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Abstract

We consider the problem of (almost) lossless source coding of two correlated memoryless
sources using separate encoders and a joint decoder, that is, Slepian-Wolf (S-W) coding. In
our setting, the encoding and decoding are asynchronous, i.e., there is a certain relative delay
between the two sources. Neither the source parameters nor the relative delay are known to the
encoders and the decoder. Since we assume that both encoders implement standard random
binning, which does not require such knowledge anyway, the focus of this work is on the decoder.
Our main contribution is in proposing a universal decoder, that independent of the unknown
source parameters and the relative delay, and at the same time, is asymptotically as good as the
optimal maximum a posteriori probability (MAP) decoder in the sense of the random coding
error exponent achieved. Consequently, the achievable rate region is also the same as if the
source parameters and the delay were known to the decoder.

Index Terms: Slepian–Wolf coding, universal decoding, error exponent, asynchronous coding,
delay.
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1 Introduction

The problem of separate encodings and joint decoding of correlated sources, i.e., the well known

Slepian–Wolf (S-W) coding problem, has received a vast level of attention ever since the landmark

paper by Slepian andWolf [18] was published, nearly five decades ago. Much less attention, however,

was given to the asynchronous version of this problem, where there is a relative delay between the

two correlated sources, see, e.g., [15], [11], [16], [19], [20]. The motivation for the asynchronous

setting is thoroughly discussed in [11]. For memoryless correlated sources, Willems [20] assumed

that the relative delay is unknown to the encoders, but known to the decoder, and proved that

the achievable rate region is the same as in synchronous S-W coding. Under similar assumptions,

Rimoldi and Urbanke [16], as well as Sun, Tian, Chen and Wong [19], have proposed S-W data

compression schemes that are based on the notion of source splitting. In all these studies, it was

assumed that the decoder has the option to postpone the actual decoding until after having received

all codewords associated with the data to be decoded. Such an assumption essentially neutralizes

the negative effect of the relative delay because the encoders and the decoder can still exploit

the correlations between the two sources. As explained, however, by Matsuta and Uyematsu in

their recent paper [11], this setup might be somewhat problematic, in practice, especially when the

relative delay is very large.

The main result provided by Matsuta and Uyematsu in [11] (see also [9] and [10]) is a worst–

case result in spirit. They assumed that: (i) the joint probability distribution, PXY , of the two

corresponding correlated random variables, X and Y , one from each source to be compressed, is

only known to belong to a subset S of joint probability distributions, (ii) the relative delay between

the sources, d, is unknown, but known to be bounded between two limits, and (iii) the absolute

value of the relative delay, |d|, is allowed to scale linearly with n, and the ratio |d|/n tends to a

constant, δ ∈ [0, 1], as n → ∞, and δ is only known to be upper bounded by a given number ∆.

They have proved a coding theorem asserting that the achievability rate region is as follows. A

rate–pair (Rx, Ry) is achievable if and only if it satisfies the following three inequalities at the same

time:

Rx ≥ supPXY ∈S [H(X|Y ) + ∆I(X;Y )] (1)

Ry ≥ supPXY ∈S [H(Y |X) + ∆I(X;Y )] (2)
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Rx +Ry ≥ supPXY ∈S [H(X,Y ) + ∆I(X;Y )], (3)

This result of [11] is very interesting, but it is also extremely pessimistic. It is overly pessimistic,

not only because it is worst–case result, but even more importantly, because the above three

suprema can potentially be achieved by three different sources, in general. Thus, for a single, given

underlying joint source, PXY ∈ S (with relative delay, δn), as bad as it may be, at least one of

the above three inequalities can be improved, in general. Moreover, if S happens to be the entire

simplex of probability distributions {PXY } over the given alphabets, X and Y (which is a very

realistic special case), these suprema are given by log |X |, log |Y|, and log |X |+log |Y|, respectively,

rendering this coding theorem an uninteresting triviality, as it allows no compression at all. The

fact of the matter is, however, that at least the weakness concerning the three different achievers

of the suprema in (1)–(3) can be handled rather easily. Upon a careful inspection of the proof

of the converse part in [11], one readily concludes that it actually supports an assertion that the

achievable rate region is included in the following set:

⋂

PXY ∈S

{

(Rx, Ry) : Rx ≥ H(X|Y ) + ∆I(X;Y ),

Ry ≥ H(Y |X) + ∆I(X;Y ),

Rx +Ry ≥ H(X,Y ) + ∆I(X;Y )

}

. (4)

Similar comments apply to the analysis of the error probability in [11], which is a pessimistic

analysis, carried out for the worst source in S and over all possible relative delay values, rather

than the actual error probability associated with a given underlying source.

In this paper, we tackle the problem in a different manner. Instead of a worst–case approach,

our approach is the following: for a given rate pair (Rx, Ry), even if we knew the source and the

relative delay, we could have handled only sources, {PXY }, that satisfy H(X|Y ) + δI(X;Y ) ≤ Rx,

H(Y |X) + δI(X;Y ) ≤ Ry and H(X,Y ) + δI(X;Y ) ≤ Rx + Ry (δ being the actual normalized

relative delay). Now, the S-W encoders are always simple random–binning encoders, regardless of

the source parameters, so every uncertainty, that is associated with the source parameters and the

relative delay, is confronted, and therefore must be handled, by the decoder. Owing to the earlier

results on the minimum–entropy universal decoder for the S-W encoding system (see, e.g., [1], [2],

[3], [4], [5, Exercise 3.1.6], [7], [8], [12], [14], [17]), it is natural to set the goal of seeking a universal
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decoder that is asymptotically as good as the optimal maximum a posterior (MAP) decoder for

the given source, in the sense that the random coding error exponent is the same, and hence so is

the achievable rate region. In other words, unlike in previous works on universal S-W decoding,

here universality is sought, not only with respect to (w.r.t.) the source distribution, PXY , but also

w.r.t. the unknown relative delay between the two parts of the source. Although it is natural to

think of the relative delay as of yet another unknown parameter associated with the underlying

source, it will be interesting to see that in our proposed universal decoder, the unknown delay will

be handled differently than the other unknown parameters. We will elaborate on this point later

on.

