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Abstract—This work addresses distributed binary hypothesis
testing, where observations at two terminals are jointly Gaussian,
each one standard, with two possible correlation coefficients. We
assume that one of the terminals is colocated with the decision
center, and focus on a single (Stein) error exponent. Rather than
the traditional exponent that is defined with respect to the source
blocklength, we assume the source data to be unlimited, and
consider the error exponent as a function of the communication
message length. We examine two different approaches, one by
quantization and the other by sending the index of the maximum,
and find them to yield the same exponent. We further find that
binning improves upon both approaches in the same way. Finally
we compare the obtained exponents to two upper bounds and
determine the optimal exponent in some very special cases.

I. INTRODUCTION

The goal of distributed hypothesis testing (DHT) is to
distinguish between different possible joint distributions of
data observed at several terminals, when the communication
between them is constrained. We shall consider the pop-
ular side-information setting, where two terminals observe
sequences Xk and Y k, respectively, which are independent
and identically distributed (i.i.d.) over the k time instances.
The first (“encoder”) creates an n-nat message W = f(Xk),
while the second (“decoder”) makes a decision using some
discriminant rule g(W,Y k) . Further, we shall consider the
Stein problem, where there are two hypotheses H0 and H1

regarding the joint distribution, where the error probability
under H0 is only required to approach zero (possibly slowly),
and one seeks the fastest decay of error probability under H1.

Let p(ε, n, k) denote the smallest attainable error probability
under H1 when the source blocklength is k, the message
contains no more than n nats, and the error probability under
H0 is required to be no larger than ε. Traditionally, the error
probability asymptotics are considered under fixed rates. That
is, for some fixed R > 0, one is interested in

E(R) , lim
ε↓0

lim
k→∞

−1

k
log p(ε, bkRc, k). (1)

Although this exponent is not known in general, many works
derived bounds on it; we shall refer to some of them [1]–[5] in
the sequel. The focus of this work is on a different exponent,
inspired by the analysis of distributed parameter estimation by
Hadar and Shayevitz [6]. We assume unlimited source data,
and study the exponential decay of the error probability as a

function of the message length, so the quantity of interest is
the communication exponent:

Ec , lim
ε↓0

lim
n→∞

(
− 1

n
lim
k→∞

log p(ε, n, k)

)
. (2)

Since one can apply a fixed-rate scheme on unbounded source
data, we have

Ec ≥ lim
R↓0

E(R)

R
. (3)

It is unclear whether equality should hold in the above or not.
In order for the communication exponent to be finite, the

X- and Y -marginals of the joint distribution must not depend
on the hypothesis. We consider in this work such a case, where
each (X,Y ) pair is zero-mean jointly Gaussian, and where the
covariance matrix under Hi is given by

Σi =

[
1 ρi
ρi 1

]
, (4)

where ρ0 ∈ [−1, 1] and, without loss of generality, ρ1 ∈ [0, 1].
Deriving exponents for the Gaussian case requires more than

substitution in known single-letter expressions for discrete-
alphabet sources.1 In Section II we present necessary prelim-
inaries and a technical lemma, which is used extensively in
this work.

In Section III we derive achievable exponents using two
very different approaches. In the first we derive fixed-rate ex-
ponents for this source by extending well-known schemes for
discrete-alphabet sources: the simple Ahlswede-Csiszár (AC)
quantization scheme [1], and Han’s improved quantization
scheme [2]; in extending Han’s scheme, we apply the above-
mentioned technical lemma. Applying (3) to these bounds
gives the following achievable communication exponents, re-
spectively:

EAC = (ρ1 − ρ0)2 (5)

EHan =
(ρ1 − ρ0)2

1− ρ21
. (6)

In the second approach we apply to the DHT problem the
technique used in [6] for correlation estimation, where an
exponentially long source block is used, and the index of the

1This is similar to the case of error exponents for the Gaussian channel,
which are not simple extensions of their discrete-channel counterparts.



maximum X within the block is sent. We find that the resulting
exponent equals EHan; we reason that the sharp concentration
of the maximum mimics Han’s use of improved (“fixed-type”)
quantization.

