya

parameter defined as

Z(W )
∆
=

∑

y∈Y

√

W (y|0)W (y|1), (2)

which is equal to the erasure probability for BECs, i.e., for

BEC(ǫ), Z(W ) = ǫ. The Bathacharyya parameters of the

synthetic channels follow the properties

Z(W 1) = Z(W )2,

Z(W 0) ≤ 2Z(W )− Z(W )2,
(3)

with equality in (3) iff W is a BEC channel.

If we continue applying the transformation G2 recur-

sively m times, we will obtain n = 2m synthetic

channels {W
(i)
m }i∈{0,1,...,n−1}. More specifically, if we let

{i1, i2, ..., im} be the binary expansion of i = {0, 1, ..., n−1}
over m bits, where i1 is the most significant bit and im is

the least significant one, then we define the synthetic channels

{W
(i)
m }i∈{0,...,n−1} as

W (i)
m = (((W i1 )i2)...)im . (4)

Arıkan in his seminal paper, [2], showed that as m → ∞,

these 2m synthetic channels are either purely noiseless or

purely noisy channels. Thus, on the encoder side, using k
entries of the input vector un−1

0 as the information bits and

setting the remaining entries to zero (frozen bits) will provide

almost error-free communication. Hence, an (n = 2m, k) polar

code is a linear block code generated by k rows of Gn = G⊗m
2 ,

which correspond to the best k synthetic channels. Here, .⊗m

is the m-times Kronecker product of a matrix with itself.

Repetition coding is a simple way of designing a practical

low-rate code. Let r denote the number of the repetitions and

N , the length of the code. For constructing the repetition

code, first, one needs to design a smaller outer code (e.g.

polar codes) of length n = N/r for channel W r and then

repeat each of its code bits r times. Consequently, the length

of the final code will be n × r = N . This is equivalent to

transmitting an input bit over the r-repetition channel W r

and outputs an r tuple. For example, if W is BEC(ǫ), then

its corresponding r-repetition channel is W r = BEC(ǫr).
The main advantage of this concatenation scheme is that the

decoding complexity is essentially reduced to that of the outer

code making it appealing to low-power applications. This

comes at the expense of loss in the asymptotic achievable rate

especially if the number of the repetitions is large. Suppose

that C(W ) is the capacity of the channel W and NC(W )
is the capacity corresponding to N channel transmissions.

With repetition coding, since we transmit n times over the

channel W r, the capacity will be reduced to nC(W r). Note

that, in general, we have nC(W r) ≤ NC(W ) and the ratio

vanishes with growing r. Let’s consider BEC(ǫ) as an example

with r = 2. If ǫ = 0.5, then 1
2C(W 2) = 0.375 whereas

C(W ) = 0.5. However, when ǫ is close to 1, C(W 2) = 1−ǫ2

is very close 2C(W ) = 2(1− ǫ).

II. PROPOSED SCHEME

In this section, the proposed polar coded repetition scheme

is discussed. It is shown how to improve the performance of

the straightforward repetition scheme in the low-rate regime,

while keeping the computational complexity almost the same

as the original one.

Consider an outer polar code with r = 2t repetitions and

let c denote a polar codeword of length n = 2m designed for

transmission over a channel W , r times. Owing to the recur-

sive structure of the polar codes, one can write the polarization

transform matrix as Gn = G′
r′ ⊗G

⊗(m−t′)
2 , where G′

r′ is an

r′ × r′ binary matrix with r′ = 2t
′

. In our proposed scheme,

we consider a different G′
r′ in each repetition block, while

keeping G
⊗(m−t′)
2 the same in all of them. In other words,

the first t′ recursions of Arıkan’s polarization transform are

modified in each repetition while the rest of m− t′ recursions

are kept the same. Note that if one chooses r′ = n, i.e., the

transmission in each block being different, then the channel

capacity C(W ) can be achieved. However, we choose r′ = r
to have a comparable complexity with the straightforward

polar-repetition scheme. The complexity of the simple polar-

repetition and the proposed modified polar-repetition schemes

will be provided in subsection III-B.

We illustrate the idea through some examples with two and

four repetitions and constructed with regular and irregular

polar coding approaches. Then, we generalize the regular

scheme to accommodate an arbitrary repetition r.

A. Examples for two and four repetitions

In this subsection, we provide three examples for two and

four repetitions as follows.

Example 1 (Two repetitions): Consider an outer polar code

with two repetitions. Hence, the polar codeword c needs to be

designed for W 2 = W ∗ W . The recursive structure of polar

codes implies that codeword c = (c1 ⊕ c2, c2) is constructed

from the generator matrix Gn = G′
2⊗G

⊗(m−1)
2 , where G′

2 =
(

1 0

1 1

)

and c1 and c2 are polar codewords of length n/2

generated from G
⊗(m−1)
2 .