Our main contributions, in this work, are the following:

1. We propose a universal decoder that allows uncertainty, not only regarding the source pa-

rameters, but also the relative delay.

2. We prove that our universal decoder achieves the same error exponent as the optimal MAP

decoder that is cognizant of both the source parameters and the relative delay. This will be

done by showing that our upper bound on the error probability of the universal decoder is of

the same exponential order as a lower bound on the error probability of the MAP decoder.

3. We provide the Lagrange–dual form of the resulting error exponent, and thereby characterize

the achievable rate region for achieving a prescribed random coding error exponent, E.

4. We provide an outline for a possible extension to sources with memory.

The outline of the remaining part of this paper is as follows. In Section 2, we establish notation

conventions. In Section 3, we formulate the problem and spell out the objectives of this work. In

Section 4, we present the main theorem and discuss it. Finally, in Section 5, we prove this theorem.

2 Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, specific values they may

take will be denoted by the corresponding lower case letters, and their alphabets will be denoted

by calligraphic letters. Random vectors and their realizations will be denoted, respectively, by
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capital letters and the corresponding lower case letters, both in the bold face font. Their alphabets

will be superscripted by their dimensions. For example, the random vector X = (X1, . . . ,Xn),

(n – positive integer) may take a specific vector value x = (x1, . . . , xn) in X n, the n–th order

Cartesian power of X , which is the alphabet of each component of this vector. Segments of vector

components will be denoted by subscripts and superscripts, for example, xji , i < j, will designate the

segment (xi, xi+1, . . . , xj). When i = 1, the subscript will be omitted and therefore the notation

will be xj. By convention, when i > j, xji will be understood to be the empty string, whose

probability is formally defined to be unity. Sources and channels will be denoted by the letter P

or Q, subscripted by the names of the relevant random variables/vectors and their conditionings,

if applicable, following the standard notation conventions, e.g., QX , PY |X , and so on. When there

is no room for ambiguity, these subscripts will be omitted. The probability of an event E will be

denoted by Pr{E}, and the expectation operator with respect to (w.r.t.) a probability distribution

P will be denoted by EP {·}. Again, the subscript will be omitted if the underlying probability

distribution is clear from the context. The entropy of a random variable (RV) X with a generic

distribution Q will be denoted by HQ(X). Similarly, other information measures will be denoted

using the customary notation, subscripted by the name of the underlying distribution Q. For

example, for a pair of RVs, (X,Y ), distributed according to QXY (or Q, for short), HQ(X,Y ),

HQ(X|Y ) and IQ(X;Y ) will denote the joint entropy, the conditional entropy of X given Y , and

the mutual information, respectively. For two positive sequences an and bn, the notation an
·
= bn

will stand for equality in the exponential scale, that is, limn→∞
1
n log an

bn
= 0. Similarly, an

·
≤ bn

means that lim supn→∞
1
n log an

bn
≤ 0, and so on. The indicator function of an event E will be

denoted by I{E}. The notation [x]+ will stand for max{0, x}.

The empirical distribution of a sequence x ∈ X n, which will be denoted by P̂x, is the vector

of relative frequencies, P̂x(x), of each symbol x ∈ X in x. The type class of x ∈ X n, denoted

T (x), is the set of all vectors x′ with P̂x′ = P̂x. When we wish to emphasize the dependence of

the type class on the empirical distribution P̂ , we will denote it by T (P̂ ), with a slight abuse of

notation. Information measures associated with empirical distributions will be denoted with ‘hats’

and will include the names of the vectors from which they are induced by parentheses. For example,

the empirical entropy of x, which is the entropy associated with P̂x, will be denoted by Ĥ(x).

An alternative notation, following the conventions described in the previous paragraph, is H(P̂x).
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Similar conventions will apply to the joint empirical distribution, the joint type class, the conditional

empirical distributions and the conditional type classes associated with pairs of sequences of length

n. Accordingly, P̂xy will be the joint empirical distribution of (x,y) = {(xi, yi)}
n
i=1, T (x,y) or

T (P̂xy) will denote the joint type class of (x,y), T (x|y) will stand for the conditional type class

of x given y, Ĥ(x,y) will designate the empirical joint entropy of x and y, Ĥ(x|y) will be the

empirical conditional entropy, and so on. Clearly, empirical information measures can be calculated,

not only from the full vectors, but also from partial segments, like xji and yji . In this case, xji and

yji will replace x and y in the above notations.

3 Problem Formulation

Let {(Xi, Yi)} be a pair of correlated discrete memoryless sources (DMSs) with a relative delay of d

time units, that is, (Xi, Yi+d) are jointly distributed according to a certain probability distribution,

PXY for every i, but the various pairs are mutually independent. In other words, the random

vectors Zi = (Xi, Yi+d) are i.i.d. for different values of i. Neither PXY and d are known to the

encoders and decoder.

Similarly as in [11], the two separate encoders that compress {Xi} and {Yi} both operate on

successive blocks of length n, without any attempt to align them, because d is unknown and it may

be arbitrarily large. These encoders are ordinary S-W encoders at rates Rx and Ry, respectively. In

other words, each member x (resp. y) of X n (resp. Yn) is mapped into a bin f(x) ∈ {1, 2, . . . , 2nRx}

(resp. g(y) ∈ {1, 2, . . . , 2nRy}), which is selected independently at random for every n–vector in the

respective source space. As always, the randomly selected mappings of both encoders are revealed

to the decoder.