In Section IV, we add a binning element to the above ap-
proaches. We analyze the Gaussian version of the quantization-
and-binning scheme of Shimokawa-Han-Amari (SHA) [3]. We
also provide a (nontrivial) variant of the index-of-maximum
scheme where the index is binned. Again both approaches
yield the same communication exponent: for ρ0 ≥ 0,

ESHA =
(ρ1 − ρ0)2

(1− ρ1 max(ρ0, ρ1))(1− ρ0 min(ρ0, ρ1))
. (7)

Finally, in Section V we compare EAC, EHan, and ESHA to
two upper bounds on Ec. The comparison reveals that beyond
the case ρ1 = 0, we have the exact value of Ec also for
ρ0 ∈ {0, 1}.

Due to the space limit, we shall focus on intuitive explana-
tions to our approaches, and omit some technical details.

II. PRELIMINARIES: TYPICALITY OF GAUSSIAN VECTORS

Typicality. Following [7], we define a spherical ε-type class
of dimension k and power P as

Tk,P,ε =

{
xk ∈ Rk :

∣∣∣∣‖xk‖2kP
− 1

∣∣∣∣ ≤ ε} , (8)

where ‖ · ‖ denotes the Euclidean norm. We say that a vector
xk ∈ Rk is typical with respect to variance P if2 xk ∈ Tk,P,ε.
We say that a vector pair (xk, yk) is jointly typical with respect
to a covariance matrix Σ if any linear combination of the
vectors is typical, i.e., if, for any a = (a1, a2)T ∈ R2, a1xk+
a2y

k is typical with respect to variance aTΣa.3

We shall need the following large-deviation results on scalar
amplitude asymptotics and dimension asymptotics.

Amplitude asymptotics. For parameters k, P , ε as above,
define the interval

Sk,P,ε , [
√
kP (1− ε),

√
kP (1 + ε)]. (9)

Let X be a standard Gaussian variable. Let P be fixed, then

lim
ε↓0

lim
k→∞

−1

k
log Pr {X ∈ Sk,P,ε} =

P

2
. (10)

This continues to hold when we replace X by −X .
Dimension asymptotics. Let the random vector Xk be i.i.d.

standard Gaussian and fix P > 0, then

lim
ε↓0

lim
k→∞

−1

k
log Pr{Xk ∈ Tk,P,ε} = DG(P ), (11)

where
DG(P ) ,

1

2
[P − logP − 1] (12)

is the Kullback-Leibler divergence between zero-mean scalar
Gaussian distributions of variances P and 1, respectively.

2This notion is of typicality is equivalent to the one in [8] with respect to
a Gaussian density of mean zero and variance P .

3This definition is equivalent to requiring xk and yk be typical, and
〈xk, yk〉 be close to kE[XY ].

The results (10) and (11) are standard; we omit their
derivations. The same exponents hold for the probability for
‖Xk‖2 to be above or below a threshold, e.g.,

lim
k→∞

−1

k
log Pr{‖Xk‖2 ≥ kP} = DG(P ) if P > 1. (13)

We further need the following lemma concerning a mixture
of an i.i.d. Gaussian vector and a deterministic vector. We call
Xk a γ-mixture if

Xk =
√

1− γ Zk +
√
γ vk, (14)

where Zk ∈ Rk is i.i.d. standard Gaussian, and vk ∈ Tk,1,ε.
Lemma 1: Fix γ ∈ (0, 1), and let {Xk, k ∈ Z+} be γ-

mixtures as in (14). Then

lim
ε↓0

lim
k→∞

−1

k
log Pr{Xk ∈ Tk,P,ε} = D(γ, P ), (15)

where

D(γ, P ) ,
γ + P −A

2γ
− 1

2
log

A− 1 + γ

2γ
, (16)

where A =
√

(1− γ)2 + 4Pγ. Furthermore,

lim
k→∞

−1

k
log Pr{‖Xk‖2 ≥ kP} = D(γ, P ) if P > 1, (17)

lim
k→∞

−1

k
log Pr{‖Xk‖2 ≤ kP} = D(γ, P ) if P < 1. (18)

Proof Method: The proof follows the technique used
in [9] for deriving the Gaussian sphere-packing exponent. We
decompose Xk into two parts: a component along the direction
of vk, and the remaining k−1 dimensions. Roughly speaking,
we can then apply (10) to the former, and (11) to the latter.
Finally, we find the (exponentially) most likely combination
of the two components such that ‖Xk‖2 is around kP .