Now, we consider an alternative scheme where in each

repetition, we transmit different combinations of c1 and c2
by choosing different G′

2 in each of them. Let G′(i)
2 be a

lower triangular matrix1 G′(i)
2 =

(

1 0

e 1

)

, where e ∈ F2 and

i = {1, 2} is the index of the transmission (see TABLE. I for

two possible matrices). There are three possible cases for two

Table I: Two possible matrices for two repetitions

Pattern no. G′(i)
2

P
(0)
2

(

1 0

1 1

)

P
(1)
2

(

1 0

0 1

)

transmissions as follows.

1[6] showed that the column permutations and the one-directional row

operations can always transform a non-singular kernel G′(i)
2 to a lower

triangular kernel G′′ with the same polarization behavior.



1) G′(1)
2 =

(

1 0

1 1

)

and G′(2)
2 =

(

1 0

1 1

)

: In this case,

(c1⊕c2, c2) and (c1⊕c2, c2) are transmitted in each repe-

tition. By considering both transmissions, one concludes

that codeword c1 is implicitly designed for the effective

channel that the sub-block of length n/2 observes, i.e.,

for W 2 ∗ W 2 and c2 is designed for W 2 ∗ W 2. As a

result, the capacity per channel use per transmission for

this case and specifically for BEC will be

C
(1)
2 = (C(W 2 ∗ W 2) + C(W 2 ∗ W 2))/4

= (1− ǫ2)/2.

2) G′(1)
2 =

(

1 0

1 1

)

and G′(2)
2 =

(

1 0

0 1

)

: For this case,

(c1 ⊕ c2, c2) and (c1, c2) are transmitted in the first

and second repetitions. Codeword c1 is designed for

the effective channel that the sub-block of length n/2
observes, i.e., for (W ∗ W 2) ∗ W , and c2 is designed

for W 2 ∗ W . As a result, the capacity per channel use

per transmission for this case is

C
(2)
2 = (C((W ∗ W 2) ∗ W ) + C(W 2 ∗ W ))/4

= (2 − ǫ2 − 2ǫ3 + ǫ4)/4.

3) G′(1)
2 =

(

1 0

0 1

)

and G′(2)
2 =

(

1 0

0 1

)

: In the first and

second repetitions, (c1, c2) and (c1, c2) are transmitted.

Both Codewords c1 and c2 are designed for the effective

channel that the sub-block of length n/2 observes, i.e.,

for W 2. As a result, the capacity for this case will be

C
(3)
2 = (C(W 2) + C(W 2))/4

= (1− ǫ2)/2.

It can be observed that for 0 < ǫ < 1, the capacity of case 2

is larger than the capacities of both cases 1 and 3, which are

simple repetition schemes. In other words,

C((W ∗ W 2) ∗ W ) + C(W 3) > 2C(W 2), (5)

where the right hand side of (5) is the capacity for the

straightforward repetition scheme and the left hand side of

(5) is the capacity of case 2.

In the proposed modified approach, which we refer to as

coded repetition scheme, we consider case 2. This modified

scheme has the same encoding/decoding complexity compared

to a simple repetition scheme.

Example 2 (Four repetitions with regular polar codes):

Consider an outer polar codes with four repetitions. Since

we intend to keep the complexity of the proposed scheme

the same as the complexity of the simple repetition one, let’s

consider all possible Kronecker products of the patterns P
(0)
2

and P
(1)
2 for G′(i)

4R, i = {1, 2, 3, 4} as the ones depicted in

Table II. We call these patterns regular polar codes. Then,

for four transmissions, we try all 35 multi-subsets of size

4 from the set {P
(0)
4R , P

(1)
4R , P

(2)
4R , P

(3)
4R } to find the best one

in terms of the capacity. The channel that each codeword ci
observes follows the recursive structure shown in Fig. 1. With

a simple search among these 35 multi-subsets, it is found that

the pattern (P
(0)
4R , P

(3)
4R , P

(3)
4R , P

(3)
4R ) has the largest capacity.

