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On Compressed Sensing Matrices Breaking

the Square-Root Bottleneck

Shohei Satake ∗ and Yujie Gu †

Abstract

Compressed sensing is a celebrated framework in signal processing and has many prac-

tical applications. One of challenging problems in compressed sensing is to construct de-

terministic matrices having restricted isometry property (RIP). So far, there are only a few

publications providing deterministic RIP matrices beating the square-root bottleneck on

the sparsity level. In this paper, we investigate RIP of certain matrices defined by higher

power residues modulo primes. Moreover, we prove that the widely-believed generalized

Paley graph conjecture implies that these matrices have RIP breaking the square-root

bottleneck.

1 Introduction

Matrices with restricted isometry property (RIP) have important applications to compressed

processing. According to [7], by means of RIP matrices, it is possible to measure and recover

sparse signals using significantly fewer measurements than the dimension of the signals.

Definition 1 (Restricted isometry property, RIP). Let Φ be a complexM×N matrix. Suppose

that K ≤M ≤ N and 0 ≤ δ < 1. Then Φ is said to have the (K, δ)-restricted isometry property

(RIP) if

(1− δ)||x||2 ≤ ||Φx||2 ≤ (1 + δ)||x||2 (1)

for every N -dimensional complex vector x with at most K non-zero entries. Here || · || denotes
the ℓ2 norm.
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According to Candès [7], for applications to signal processing, it suffices to investigate the

(K, δ)-RIP matrix for some δ <
√
2− 1. In addition, the sparsity K is expected to be as large

as possible.

On the other hand, it is known ([2]) that the problem checking whether a given matrix has

RIP is NP-hard. Thus many publications have attempted to look for deterministic construc-

tions of matrices having RIP; see e.g. [20].

Throughout this paper, we assume that all matrices have column vectors with unit ℓ2-norm.

Most of known constructions for RIP matrices are established via the coherence µ(Φ) of an

M ×N matrix Φ with column vectors ψ1, . . . , ψN , where

µ(Φ) := max
1≤j 6=k≤N

|〈ψj , ψk〉|, (2)

and 〈·, ·〉 denotes the standard inner product in the Hilbert space C
M . It can be proved (e.g.

[6]) that if µ(Φ) = µ, then Φ has the (K, (K − 1)µ)-RIP, which implies the (K, δ)-RIP with

only K = O(
√
M ), following from the well-known Welch bound (3) in [26].

µ(Φ) ≥
√

N −M

M(N − 1)
. (3)

This barrier on the magnitude of the order of K is popularly dubbed as the square-root bottle-

neck or quadratic bottleneck. Accordingly, the following problem arises.

Problem 2 ([6]). Construct an M ×N matrix Φ having the (K, δ)-RIP with K = Ω(Mγ) for

some γ > 1/2 and δ <
√
2− 1.

To our best knowledge, the first (unconditional) solution to this problem was given by

Bourgain, Dilworth, Ford, Konyagin and Kutzarova [6], later improved by Mixon [19]; see

Table 1.

On the other hand, in [3], Bandeira, Fickus, Mixon and Wong conjectured that the Paley

matrix, a (p + 1)/2 × (p + 1) matrix defined by quadratic residues modulo an odd prime p,

satisfies the (K, δ)-RIP with K ≥ C1 · p/ logC2 p and some δ <
√
2 − 1, where C1, C2 > 0

are universal constants. Under a number-theoretic conjecture in [10], Bandeira, Mixon and

Moreira [4] proved that when p ≡ 1 (mod 4), the Paley matrix has the (K, o(1))-RIP with

K = Ω(pγ) for some γ > 1/2, which provides a conditional solution to Problem 2; recently,

assuming that the Paley graph conjecture (see Remark 9) holds, Satake [21] extended the result

in [4] for general odd primes p, and also gave some implications to a Ramsey-theoretic problem

proposed by Erdős and Moser [11]. Also, under another type of number-theoretic conjecture,

Arian and Yilmaz [1] proved that for a sufficiently large prime p ≡ 3 (mod 4), a (p+ 1)/2× p

matrix obtained by deleting the last column from the Paley matrix (see Remark 14) has the

(K, δ)-RIP for any K < p5/7/2 and δ < 1/
√
2. These results are summarized in Table 1.
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Ref. M N K Comments