As already mentioned, both PXY and d are unknown, but without essential loss of generality,

it may be assumed that 0 ≤ d ≤ n. For any d ≥ n, the respective blocks concurrently encoded,

X and Y , are statistically independent, and so, all values of d, from n and beyond, are actually

equivalent from the viewpoints of the encoders and the decoder. The lower limit, d ≥ 0, is assumed

for convenience only. Negative values of d correspond to switching the roles of the two sources in

the forthcoming results and discussions (see also [11]).1 Our asymptotic regime will be defined as

1We could have allowed negative values of d in the formal problem setup to begin with, but this would make the
notation more cumbersome.
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described in the Introduction: as n → ∞, the relative delay d will be asymptotically proportional

to n, i.e., the ratio d/n tends to a limit, δ. In view of the above discussion, δ can be assumed to

take on values in the interval [0, 1].

The decoder receives the bin indices, f(x) and g(y), of the compressed vectors, x and y,

respectively, and it outputs a pair of estimates, (x̂, ŷ) ∈ X n ×Yn. The average probability of error

is defined as

P̄e

∆
= Pr{(X̂ , Ŷ ) 6= (X ,Y )}, (5)

where both the randomness of (X,Y ) and the randomness of the encoder mappings are taken into

account. The respective error exponent is defined as

E(Rx, Ry) = lim
n→∞

[

−
log P̄e

n

]

, (6)

provided that the limit exists.

The optimal MAP decoder, that is cognizant of both PXY and d, is given by

(x̂, ŷ) = arg max
{(x′,y′): f(x′)=f(x), g(y′)=g(y)}

Pd(x
′,y′) (7)

= arg min
{(x′,y′): f(x′)=f(x), g(y′)=g(y)}

{

− log Pd(x
′,y′)

}

, (8)

where

Pd(x,y) = P (yd1) · P (xn−d
1 , ynd+1) · P (xnn−d+1), (9)

where all three factors admit product forms,

P (yd1) =
d
∏

i=1

PY (yi), (10)

P (xn−d
1 , ynd+1) =

n−d
∏

i=1

PXY (xi, yi+d), (11)

P (xnn−d+1) =
n
∏

i=n−d+1

PX(xi). (12)

The average probability of error, associated with the MAP decoder, will be denoted by P̄e,⋆ and its

error exponent will be denoted by E⋆(Rx, Ry). A general metric decoder is of the form

(x̂, ŷ) = arg min
{(x′,y′): f(x′)=f(x), g(y′)=g(y)}

q(x′,y′), (13)
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where the function q will be referred to as the decoding metric. The average error probability of the

decoder that is based on the metric q, will be denoted by Pe,q, and its error exponent (if existent)

will be denoted by Eq(Rx, Ry).

In this paper, we propose a universal decoding metric q, that is independent of the unknown PXY

and d, yet its error exponent, Eq(Rx, Ry), coincides with E∗(Rx, Ry), and hence it is asymptotically

optimal in the random coding error–exponent sense.

4 Main Result

We define the following functions for 0 ≤ k ≤ n:

uk(x,y) = kĤ(yk1 ) + (n− k)Ĥ(xn−k
1 , ynk+1) + kĤ(xnn−k+1), (14)

vk(x,y) = (n− k)Ĥ(xn−k
1 |ynk+1) + kĤ(xnn−k+1), (15)

wk(x,y) = kĤ(yk1 ) + (n− k)Ĥ(ynk+1|x
n−k
1 ), (16)

qk(x,y) = max{uk(x,y)− n(Rx +Ry), vk(x,y)− nRx, wk(x,y)− nRy}, (17)

and finally, the universal decoding metric, q, is defined as

q(x,y) = min
0≤k≤n

qk(x,y). (18)

If the relative delay, d, is allowed to take on also negative values, i.e., −n ≤ d ≤ n, then the

minimum in (18) should be extended to −n ≤ k ≤ n, where for k < 0, uk, vk, wk, and qk are

defined exactly as above, except that the roles of x and y are interchanged (that is, x will be

shifted |k| positions to the right relative to y, instead of the above shift, which is the opposite).

For a pair of finite–alphabet RVs, (X,Y ) ∼ PXY , let as define the Rényi entropies of order θ > 0

as

Hθ(X) =
1

1− θ
log

{

∑

x∈X

[PX(x)]θ
}

(19)

Hθ(Y ) =
1

1− θ
log







∑

y∈Y

[PY (y)]
θ







(20)

Hθ(X,Y ) =
1

1− θ
log







∑

(x,y)∈X×Y

[PXY (x, y)]
θ







(21)
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Hθ(X|Y ) =
θ

1− θ
log







∑

y∈Y

[

∑

x∈X

[PXY (x, y)]
θ

]1/θ






(22)

Hθ(Y |X) =
θ

1− θ
log











∑

x∈X





∑

y∈Y

[PXY (x, y)]
θ





1/θ










. (23)

For θ → 1, these quantities tend to the respective Shannon entropies.

Our main result is the following.

Theorem 1 Under the assumptions formalized in Section 3, the following is true:

(a) The error exponents, E∗(Rx, Ry) and Eq(Rx, Ry), both exist.

(b) Eq(Rx, Ry) = E∗(Rx, Ry) = min{Ex|y(Rx), Ey|x(Ry), Exy(Rx, Ry)}, where

Ex|y(Rx) = max
0≤ρ≤1

ρ ·
[

Rx − δH1/(1+ρ)(X) − (1− δ)H1/(1+ρ)(X|Y )
]

(24)

Ey|x(Ry) = max
0≤ρ≤1

ρ ·
[

Ry − δH1/(1+ρ)(Y )− (1− δ)H1/(1+ρ)(Y |X)
]

(25)

Exy(Rx, Ry) = max
0≤ρ≤1

ρ ·

[

Rx +Ry − δH1/(1+ρ)(X)−

δH1/(1+ρ)(Y )− (1− δ)H1/(1+ρ)(X,Y )

]

. (26)

Discussion. The remaining part of this section is devoted to a discussion on Theorem 1 and its

significance.