Table II: All possible cases for four repetitions

Pattern no. G′(i)
4R

P
(0)
4R

(

1 0

1 1

)

⊗
(

1 0

1 1

)

P
(1)
4R

(

1 0

1 1

)

⊗
(

1 0

0 1

)

P
(2)
4R

(

1 0

0 1

)

⊗
(

1 0

1 1

)

P
(3)
4R

(

1 0

0 1

)

⊗
(

1 0

0 1

)

In this modified repetition scheme, (c1 ⊕ c2 ⊕ c3 ⊕
c4, c2 ⊕ c4, c3 ⊕ c4, c4), (c1, c2, c3, c4), (c1, c2, c3, c4) and

(c1, c2, c3, c4) are transmitted in the first, second, third and

fourth transmissions, respectively. Codword c1 is constructed

for the effective channel that the first sub-block of length n/4
observes, i.e., for W1 = ((W ∗ W 2) ∗ (W ∗ W 2)2) ∗ W 3, c2
for W2 = (W ∗ W 2)2 ∗ W 3, c3 for W3 = (W 2 ∗ W 4) ∗ W 3

and c4 for W4 = W 4 ∗ W 3. For BEC W , the capacity of the

modified scheme is larger than that of the repetition scheme

for 0 < ǫ < 1:

C4R = C(W1)+C(W2)+C(W3)+C(W4) > 4C(W 4). (6)

Example 3 (Four repetitions with irregular polar

codes2): We consider an alternative type of patterns for 4
repetitions, referred to as irregular polar codes, which have

the same computational complexity as the simple repeti-

tion scheme. These 8 irregular patterns are constructed with

G′(i)
4I =

(

P
(j)
2 0

P
(j)
2 P

(j)
2

)

and G′(i)
4I =

(

P
(j)
2 0

0 P
(j)
2

)

, where

j = {0, 1} and i = {1, 2, . . . , 8} (see Fig. 2).

With a simple search among all 330 multi-subsets of

size 4 from the set {P
(k)
4I }7k=0, it is found that the pattern

(P
(2)
4I , P

(5)
4I , P

(7)
4I , P

(7)
4I ) has the largest capacity. The channel

that each codeword ci observes follows the recursive structure

shown in Fig. 2. In this scheme, (c1 ⊕ c3 ⊕ c4, c2 ⊕ c4, c3 ⊕
c4, c4), (c1 ⊕ c2, c2, c3, c4), (c1, c2, c3, c4) and (c1, c2, c3, c4)
are transmitted in the first, second, third and fourth trans-

missions, respectively. Codeword c1 is constructed for the

effective channel W1 = (W ∗ W 2) ∗ (W ∗ W 2) ∗ W ∗ W ,

c2 for W2 = (W ∗ W 2) ∗ W 2 ∗ W ∗ W , c3 for W3 = (W 2 ∗
W 4) ∗W ∗W ∗ W and c4 for W4 = W 4 ∗W ∗W ∗W . For

BEC W , the capacity of the modified scheme with irregular

polar codes is larger than the one with regular polar codes for

0 < ǫ < 1. In other words,

C4I = C(W1) + C(W2) + C(W3) + C(W4) > C4R. (7)

B. General case for regular polar codes

For the general case of r = 2t repetitions with regular polar

codes, we consider all r possible t times Kronecker products

of the patterns P
(0)
2 and P

(1)
2 , as P

(i)
r , i = 0, 1, . . . , r − 1.

In the proposed scheme, we use P
(0)
r = (P

(0)
2 )⊗t for the

first transmission and P
(r−1)
r = (P

(1)
2 )⊗t for the rest r − 1

ones. For BEC W with an erasure probability ǫ, let’s define

Z
P

(i)
r

(W
(k)
r )

∆
= Z(i1,...,it)(W

(k)
r ) as the erasure probabilities

of the channels that each codeword ck, k = {1, 2, . . . , r} for

pattern P
(i)
r observes and {i1, i2, . . . it} as the t-bit binary

2Note that regular scheme is a special case of the irregular scheme.



Figure 1: The recursive structure of the channels that each codeword ci observes for two and four transmissions.

Figure 2: All 8 possible irregular kernels G′(i)
4I for 4 transmissions and the corresponding recursive structure of the channels

that each codeword ci observes.

expansion of i. Then, the recursive formula for computing

Z
P

(i)
r

(W
(k)
r ) can be written as

Z(i1,...,it)(W
(2j−1)
r ) = Z(i1,...,it−1)(W

(j)
r

2
)×

[1 + Z(i1,...,it−1)(W
(j)
r

2
)− Z2

(i1,...,it−1)
(W

(j)
r

2
)](1−it),

Z(i1,...,it)(W
(2j)
r ) = Z(i1,...,it−1)(W

(j)
r

2
)×

[Z(i1,...,it−1)(W
(j)
r

2
)](1−it),

(8)

where Z(W
(1)
1 ) = ǫ and j = 1, 2, . . . , r

2 . Hence, the capacity

for the proposed scheme will be

CrR =
r −

∑r

k=1 ZP
(0)
r

(W
(k)
r )× (Z

P
(r−1)
r

(W
(k)
r ))r−1

r2
.