One may verify that D(γ, P ) ≥ DG(P ),4 with equality for
P = 1 as well as in the limit γ → 0. We shall need in the
sequel the following fact: for P close to 1,

D(γ, P ) =
(P − 1)2

4(1− γ2)
+O((P − 1)3). (19)

III. QUANTIZATION VERSUS INDEX OF MAXIMUM

In this section and in the next one, we shall often use the
following relationship between X and Y : under Hi, i ∈ {0, 1},

Y = ρiX +
√

1− ρ2i Z, (20)

where Z is standard Gaussian and independent of X .

A. Ahlswede-Csiszár-Style Exponent

In a classic work by Ahlswede and Csiszár [1] a simple
scheme is proposed for DHT on discrete memoryless sources.
The encoder’s observation Xk is quantized at rate R to a
sequence Uk. The decoder will declare H0 if and only if
(Uk, Y k) are jointly typical according to H0. It is assumed
that the quantizer emulates in an i.i.d. manner the quantization
test-channel between U and X .

4Intuitively, Xk as in (14) is “less random” than an i.i.d. Gaussian vector,
thus its probability of atypical behavior is smaller than that of the latter.



A corresponding coding scheme in the Gaussian setting
works as follows. The encoder generates quantization code-
words {uk(m),m = 1, . . . , benRc} i.i.d. according to the
zero-mean Gaussian distribution with variance

σ2
R , 1− exp{−2R}, (21)

where R is the communication rate. Given xk, it finds uk(m)
which minimizes xk − uk(m) and sends the index m. The
decoder checks if uk(m) and yk are jointly typical under H0.
The obtained error exponent is (see also [5, Eq. (5)]):

EAC(R) =
1

2
log

(
1− ρ21σ2

R

1− ρ20σ2
R

)
− ρ1(ρ0 − ρ1)σ2

R

1− ρ21σ2
R

. (22)

We then obtain (5) by noting that, when R is small, σ2
R ≈ 2R.

B. Han-Style Exponent

In [2], Han improves upon the Ahlswede-Csiszár scheme
by noting that an i.i.d. quantization model is suboptimal, in
the sense that it allows an atypical behavior of (Uk, Xk) to
contribute to an error event in which, under H1, (Uk, Y k) is
typical with respect to H0. Thus, Han proposed to verify at
the encoder that Uk, Xk are jointly typical. In the Gaussian
case, we use the same idea to propose the following scheme.
Consider the following joint distribution: U is zero-mean
Gaussian with variance σ2

R as in (21); Q (the quantization
noise) is standard Gaussian independent of U ; and

X = U +
√

1− σ2
RQ. (23)

• Encoder: Generate {uk(m)} i.i.d. according to the zero-
mean Gaussian distribution of variance (21); discard those
that are atypical. Given xk, look for an index m such
that xk and uk(m) are jointly typical (in the sense
of Section II) with respect to the covariance matrix of
(U,X) as defined above. If successful, send m. If no
such m can be found, send a special message to inform
the decoder to declare H1.

• Decoder: If the special message is received, declare H1.
Otherwise, check if uk(m) and yk are jointly typical with
respect to the joint distribution on (U, Y ) computed from
(U,X) as above, with Y given by (20) for i = 0, and
with Z being independent of (U,X). If they are jointly
typical, declare H0; otherwise declare H1.

One can verify that the error probability under H0 indeed
vanishes. Under H1, the only error event is that the pair
(Uk(m), Xk) is “ρ1-typical,” but (Uk(m), Y k) is “ρ0-typical.”
For this analysis, we consider a suboptimal rule that declares
H0 whenever Sk , Y k − η Uk(m) is typical, where η > 0
will be specified later. By (20), under H1 we have:

Sk =
(
ρ1X

k − η Uk(m)
)

+
√

1− ρ21 Zk. (24)

Recall that the encoder guarantees Xk and Uk(m) to be jointly
typical. Also note that, by (23),

ρ1X − η U = (ρ1 − η)U + ρ1

√
1− σ2

RQ, (25)

where U and Q are independent. We then obtain that ‖ρiXk−
η Uk(m)‖2/k must be close to σ2

η,R,1, where we define

σ2
η,R,i , (ρi − η)2σ2

R + ρ2i (1− σ2
R), i ∈ {0, 1}. (26)