Since the error exponents were defined under the condition that the certain limits exist, part

(a) of the theorem establishes the basic fact that they indeed exist. Part (b) is more quantitative:

it tells that the error exponents of the universal decoder and the MAP decoder are equal, thus

rendering the universal decoder asymptotically optimal in the error exponent sense. Finally, part

(b) provides also an exact single–letter expression of this error exponent, using a Gallager–style

formula. Here, unlike in the synchronous case (of δ = 0), we also see unconditional Rényi entropies

(weighted by δ), which correspond to the compression of the segments, yd1 and xnn−d+1, that are

independent of each other and of all other pieces of data within the block, and hence no correlations

can be exploited when compressing them. If d is fixed (or grows sub–linearly with n), the relative

weight of these segments is asymptotically negligible, and there is no asymptotic loss compared to

the synchronous case. The error exponent is given by the minimum among three error exponents:
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Ex|y(Rx) corresponds to errors in the decoding of x while y is decoded correctly, Ey|x(Ry) designates

the opposite type of error, and finally, Exy(Rx, Ry) stands for erroneous decoding of both x and y.

The smallest of all three dominates the overall error exponent.

The above relation between the error exponent and the coding rates can be essentially inverted,

in order to answer the following question: what is the achievable rate region, R(E), for achieving an

error exponent at least as large as a prescribed value, E? Using the above error exponent formula,

the answer is readily found2 to be the following.

R(E) = {(Rx, Ry) : Rx ≥ Rx(E), Ry ≥ Ry(E), Rx +Ry ≥ Rxy(E)}, (27)

where

Rx(E) = inf
s≥1

[

sE + δHs/(1+s)(X) + (1− δ)Hs/(1+s)(X|Y )
]

(28)

Ry(E) = inf
s≥1

[

sE + δHs/(1+s)(Y ) + (1− δ)Hs/(1+s)(Y |X)
]

(29)

Rxy(E) = inf
s≥1

[

sE + δHs/(1+s)(X) + δHs/(1+s)(Y ) + (1− δ)Hs/(1+s)(X,Y )
]

. (30)

For E → 0, which means a vanishing error probability, however slowly, the infima are approached

by s → ∞, which yield

Rx(0) = δH(X) + (1− δ)H(X|Y ) = H(X|Y ) + δI(X;Y ) (31)

Ry(0) = δH(Y ) + (1− δ)H(Y |X) = H(Y |X) + δI(X;Y ) (32)

Rxy(0) = δH(X) + δH(Y ) + (1− δ)H(X,Y ) = H(X,Y ) + δI(X;Y ), (33)

as expected in view of the results of [11].

In order to try to understand the decoding metric (18), consider the following observations.

This decoding metric is given by the maximum of three different metrics, which are all in the spirit

of the minimum entropy (ME) universal decoding metric,3 but modified to address the dependence

structure at hand. Each one of these metrics is ‘responsible’ to handle a different type of error:

uk(x,y) − n(Rx + Ry) is associated with errors in decoding both x and y, vk(x,y) − nRx is for

errors in x only, while y is decoded correctly, and finally, wk(x,y)−nRy is meant for the opposite

2See the last part of Subsection 5.3.
3The above defined function, uk(x,y), was mentioned also in [11, Section V, second paragraph] as a possible

decoding metric, but it was not the decoding metric actually analyzed there, because the authors argued that it
cannot be analyzed by the standard method of types.
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case, of decoding error in y only. The maximum of all three metrics is meant to handle all three

types of error at the same time. Every value of k corresponds to a certain hypothesis concerning

the relative delay. Note that this decoding metric is different from the one in [14], which relies on

an encoding scheme that provides pointers to the type classes of x and y, in addition to their bin

indices.

Another observation is regarding the special stature of the relative delay parameter, d. On

the face of it, it is natural to view d as yet another unknown parameter of the source, in ad-

dition to the other unknown parameters – those associated with the joint distribution, PXY . If

d was known, and only PXY was unknown, we could have interpreted the empirical entropies in

uk, vk and wk (actually, with k = d) as negative logarithms of the maximum likelihood (ML)

values of the various segments, or equivalently, as the minima of the negative log–likelihood val-

ues. For example, (n − k)Ĥ(xn−d
1 , ynd+1) = minPXY

[− log P (xn−d
1 , ynd+1)], (n − k)Ĥ(xn−d

1 |ynd+1) =

minPXY
[− log P (xn−d

1 |ynd+1)], and so on. In other words, the minima over {PXY } are taken before

(i.e., more internally to) the maximum over the three metrics. By contrast, the minimum over

the hypothesized relative delay, k, is taken after (i.e., externally to) the maximum over the three

metrics. Attempts were made to prove that minimum over k and the maximum among the three

metrics can be commuted, but to no avail. Therefore, this point seems to be non–trivial.

Finally, it is in order to say a few words concerning sources with memory. Consider the case

where Zi = (Xi, Yi+d) is a first–order Markov source. In this case, the techniques of [12, Sub-

section 5.1], suggest that one can prove the universal asymptotic optimality of a similar universal

decoder, where kĤ(yk1 ), kĤ(xnn−k+1), (n − k)Ĥ(xnn−k+1|y
n
k+1), (n − k)Ĥ(ynk+1|x

n
n−k+1), and (n −

k)Ĥ(xnn−k+1, y
n
k+1) are replaced by the respective length functions associated with the Lempel–Ziv

algorithm (LZ78) [22] and the conditional LZ78 algorithm [21], LZ(yk1 ), LZ(x
n
n−k+1), LZ(x

n
n−k+1|y

n
k+1),

LZ(ynk+1|x
n
n−k+1), and LZ(xnn−k+1, y

n
k+1). It should be noted that yk1 and xnn−k+1 are not realizations

of a Markov sequences, but they are realizations of a hidden-Markov process, as their correlated

counterparts are not available. Nonetheless, hidden Markov sources can still be accommodated in

this framework (see, e.g., [13]).
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5 Proof of Theorem 1

The proof is based on a simple sandwich argument: we first derive an upper bound to the average

error probability of the universal decoder that is based on q, and then a lower bound to the error

probability of the MAP decoder. Both bounds turn out to be of the same exponential order. On the

other hand, since the MAP decoder cannot be worse than the universal decoder, this exponential

order must be exact for both decoders and its single–letter expression is easily derived using the

method of types. This will establish both part (a) of Theorem 1 and the first equality in part

(b). The second equality in part (b) will be obtained by deriving the Lagrange–dual of the original

single–letter formula.