(9)

Since Z
P

(r−1)
r

(W
(k)
r ) = ǫ, for all k = 1, 2, . . . , r, we will have

CrR =
r −

∑r

k=1 ZP
(0)
r

(W
(k)
r )× ǫr−1

r2
. (10)

Next, we show that CrR > C(W r)
r

for any r repetitions and



0 < ǫ < 1. In other words,

r
∑

k=1

Z
P

(0)
r

(W (k)
r ) < rǫ. (11)

To this end, we first prove that
∑r

k=1 ZP
(0)
r

(W
(k)
r ) − rǫ has

zeros at ǫ = 0 and ǫ = 1.

Theorem 1. Z
P

(0)
r

(W
(k)
r ) = 0 at ǫ = 0 and Z

P
(0)
r

(W
(k)
r ) = 1

at ǫ = 1 for all k = {1, 2, . . . , r}.

Proof. Let us write the recursive formula for erasure probabil-

ity as Z
P

(0)
r

(W
(k)
r ) = fk1(fk2(...fkt

(ǫ)))), where ki = {0, 1},

i = {1, 2, . . . , t} and f0(a) = a + a2 − a3, f1(a) = a2,

∀k = {1, 2, . . . , r}.

Since fki
(a)|a=1 = 1 and fki

(a)|a=0 = 0, by using

recursion, we conclude Z
P

(0)
r

(W
(k)
r ) = 1 at ǫ = 1 and

Z
P

(0)
r

(W
(k)
r ) = 0 at ǫ = 0 ∀k = {1, 2, . . . r}. �

Then, one can use Sturm algorithm3 [7] to show that
∑r

k=1 ZP
(0)
r

(W
(k)
r ) − rǫ doesn’t have any root in ǫ = (0, 1).

Finally, one can choose an ǫ in the interval (0, 1) and compare

the values of
∑r

k=1 ZP
(0)
r

(W
(k)
r ) and rǫ at that point to see

that the capacity of proposed modified scheme is greater than

the repetition one for r number of repetitions. Fig. (3) shows

the left and the right sides of eq. (11) for r = 4.
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Figure 3: Comparison between the left and the right hand sides

of eq. (11).

III. ANALYSIS AND NUMERICAL RESULTS

In this section, we first analyze the numerical result of the

proposed scheme and compare it with the straightforward polar

repetition scheme. Then, we provide complexity analysis of

both of these schemes.

3Although Sturm’s theorem is a complete solution for finding the number of
the real roots of the polynomials, when the degree of the polynomial increases,
it isn’t efficient in terms of implementation. The algorithm proposed in [8] is
more efficient for higher degrees.

A. Numerical Analysis

In this subsection, we provide numerical results for the

capacity of the proposed polar coded repetition scheme for

different numbers of repetitions over BEC and compare them

with the capacity of the simple repetition scheme and the

Shannon bound. Fig. (4) illustrates the capacities of the

proposed schemes for 2, 4 and 8 repetitions. It can be observed

that the proposed scheme outperforms the simple repetition

scheme for all of these repetitions. The irregular scheme also

slightly outperforms the regular one for 4 repetitions. On the

other hand, as the number of repetitions increases, the gap to

the Shannon bound increases as expected.
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Figure 4: Capacity of the proposed scheme compared with the

capacity of the repetition scheme for r = 2, 4, 8.

B. Complexity Analysis

The complexity of the straightforward polar-repetition

scheme consists of the complexity of the outer polar code of

size n, O(n logn), and the repetition code of size r, nr. Thus,

the complexity of the total decoding process for this scheme

is O(nr + n logn).
The complexity of the proposed polar coded repetition

scheme consists of the complexity of the three stages. The first

stage is r different kernels G′
r where the complexity of each of

G′
r of size r is O(n log r). The second stage is repetition code

of size r with complexity nr. Finally, the third stage is kernel

G
⊗(m−t)
2 of size n/r with complexity O(n log n

r
). Hence, the

complexity of the total decoding process is O(nr+ rn log r+
n log n

r
) = O(nr+n logn+n(r−1) log r). If r be a constant,

then the complexity of the polar coded repetition will be of

order O(n log n).

IV. CONCLUSION

In this paper, we proposed a modified approach for the

repetition scheme. In this scheme, we used polar codes as

the outer code and proposed to transmit slightly modified



codeword in each repetition. We showed that the proposed

scheme outperforms the simple repetition scheme, in terms of

the asymptotic achievable rate, over BEC while it keeps the

decoding complexity almost the same as the repetition scheme.
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de L’ Agriculture et des Arts, de Lille (in French), pp. 1–34, 1834.


	I Introduction
	I-A Background

	II Proposed Scheme
	II-A Examples for two and four repetitions
	II-B General case for regular polar codes

	III Analysis and Numerical Results
	III-A Numerical Analysis
	III-B Complexity Analysis

	IV Conclusion
	References