[6], [18] large M N ≤M1+γ1 ⌊M1/2+γ′

1⌋ any γ′1 < γ1 and γ1 ; 5.5169 × 10−28

[19] p Ω(p1+η) Ω(p1/2+γ′

2) some η > 0, any γ′2 < γ2 and γ2 ; 4.4466 × 10−24

[4] p+1
2 p+ 1 Ω(pγ) some 1

2 < γ < 1, p ≡ 1 (mod 4)

[21] p+1
2 p+ 1 Ω(pγ) some 1

2 < γ < 1, p ≡ 3 (mod 4)

[1] p+1
2 p < p5/7

2 p ≡ 3 (mod 4)

This paper p+k−1
k

p Ω(Mγ)

some 1
2 < γ < 1,

k|(p− 1) s.t. pε1 < k ≤ pε2 ,

any 0 ≤ ε1 < ε2 < ε0,

some small ε0 > 0

Table 1: Main result and known solutions to Problem 2. Here p denotes an odd prime number.

In this paper, we aim to investigate RIP of certain matrices defined by higher power residues

modulo primes. In particular, under the widely-believed generalized Paley graph conjecture

formulated in Section 2, we prove that these matrices are new solutions to Problem 2, which

forms our main theorem as described below.

Theorem 3. Suppose that the generalized Paley graph conjecture holds. Let ε0 > 0 be a small

real number and ε1, ε2 real numbers with 0 ≤ ε1 < ε2 < ε0. Then for a sufficiently large

prime p such that p− 1 contains a factor k with pε1 < k ≤ pε2, there are M × p matrices with

(Ω(Mγ), o(1))-RIP for some γ > 1/2, where M = (p+ k − 1)/k.

Theorem 3 provides a new conditional answer to Problem 2. As will be shown later,

these matrices substantially contain the Paley matrix as a particular case, and realize the

compression ratio N/M (e.g. [17]) significantly better than that from the Paley matrix in

general; see Remarks 14 and 15, respectively.

The remainder of this paper is organized as follows. Section 2 introduces some fundamental

terminologies and results of finite fields and character sums, as well as some key notions related

to RIP and number-theoretic results on factors of shifted primes. Section 3 defines the matrix

which we investigate in this paper, and then Section 4 proves Theorem 3.

2 Preliminaries

2.1 Finite fields and characters

Throughout this paper, let p denote a prime number. Let Fp be a finite field with p elements

which can be identified to the residue ring Z/pZ. It is well known that the multiplicative group

of Fp, denoted by F
∗
p, is a cyclic group of order p− 1, consisting of all non-zero elements of Fp.
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The canonical additive character ψ of Fp is a map from Fp to the unit circle in C such

that ψ(x) := exp(2π
√
−1

p · x) for all x ∈ Fp. Notice that for every pair of x, y ∈ Fp, we have

ψ(x+ y) = ψ(x)ψ(y). A multiplicative character χ of Fp is a map from F
∗
p to the unit circle in

C such that χ(xy) = χ(x)χ(y) for every pair of x, y ∈ F
∗
p. We also adopt the convention that

χ(0) := 0. Note that if g is a generator of F∗
p, then each multiplicative character χ is a map

such that χ(x) := exp(2π
√
−1

p−1 st) for all x = gt ∈ F
∗
p and some 0 ≤ s ≤ p−2. The multiplicative

character of Fp for s = 0 is said to be trivial. The order of a multiplicative character χ is the

minimum positive integer k such that
(

χ(x)
)k

= 1 for all x ∈ F
∗
p. Notice that the order of the

trivial multiplicative character of Fp is 1. For each 2 ≤ k ≤ p− 2 with k|(p− 1), we can define

a non-trivial multiplicative character χk of Fp of order k, that is, χk(x) := exp(2π
√
−1

k t) for all

x = gt ∈ F
∗
p. For each 1 ≤ h ≤ k − 1, define the multiplicative character χ−h

k of Fp as

χ−h
k (x) := exp

(

2π
√
−1

k
(−ht)

)

for all x = gt ∈ F
∗
p. Notice that χ−h

k is non-trivial for every 1 ≤ h ≤ k − 1.

2.2 Gauss sums

This subsection provides two types of Gauss sums; for details, see e.g. [5].