5.1 Upper Bound on the Error Probability of the Universal Decoder

The average probability of error of the proposed universal decoder, is as follows.

P̄e,q =
∑

x,y
Pd(x,y)P̄e,q(x,y) (34)

∆
=

∑

x,y
Pd(x,y)Pr

{

(X̂, Ŷ ) 6= (x,y)
}

(35)

=
∑

x,y
Pd(x,y) · Pr





⋃

{(x′,y′)6=(x,y): q(x′,y′)≤q(x,y)}

{

f(x′) = f(x), g(y′) = g(y)
}



 . (36)

As for P̄e,q(x,y), we have

P̄e,q(x,y) = Pr





⋃

{(x′,y′)6=(x,y): q(x′,y′)≤q(x,y)}

{

f(x′) = f(x), g(y′) = g(y)
}





≤ Pr





⋃

{x′ 6=x, y′ 6=y: q(x′,y′)≤q(x,y)}

{

f(x′) = f(x), g(y′) = g(y)
}



+

Pr





⋃

{x′ 6=x: q(x′,y)≤q(x,y)}

{

f(x′) = f(x)
}



+

Pr





⋃

{y′ 6=y: q(x,y′)≤q(x,y)}

{

g(y′) = g(y)
}





∆
= P̄e,q,1(x,y) + P̄e,q,2(x,y) + P̄e,q,3(x,y). (37)
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Now,

P̄e,q,1(x,y) = Pr





⋃

{x̃ 6=x, ỹ 6=y: q(x̃,ỹ)≤q(x,y)}

{f(x̃) = f(x), g(ỹ) = g(y)}





≤ min

{

1, 2−n(Rx+Ry)

∣

∣

∣

∣

{(x̃, ỹ) : q(x̃, ỹ) ≤ q(x,y)}

∣

∣

∣

∣

}

= min

{

1, 2−n(Rx+Ry)

∣

∣

∣

∣

n−1
⋃

k=0

{(x̃, ỹ) : qk(x̃, ỹ) ≤ q(x,y)}

∣

∣

∣

∣

}

≤ min

{

1, 2−n(Rx+Ry)

∣

∣

∣

∣

n−1
⋃

k=0

{(x̃, ỹ) : qk(x̃, ỹ) ≤ qd(x,y)}

∣

∣

∣

∣

}

≤ min

{

1, 2−n(Rx+Ry)
n−1
∑

k=0

∣

∣

∣

∣

{(x̃, ỹ) : qk(x̃, ỹ) ≤ qd(x,y)}

∣

∣

∣

∣

}

≤ min

{

1, 2−n(Rx+Ry)
n−1
∑

k=0

∑

{(T (x̃n−k
1 ,ỹn

k+1
),T (ỹk1 ),T (x̃n

n−k+1
): qk(x̃,ỹ)≤qd(x,y)}

|T (x̃n−k
1 , ỹnk+1)| · |T (ỹk1)| · |T (x̃nn−k+1)|

}

≤ min

{

1, 2−n(Rx+Ry)
n−1
∑

k=0

∑

{(T (x̃n−k
1 ,ỹn

k+1
),T (ỹk1 ),T (x̃n

n−k+1
): qk(x̃,ỹ)≤qd(x,y)}

exp2{(n − k)Ĥ(x̃n−k
1 , ỹnk+1) + kĤ(ỹk1) + kĤ(x̃nn−k+1)}

}

= min

{

1, 2−n(Rx+Ry)
n−1
∑

k=0
∑

{(T (x̃n−k
1 ,ỹn

k+1
),T (ỹk1 ),T (x̃n

n−k+1
): qk(x̃,ỹ)≤qd(x,y)}

2uk(x̃,ỹ)
}

·
= min

{

1, max
0≤k≤n

max
{P̂

ỹk
1
,P̂

x̃
n−d
1

ỹn
d+1

,P̂x̃n
n−d+1

: qk(x̃,ỹ)≤qd(x,y)}

exp2[uk(x̃, ỹ)− n(Rx +Ry)]

}

. (38)

Similarly,

P̄e,q,2(x,y) = Pr





⋃

{x̃ 6=x: q(x̃,y)≤q(x,y)}

{f(x̃) = f(x)}





≤ min

{

1, 2−nRx

∣

∣

∣

∣

{x̃ : q(x̃,y) ≤ q(x,y)}

∣

∣

∣

∣

}

≤ min

{

1, 2−nRx

∣

∣

∣

∣

n−1
⋃

k=0

{x̃ : qk(x̃,y) ≤ qd(x,y)}

∣

∣

∣

∣

}
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≤ min

{

1, 2−nRx

n−1
∑

k=0

∣

∣

∣

∣

{x̃ : qk(x̃,y) ≤ qd(x,y)}

∣

∣

∣

∣

}

≤ min

{

1, 2−nRx

n−1
∑

k=0

∑

{(T (x̃n−k
1 |yn

k+1
),T (x̃n

n−k+1
): qk(x̃,y)≤qd(x,y)}

|T (x̃n−k
1 |ynk+1)| · |T (x̃nn−k+1)|

}

≤ min

{

1, 2−nRx

n−1
∑

k=0

∑

{(T (x̃n−k
1 |yn

k+1
),T (x̃n

n−k+1
): qk(x̃,y)≤qd(x,y)}

exp2{(n− k)Ĥ(x̃n−k
1 |ynk+1) + kĤ(x̃nn−k+1)}

}

= min

{

1, 2−nRx

n−1
∑

k=0

∑

{(T (x̃n−k
1 |yn

k+1
),T (x̃n

n−k+1
): qk(x̃,y)≤qd(x,y)}

2vk(x̃,y)
}

·
= min











1, max
0≤k≤n

max
{P̂

x̃
n−k
1

,yn
k+1

,P̂x̃n
n−k+1

: qk(x̃,y)≤qd(x,y)}
exp2[vk(x̃,y)− nRx]











≤ min

{

1, max
0≤k≤n

max
{P̂

ỹk
1
,P̂

x̃
n−d
1

ỹn
d+1

,P̂x̃n
n−d+1

: qk(x̃,ỹ)≤qk(x,y)}

exp2[vk(x̃, ỹ)− nRx]

}

, (39)

and in exactly the same manner,

P̄e,q,3(x,y) ≤ min











1, max
0≤k≤n

max
{P̂

ỹk
1
,P̂

x̃
n−d
1

ỹn
d+1

,P̂x̃n
n−d+1

: qk(x̃,ỹ)≤qd(x,y)}
exp2[wk(x̃, ỹ)− nRy]











. (40)

We now use the following simple inequality that holds for every non–negative reals, a, b, and c:

min{1, a} +min{1, b} +min{1, c} ≤ 3max {min{1, a},min{1, b},min{1, c}} (41)

=

{

3 a > 1 or b > 1 or c > 1
3 ·max{a, b, c} a ≤ 1 and b ≤ 1 and c ≤ 1

(42)

=

{

3 max{a, b, c} > 1
3 ·max{a, b, c} max{a, b, c} ≤ 1

(43)

= 3 ·min {1,max{a, b, c}} . (44)

It follows that

P̄e,q(x,y)
·
≤ 3 ·min

{

1, max
0≤k≤n

max
{P̂

ỹk
1
,P̂

x̃
n−d
1

ỹn
d+1

,P̂x̃n
n−d+1

: qk(x̃,ỹ)≤qd(x,y)}
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exp2{max{uk(x̃, ỹ)− n(Rx +Ry), vk(x̃, ỹ)− nRx, wk(x̃, ỹ)− nRy}}

}

(45)

·
= min











1, max
0≤k≤n

max
{P̂

ỹk
1
,P̂

x̃
n−d
1

ỹn
d+1

,P̂x̃n
n−d+1

: qk(x̃,ỹ)≤qd(x,y)}
2qk(x̃,ỹ











(46)

≤ min
{

1, 2qd(x,y)
}

. (47)

Finally, the overall average error probability, associated with the proposed universal decoder, is

exponentially upper bounded by

P̄e,q

·
≤ Emin {1, exp2[qd(X ,Y )]} . (48)

5.2 Lower Bound on the Error Probability of the MAP Decoder

For the MAP decoder, the conditional average probability of error, for a given (x,y), is as follows:

P̄e,⋆(x,y) = Pr





⋃

{(x̃,ỹ)6=(x,y): Pd(x̃,ỹ)≥Pd(x,y)}

{f(x̃) = f(x), g(ỹ) = g(y)}





≥ Pr





⋃

{(x̃,ỹ)∈So(x,y)}

{f(x̃) = f(x), g(ỹ) = g(y)}



 , (49)

where

So(x,y) = {(x̃, ỹ) 6= (x,y) : ỹd1 ∈ T (yd1), (x̃n−d
1 , ỹnd+1) ∈ T (xn−d

1 , ynd+1), x̃
n
n−d+1 ∈ T (xnn−d+1)}.

(50)

To further lower bound the conditional average probability of error, associated with the MAP

decoder, we need the following lemma, whose proof is deferred to the appendix.

Lemma 1 Let So be a set of pairs of integers, {(i, j)}, with the following properties.

1. The pair (0, 0) is a not member of So.

2. For a given i, let Si∗ = {j : (i, j) ∈ So} and S∗j = {i : (i, j) ∈ So}. We assume that |Si∗| = ℓ

for all i such that (i, j) ∈ So for some j. Likewise, |S∗j | = k for all j such that (i, j) ∈ So for

some i. Here, ℓ and k are fixed positive integers.

3. For every (i, j) ∈ So, there is an event Cij, defined as Cij = Ai∩Bj, where {Ai} and {Bj} are

sequences of mutually independent events.
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4. The probabilities of {Ai} are given by P [A0] = 1 and P [Ai] = α for all i 6= 0. Here, α is a

fixed number in [0, 1].

5. The probabilities of {Bj} are given by P [B0] = 1 and P [Bj ] = β for all j 6= 0. Here, β is a

fixed number in [0, 1].

Then, under conditions 1–5,

P





⋃

(i,j)∈So

Cij



 ≥
1

4
·min {1,max {kα, ℓβ, (M − k − ℓ)αβ}} , (51)

where M = |So|.