Definition 4 (k-th power Gauss sum). Let 2 ≤ k ≤ p − 2. Then for each a ∈ Fp, the k-th

power Gauss sum Gk(a) is defined as

Gk(a) :=
∑

x∈Fp

ψ(axk). (4)

Definition 5 (Gauss sum). Let a ∈ Fp and χ a multiplicative character of Fp. Then define

the Gauss sum G(a, χ) as

G(a, χ) :=
∑

x∈Fp

χ(x)ψ(ax). (5)

For simplicity, let G(χ) := G(1, χ).

The following two lemmas are useful in this paper.

Lemma 6. ([5, Theorem 1.1.3 and (1.1.4)]) For each a ∈ F
∗
p, it holds that

Gk(a) =

k−1
∑

h=1

G(a, χh
k) =

k−1
∑

h=1

χ−h
k (a)G(χh

k). (6)

Lemma 7. ([5, Theorem 1.1.4]) For each 1 ≤ h ≤ k − 1, it holds that

|G(χh
k)| =

√
p. (7)
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2.3 Generalized Paley graph conjecture

In this paper, we will make use of the following well-known generalized Paley graph conjecture;

see e.g. [8], [9], [13], [15], [22], [27] and references therein.

Conjecture 8 (Generalized Paley graph conjecture). Let p be an odd prime and χ a non-

trivial multiplicative character of Fp. For 0 < α ≤ 1 and β > 0, we say that the property

P(α, β) holds if for every pair of S, T ⊂ Fp with |S|, |T | > pα,

∣

∣

∣

∑

s∈S,t∈T
χ(s− t)

∣

∣

∣
≤ p−β|S||T |. (8)

Then for each 0 < α ≤ 1, there exist p(α) > 0 and β = β(α) > 0 such that P(α, β) holds for

any prime p > p(α).

Remark 9. The Paley graph conjecture is Conjecture 8 for the case that χ = χ2, where χ2

is a non-trivial multiplicative character of Fp of order 2. According to the observations by

Lenstra (see [27]), it may be reasonable to believe that Conjecture 8 would be true for any

non-trivial χ if the Paley graph conjecture holds. Indeed, it is well-known (e.g. [15]) that

Conjecture 8 is true for any non-trivial multiplicative character χ of Fp and any S, T ⊂ Fp

with |S| > p1/2+α and |T | > pα, where 0 < α ≤ 1/2. In [8], Chang made a significant progress

towards Conjecture 8, confirming the conjecture for any non-trivial χ and any S, T ⊂ Fp such

that |S| > p4/9+α, |T | > p4/9+α with |T + T | < K|T | for some K > 0 and arbitrary α > 0,

where T + T := {t1 + t2 | t1, t2 ∈ T}. For further and related results, see e.g. [14], [23], [24],

[25].

2.4 A theorem on factors of shifted primes

To prove Theorem 3, it is necessary to certify the existence of infinitely many primes p such

that the shifted prime p − 1 admits the prescribed factors. In this paper, we shall use the

following theorem due to Ford [12, Theorem 7].

Theorem 10 ([12]). For any 0 ≤ ε1 < ε2 ≤ 1 and any sufficiently large x > 0, there exists a

constant Cε1,ε2 > 0 depending only on ε1 and ε2 such that there exist at least Cε1,ε2 · x/ log x
primes p ≤ x so that p−1 contains at least one factor k with xε1 < k ≤ xε2. In particular, there

exist infinitely many primes p such that p−1 contains at least one factor k with pε1 < k ≤ pε2.

2.5 Flat restricted isometry property

The following notion, flat restricted isometry property (flat RIP), has been employed to verify

the RIP of matrices in [3] and [6].
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Definition 11 (Flat RIP, [3, 6]). Let Φ be anM×N matrix with columns ψ1, . . . , ψN . Suppose

that K ≤M ≤ N and θ > 0. Then Φ is said to have the (K, θ)-flat restricted isometry property

(flat RIP) if
∣

∣

∣

〈

∑

i∈I
ψi,

∑

j∈J
ψj

〉
∣

∣

∣
≤ θ

√

|I||J | (9)

for every pair of disjoint subsets I, J ⊂ {1, 2, . . . , N} with |I|, |J | ≤ K.

Proposition 12 ([3, 6]). Suppose that each column of Φ has unit ℓ2 norm. Then Φ has the

(K, 150 θ logK)-RIP provided that Φ has the (K, θ)-flat RIP.