We apply Lemma 1 using the following assignments: i = x̃, j = ỹ, and so, i = 0 and j = 0

correspond to x̃ = x and ỹ = y, respectively. The event Ai is {f(x̃) = f(x)}, where x and f(x)

are given. Thus, obviously P [A0] = 1. Likewise, the event Bj is {g(ỹ) = g(y)} for a given y and

g(y) and P [B0] = 1. It follows then that α = 2−nRx , β = 2−nRy , and So = So(x,y). Here,

M
·
= exp2{(n− d)Ĥ(xn−d

1 , ynd+1) + dĤ(xnn−d+1) + dĤ(yd1)} = 2ud(x,y) (52)

k
·
= exp2{(n− d)Ĥ(xn−d

1 |ynd+1) + dĤ(xnn−d+1)} = 2vd(x,y) (53)

ℓ
·
= exp2{dĤ(yd1) + (n − d)Ĥ(ynd+1|x

n−d
1 )} = 2wd(x,y). (54)

Thus, according to Lemma 1, we obtain the matching lower bound,

P̄e ,⋆(x,y)
·
≥ min

{

1,max
{

2−nRx · 2vd(x,y), 2−nRy · 2wd(x,y), 2−n(Rx+Ry) · 2ud(x,y)
}}

(55)

·
= min {1, exp2[qd(x,y)]} , (56)

and so, the overall average error probability of the MAP decoder is exponentially lower bounded

by

P̄e,⋆

·
≥ Emin {1, exp2[qd(X ,Y )]} , (57)

which matches the upper bound of the universal decoder in eq. (48), as far as the exponential order

goes.
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5.3 The Error Exponent Formula

From the previous subsections, we learn that both decoders have an average error probability of

the exponential order of Emin{1, exp2{qd(X ,Y )}. Standard analysis of this quantity, using the

well known method of types [5], yields the following single–letter expression:

E∗(Rx, Ry) = Eq(Rx, Ry) = min{Exy(Rx, Ry), Ex|y(Rx), Ey|x(Ry)}, (58)

where

Exy(Rx, Ry) = min
QX′ ,QY ′ ,QXY

{

δD(QX′‖PX) + δD(QY ′‖PY ) + (1− δ)D(QX′Y ′‖PXY ) +

[Rx +Ry − δHQ(X
′)− δHQ(Y

′)− (1− δ)HQ(X,Y )]+

}

Ex|y(Rx) = min
QX′ ,QXY

{

δD(QX′‖PX ) + (1− δ)D(QX′Y ′‖PXY ) +

[Rx − δHQ(X
′)− (1− δ)HQ(X|Y )]+

}

(59)

Ey|x(Rx) = min
QY ′ ,QXY

{

δD(QY ′‖PY ) + (1− δ)D(QX′Y ′‖PXY ) +

[Ry − δHQ(Y
′)− (1− δ)HQ(Y |X)]+

}

. (60)

To find the Lagrange–dual of Exy(Rx, Ry), we proceed as follows.

Exy(Rx, Ry) = min
QX′ ,QY ′ ,QXY

{

δD(QX′‖PX) + δD(QY ′‖PY ) + (1− δ)D(QX′Y ′‖PXY ) +

[Rx +Ry − δHQ(X
′)− δHQ(Y

′)− (1− δ)HQ(X,Y )]+

}

= min
QX′ ,QY ′ ,QXY

max
0≤ρ≤1

{

δD(QX′‖PX ) + δD(QY ′‖PY ) + (1− δ)D(QX′Y ′‖PXY ) +

ρ[Rx +Ry − δHQ(X
′)− δHQ(Y

′)− (1− δ)HQ(X,Y )]

}

(a)
= max

0≤ρ≤1

[

ρ(Rx +Ry) + min
QX′ ,QY ′ ,QXY

{

δD(QX′‖PX) +

δD(QY ′‖PY ) + (1− δ)D(QX′Y ′‖PXY ) +

ρ[Rx +Ry − δHQ(X
′)− δHQ(Y

′)− (1− δ)HQ(X,Y )]

}]

= max
0≤ρ≤1

[

ρ(Rx +Ry) +

{

δ ·min
QX′

[D(QX′‖PX)− ρHQ(X
′)] +

δ ·min
QY ′

[D(QY ′‖PY )− ρHQ(Y
′)] +

(1− δ) · min
QXY

[D(QXY ‖PXY )− ρHQ(X,Y )]

}]
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(b)
= max

0≤ρ≤1

{

ρ(Rx +Ry)− δ log

(

∑

x

PX(x)1/(1+ρ)

)1+ρ

−

δ log

(

∑

y

PY (y)
1/(1+ρ)

)1+ρ

− (1− δ) log

(

∑

x,y

PXY (x, y)
1/(1+ρ)

)1+ρ }

= max
0≤ρ≤1

ρ ·

[

Rx +Ry − δH1/(1+ρ)(X) −

δH1/(1+ρ)(Y )− (1− δ)H1/(1+ρ)(X,Y )

]

, (61)

where in (a) we invoked the minimax theorem for convex–concave functions, and in (b) we carried

out the minimizations using standard methods. The Lagrange–duals of Ex|y(Rx) and Ey|x(Ry) are

obtained in a similar fashion.

Finally, for an error exponent level, E, to be achievable by the random code, Exy(Rx, Ry),

Ex|y(Rx) and Ey|x(Ry) must all be at least as large as E at the same time. The condition

Exy(Rx, Ry) ≥ E is equivalent to the condition

∃ 0 ≤ ρ ≤ 1 ρ
[

(Rx +Ry)− δH1/(1+ρ)(X)− δH1/(1+ρ)(Y )− (1− δ)H1/(1+ρ)(X,Y )
]

≥ E (62)

or, equivalently,

∃ 0 ≤ ρ ≤ 1 Rx +Ry ≥
E

ρ
+ δH1/(1+ρ)(X) + δH1/(1+ρ)(Y ) + (1− δ)H1/(1+ρ)(X,Y ), (63)

which is the same4 as

∃ s ≥ 1 Rx +Ry ≥ sE + δHs/(1+s)(X) + δHs/(1+s)(Y ) + (1− δ)Hs/(1+s)(X,Y ), (64)

or

Rx +Ry ≥ inf
s≥1

[

sE + δHs/(1+s)(X) + δHs/(1+s)(Y ) + (1− δ)Hs/(1+s)(X,Y )
]

. (65)

Similarly, the requirements that Ex|y(Rx) ≥ E and Ey|x(Ry) ≥ E yield the individual lower bounds

on Rx and Ry, that together form the achievable rate region, R(E), as defined.