3 Construction of matrices

In this section, we define a type of matrices based on higher power residues modulo primes

and later investigate their RIP in Section 4.

Definition 13. Let p be an odd prime and k|(p− 1). Let R
(k)
p := {xk | x ∈ F

∗
p} denote the set

of all non-zero k-th powers of Fp; notice that |R(k)
p | = (p− 1)/k. Suppose that elements of Fp

and R
(k)
p are labelled as Fp = {0 = a1, a2, . . . , ap} and R

(k)
p = {b1, b2, . . . , b(p−1)/k}, respectively.

Recall that ψ denotes the canonical additive character of Fp.

Then the matrix Φ
(k)
p is defined as an M ×N complex matrix with M = p+k−1

k and N = p

of the following form.

Φ(k)
p :=











































1√
p

1√
p . . . 1√

p

√

k
p

√

k
pψ(b1a2) . . .

√

k
pψ(b1ap)

√

k
p

√

k
pψ(b2a2) . . .

√

k
pψ(b2ap)

...
...

. . .
...

√

k
p

√

k
pψ

(

b p−1

k
a2
)

. . .
√

k
pψ

(

b p−1

k
ap
)











































Note that each column φi of Φ
(k)
p has ℓ2-norm 1 since for each 1 ≤ i ≤ p,

||φi||2 = 〈φi, φi〉

=
1

p
+
k

p

p−1

k
∑

l=1

ψ
(

(ai − ai)bl
)

=
1

p
+
k

p
· p− 1

k
= 1.
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Remark 14. Let p be an odd prime. The Paley matrix in [4] and [21] is a (p+1)/2× (p+1)

matrix obtained from the matrix Φ
(2)
p joining the vector [(

√
−1)r, 0, . . . , 0]T as the last column,

where r = 0 if p ≡ 1 (mod 4) and r = 1 if p ≡ 3 (mod 4). The matrix investigated in [1] is

exactly Φ
(2)
p .

Remark 15. In terms of applications to signal processing, it is desirable to construct an

M ×N matrix with RIP whose compression ratio N/M (e.g. [17]) is as large as possible. By

Definition 13, the compression ratio of Φ
(k)
p is kp/(p + k − 1) ≈ k as long as k = o(p), while

the compression ratio of the Paley matrix is only 2. Thus when k ≥ 3, Φ
(k)
p has compression

ratio significantly better than that from the Paley matrix in general.

4 Proof of theorems

This section aims to prove the main result Theorem 3. To that end, we shall prove the following

Theorem 16.

Theorem 16. Assuming that Conjecture 8 is true, and

1) let 0 < α < 1/2 be a real number;

2) let β0 = β0(α) > 0 be a real number such that α + 2β0 < 1/2 and the property P(α, β0)

holds for any non-trivial multiplicative character of Fq and any prime q > p(α), where

p(α) > 0 is from Conjecture 8;

3) take real numbers ε1 and ε2 with 0 ≤ ε1 < ε2 < β0;

4) let p > p(α) be a prime such that there exists a factor k of p− 1 with pε1 < k ≤ pε2.

Then for any real number τ with

max
{

α+ β0,
1− ε1

2
− β0

}

< τ <
1

2
− ε2, (10)

the (p+ k − 1)/k × p matrix Φ
(k)
p in Definition 13 has the (pτ+β0 , O(pτ+ε2−1/2+o(1)))-RIP.

Remark 17. We remark that for each α, β0, ε1 and ε2 satisfying the conditions 1), 2) and 3),

it is possible to take a real number τ satisfying (10). Indeed, notice that α + β0 < 1/2 − ε2

holds since α+β0 < 1/2−β0 < 1/2−ε2, where the first and second inequalities follow from the

conditions 2) and 3), respectively. Also (1− ε1)/2−β0 < 1/2− ε2 is valid, since ε2− ε1/2 < β0

holds for any ε1 and ε2 satisfying the condition 3).

Before proceeding to prove Theorem 16, we show that Theorem 3 can be immediately

derived from Theorems 10 and 16.
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Proof of Theorem 3. According to Theorem 16,

• let 0 < α < 1/2 and β0 = β0(α) > 0 be a real number satisfying the condition 2);

• take ε0 = ε0(α) = β0 and then choose ε1 and ε2 so that 0 ≤ ε1 < ε2 < ε0;

• take a prime p > p(α) satisfying the condition 4), which is doable by Theorem 10.