Appendix - Proof of Lemma 1

Let us partition So into three disjoint subsets whose union is equal to So. These subsets are

S0∗ = {(0, j) ∈ So} (A.1)

4Change the variable ρ to s = 1/ρ.
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S∗0 = {(i, 0) ∈ So} (A.2)

S = {(i, j) ∈ So : i 6= 0, j 6= 0}, (A.3)

Clearly,

P





⋃

(i,j)∈So

Cij



 ≥ max







P





⋃

(i,j)∈S∗0

Cij



 , P





⋃

(i,j)∈S0∗

Cij



 , P





⋃

(i,j)∈S

Cij











. (A.4)

As for the first term on the r.h.s., we have

P





⋃

(i,j)∈S∗0

Cij



 = P

[

⋃

i

Ai ∩ B0

]

(A.5)

= P

[

B0

⋂

(

⋃

i

Ai

)]

(A.6)

= P [B0] · P

[

⋃

i

Ai

]

(A.7)

= P

[

⋃

i

Ai

]

(A.8)

≥
1

2
·min{1, kα}, (A.9)

where the last step follows from de Caen’s lower bound [6] on the probability of a union of a finite

set of events, {Ei, i ∈ I}:

P

[

⋃

i∈I

Ei

]

≥
∑

i∈I

P 2[Ei]
∑

j∈I P [Ei ∩ Ej]
, (A.10)

which in the case of pairwise independent events, simplifies to

P

[

⋃

i∈I

Ei

]

≥
∑

i∈I

P 2[Ei]

P [Ei] +
∑

j∈I P [Ei] · P [Ej ]

=
∑

i∈I

P [Ei]

1 +
∑

j∈I P [Ej]

=

∑

i∈I P [Ei]

1 +
∑

i∈I P [Ei]

≥

∑

i∈I P [Ei]

2 ·max{1,
∑

i∈I P [Ei]}

=
1

2
·min

{

1,
∑

i∈I

P [Ei]

}

. (A.11)

Similarly,

P





⋃

(i,j)∈S∗0

Cij



 ≥
1

2
·min{1, ℓβ}. (A.12)
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Moving on to the union over S, let us denote U = {i : ∃j (i, j) ∈ S} and V = {j : ∃i (i, j) ∈ S},

with cardinalities K and L, respectively. Then, by property 2 of So, M ′ ∆
= |S| = Kℓ = kL.5

Applying again de Caen’s lower bound, this time, to the union over S, we have

P





⋃

(i,j)∈S

Cij



 ≥
∑

(i,j)∈S

P 2(Cij)

P (Cij) +
∑

(i′,j′)∈S\{(i,j)} P (Cij ∩ Ci′j′)

=
∑

(i,j)∈S

P 2(Ai)P
2(Bj) ·

(

P (Ai)P (Bj) +
∑

i′∈Sj\{i}

P [Ai ∩ Ai′ ∩ Bj ] +

∑

j′∈Si\{j}

P [Ai ∩ Bj ∩ Bj′] +
∑

{(i′,j′)∈S: i′ 6=i, j′ 6=j}

P [Ai ∩ Ai′ ∩ Bj ∩ Bj′ ]

)−1

≥
∑

(i,j)∈S

α2β2

αβ + kα2β + ℓαβ2 +M ′α2β2

=
∑

(i,j)∈S

αβ

1 + kα+ ℓβ +M ′αβ

=
M ′αβ

1 + kα+ ℓβ +M ′αβ

≥
M ′αβ

4 ·max{1, kα, ℓβ,M ′αβ}

=
1

4
·min

{

1,
M ′α

ℓ
,
M ′β

k
,M ′αβ

}

=
1

4
·min

{

1,Kα,Lβ,M ′αβ
}

. (A.13)

Thus, overall we have

P





⋃

(i,j)∈So

Cij



 ≥
1

4
·max

{

min{1, kα},min{1, ℓβ},min{1,Kα,Lβ,M ′αβ}
}

. (A.14)

Now, consider the following line of thought: if M ′αβ ≥ Kα, which is equivalent to ℓβ ≥ 1, then

the lower bound is at least as large as 1/4. Similarly, if M ′αβ ≥ Lβ, which is equivalent to kα ≥ 1,

then again the lower bound is at least 1/4. Thus,

P





⋃

(i,j)∈So

Cij



 ≥
1

4
·

{

1 kα ≥ 1 or ℓβ ≥ 1
max{kα, ℓβ,min{1,M ′αβ}} otherwise

(A.15)

=
1

4
·

{

1 kα ≥ 1 or ℓβ ≥ 1 or M ′αβ ≥ 1
max{kα, ℓβ,M ′αβ} otherwise

(A.16)

5Note that in general, M ′ ≤ KL. For example, if S = {(1, 1), (2, 1), (2, 2), (3, 2), (3, 3), (1, 3)}, then M ′ = |S| = 6,
k = ℓ = 2, and U = V = {1, 2, 3}, so K = L = 3. As another example: let (i, j) designate indexes of finite–alphabet
n-sequences and let S be a joint type, T (i, j), then U = T (i), Si = T (j|i), V = T (j) and Sj = T (i|j), but T (i, j) is,
in general, only a subset of T (i)× T (j).
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=
1

4
·

{

1 max{kα, ℓβ,M ′αβ} ≥ 1
max{kα, ℓβ,M ′αβ} max{kα, ℓβ,M ′αβ} < 1

(A.17)

=
1

4
·min

{

1,max{kα, ℓβ,M ′αβ}
}

, (A.18)

and the proof of the lemma is completed upon observing that M ′ = M − k − ℓ.
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