Note that based on the condition 4), we have pε1 < k ≤ pε2 , implying M = (p + k − 1)/k =

O(p1−ε1). Therefore Theorem 16 shows that the M × p matrix Φ
(k)
p has the (K, o(1))-RIP,

where

K = pτ+β0 = Ω(Mγ)

and γ is a real number such that γ ≥ (τ + β0) · (1− ε1)
−1 > 1/2. This proves Theorem 3.

In order to prove Theorem 16, we need the following two key lemmas.

4.1 Two key lemmas

Lemma 18. Let 0 < α < 1/2 and p be a prime with p > p(α). Let χ be a non-trivial

multiplicative character of Fp. Suppose that there exists β = β(α) > 0 such that α + β < 1/2

and the property P(α, β) holds. Let τ be an arbitrarily fixed real number with α+β < τ < 1/2.

Then it holds that
∣

∣

∣

∑

s∈S,t∈T
χ(s− t)

∣

∣

∣
≤ pτ

√

|S||T | (11)

for every pair of S, T ⊂ Fp with |S|, |T | ≤ pτ+β.

Proof. Let S, T ⊂ Fp with |S|, |T | ≤ pτ+β. The proof is done by considering the following

cases.

Case 1. If |S||T | ≤ p2τ , then, by the trivial bound of |
∑

s∈S,t∈T χ(s− t)|, we have

∣

∣

∣

∑

s∈S,t∈T
χ(s− t)

∣

∣

∣
≤ |S||T | =

√

|S||T | ·
√

|S||T |

≤ pτ
√

|S||T |.

Case 2. Next, suppose that |S||T | > p2τ and we may assume |S| > pτ without loss of

generality.

Case 2.1. If |T | ≤ pα, then the following inequalities hold by the assumption that |S| ≤
pτ+β :

∣

∣

∣

∑

s∈S,t∈T
χ(s− t)

∣

∣

∣
≤ |S||T | =

√

|S||T | ·
√

|S||T |

≤
√

pα · pτ+β
√

|S||T |

8



= p
τ+α+β

2

√

|S||T |
< pτ

√

|S||T |,

where the last inequality follows from the assumption that α+ β < τ .

Case 2.2. If |T | > pα, recall that |S| > pτ > pα+β > pα, by the assumption we have the

property P(α, β) holds for S and T , that is,
∣

∣

∣

∑

s∈S,t∈T
χ(s− t)

∣

∣

∣
≤ p−β|S||T |.

Together with the assumption that |S|, |T | ≤ pτ+β, we obtain
∣

∣

∣

∑

s∈S,t∈T
χ(s− t)

∣

∣

∣
≤ p−β

√

|S||T | ·
√

|S||T |

≤ p−β ·
√

p2(τ+β) ·
√

|S||T |

= pτ
√

|S||T |.

Lemma 19. Let φi be the i-th column of Φ
(k)
p . Then, for each 1 ≤ i 6= j ≤ p,

〈φi, φj〉 =
1

p
· Gk(ai − aj) =

1

p

k−1
∑

h=1

χ−h
k (ai − aj)G(χ

h
k). (12)

Proof. Recall that R
(k)
p = {b1, b2, . . . , b(p−1)/k} is the set of all non-zero k-th powers of Fp.

Note that for every 1 ≤ l ≤ p−1
k , the equation Xk ≡ bl (mod p) has exactly k distinct non-zero

solutions; see e.g. [5, p.11 and Lemma 10.4.1]. Then we have

〈φi, φj〉 =
1

p
+
k

p

p−1

k
∑

l=1

ψ
(

(ai − aj)bl
)

=
1

p
+
k

p
· 1
k

∑

x∈F∗

p

ψ
(

(ai − aj)x
k
)

=
1

p

∑

x∈Fp

ψ
(

(ai − aj)x
k
)

=
1

p
· Gk(ai − aj),

(13)

which, together with Lemma 6, proves the lemma.

4.2 Proof of Theorem 16

Proof of Theorem 16. Suppose that Conjecture 8 holds. Then for each 0 < α < 1/2 and each

prime p > p(α), there exists some β = β(α) > 0 such that the property P(α, β) holds for any

non-trivial multiplicative character of Fp.

9



Now fix 0 < α < 1/2 arbitrarily. If α+2β < 1/2 holds, we may take β0 = β. If α+2β ≥ 1/2,

choose β0 < β so that α+2β0 < 1/2; note that the property P(α, β) implies the weaker property

P(α, β0) since β0 < β. Now take real numbers ε1 and ε2 with 0 ≤ ε1 < ε2 < β0. Let p > p(α)

be a prime such that there exists a factor k of p − 1 with pε1 < k ≤ pε2 , which is possible in

the light of Theorem 10. Then according to Remark 17, we can pick a real number τ such that

max{α+ β0, (1 − ε1)/2 − β0} < τ < 1/2 − ε2.

It suffices to prove that the matrix Φ
(k)
p satisfies the (pτ+β0 , (k − 1)pτ−1/2)-flat RIP. Since

if this is true, Proposition 12 shows that Φ
(k)
p has the (K, δ)-RIP with K = pτ+β0 and δ =

150 · (k − 1)pτ−1/2 · log
(

pτ+β0
)

, implying that δ = O(pτ+ε2−1/2+o(1)) since k ≤ pε2 . This gives

the desired conclusion in Theorem 16.

To that end, recall that φi is the i-th column of Φ
(k)
p and χk is a non-trivial multiplicative

character of Fp of order k. For every pair of disjoint subsets I, J ⊂ {1, . . . , p}, we have

∣

∣

∣

〈

∑

i∈I
φi,

∑

j∈J
φj

〉
∣

∣

∣
=

1

p
·
∣

∣

∣

∣

∑

i∈I,j∈J

k−1
∑

h=1

χ−h
k (ai − aj)G(χ

h
k)

∣

∣

∣

∣

=
1

p
·
∣

∣

∣

∣

k−1
∑

h=1

G(χh
k)

∑

i∈I,j∈J
χ−h
k (ai − aj)

∣

∣

∣

∣

≤ 1

p
·
k−1
∑

h=1

|G(χh
k)| ·

∣

∣

∣

∣

∑

i∈I,j∈J
χ−h
k (ai − aj)

∣

∣

∣

∣

=
1√
p

k−1
∑

h=1

∣

∣

∣

∣

∑

i∈I,j∈J
χ−h
k (ai − aj)

∣

∣

∣

∣

,

(14)

where the first equality follows from Lemma 19; the inequality follows from the triangle inequal-

ity; and the last equality follows from Lemma 7. Recall that χ−h
k is a non-trivial multiplicative

character of Fp for every 1 ≤ h ≤ k − 1. Since the condition 2) implies that α + β0 < 1/2, if

|I|, |J | ≤ pτ+β0 , then (14) together with Lemma 18 yields

∣

∣

∣

〈

∑

i∈I
φi,

∑

j∈J
φj

〉
∣

∣

∣
≤ 1√

p
· (k − 1) · pτ

√

|I||J |

= (k − 1)pτ−
1

2

√

|I||J |.
(15)

Therefore Φ
(k)
p has the (pτ+β0 , (k − 1)pτ−1/2)-flat RIP. This completes the proof.
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[13] A. M. Güloğlu and M. R. Murty, “The Paley graph conjecture and Diophantinem-tuples”,

J. Combin. Theory Ser. A, vol. 170, 105155, 2020.

[14] B. Hanson, “Estimates for character sums with various convolutions”, Acta Arith., vol.

179, no. 2, pp. 133–146, 2017.

11

http://arxiv.org/abs/1911.07428


[15] A. A. Karatsuba, “Arithmetic problems in the theory of Dirichlet characters”, Russian

Math. Surveys, vol. 63, no. 4, pp. 641–690, 2008.

[16] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cam-

bridge University Press, 1994.

[17] W. Lu, W. Li, K. Kpalma and J. Ronsin, “Compressed sensing performance of random

Bernoulli matrices with high compression ratio”, IEEE Signal Process. Lett., vol. 22, no. 8,

pp. 1074–1078, Aug. 2015.

[18] D. G. Mixon, “Deterministic RIP matrices: Breaking the square-root bottleneck”, Short,

Fat Matrices (weblog).

[19] D. G. Mixon, “Explicit matrices with the restricted isometry property: breaking

the square-root bottleneck”, Compressed Sensing and Its Applications, pp. 389–417,
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