Under Hi, Sk has a typical power of

Pη,i(R) = 1− ρ2i + σ2
η,R,i = 1 + η(η − 2ρi)σ

2
R. (27)

Thus, under H1, Sk

Pη,1(R) is a
σ2
η,R,1

Pη,1(R) -mixture vector. We can
then apply Lemma 1 to obtain that the probability of Sk being
typical has exponent

Eη(R) = D

(
σ2
η,R,1

Pη,1(R)
,
Pη,0(R)

Pη,1(R)

)
. (28)

The best error exponent achievable with this scheme is then
supη≥0Eη(R). An explicit solution of the maximization is
cumbersome. For a lower bound, we look at the regime where
ησR � 1 while σ2

R � 1. In this regime,

σ2
η,R

Pη,1(R)
≈ 1− 1− ρ21

η2σ2
R

(29a)

Pη,0(R)

Pη,1(R)
≈ 1 +

2

η
(ρ1 − ρ0). (29b)

Using (19) we then obtain (6).
Remark 1: Recall the decoder above examines typicality of

Sk = Y k−η Uk(m). This is equivalent to examining whether
|ρ̂− ρ0| ≤ ε, where

ρ̂ ,
1 + η2σ2

R − ‖sk(m)‖2/k
2ησ2

R

. (30)

This notation will allow easier comparison with the schemes
that follow.

C. Exponent via Index of Maximum

Let Xk consist of i.i.d. standard Gaussian random variables,
where k = expn, and let J be the index of the maximum
component of Xk. The following is a well-known result in
order statistics [10, Ex. 10.5.3]:

E[XJ ] =
√

2n+ o(1) (31a)
Var[XJ ] = o(1). (31b)

Using (20), we have

YJ = ρi(
√

2n+ X̃) +
√

1− ρ2iZJ , (32)

where X̃ , XJ−
√

2n, and ZJ is standard Gaussian indepen-
dent of X̃ . In [6], Hadar and Shayevitz use this observation
to study mean-squared error estimation of the correlation. It
is almost immediate to extend the idea to the DHT problem,
as we describe below.

The encoder finds the index J of the maximum in Xk and
computes X̃ . If X̃ is larger than a chosen positive constant ε,
it sends a special message informing the decoder to declare
H1; otherwise it conveys the index J . The decoder declares
H0 if and only if it receives an index (i.e., not the special
message) and |ρ̃− ρ0| ≤ ε, where



ρ̃ ,
YJ√
2n
. (33)

One can verify that the error probability under H0 tends to
zero as n grows large. Under H1,

YJ −
√

2nρ1√
1− ρ21

is “approximately” standard Gaussian. We can hence use (10)
with

P =
2(ρ1 − ρ0)2

1− ρ21
(34)

to recover the Han-style exponent (6). Notice that ρ̃ “plays the
role” of ρ̂ (30) of the quantization scheme.

One may ask why the index-of-maximum approach obtains
EHan rather than, say, the more straightforward EAC. Intu-
itively, this is because the strong concentration of the maximal
value (31) plays a similar role to the jointly typical (Uk, Xk)
sequences in the Han-type scheme.

IV. IMPROVEMENT BY BINNING

A. Shimokawa-Han-Amari-Style Exponent

In [3], Shimokawa et al. add a binning element to Han’s
scheme. We next analyze a Gaussian counterpart to this
scheme. We claim without analysis that, whenever ρ0 < 0,
binning is not useful, so in the rest we assume ρ0 ≥ 0.
• Encoder: Fix some β > 1. Use a quantizer as in Han’s

scheme, but with rate βR instead of R. Accordingly, the
sequences {uk(m)} are now generated with variance

σ2
βR = 1− exp{−2βR}. (35)

Randomly distribute the indices {1, . . . , beβRc} into
exp{(β − 1)kR} bins. If the encoder finds a unique m
such that uk(m) and xk are jointly typical, it sends the
bin index (using rate R); otherwise it sends a special
message informing the decoder to declare H1.

• Decoder: If the special message is received, declare H1.
Otherwise, fix η > 0, and, for each m′ in the bin, evaluate

ρ̂(m′) ,
1 + η2σ2

βR − ‖sk(m′)‖2/k
2ησ2

βR

, (36)

where sk(m′) , yk − uk(m′). Declare H0 if, and only
if, both the following hold.

1) There exists a single m̂ in the bin for which |ρ̂(m̂)−
ρ0| < ε. This means that sk(m̂) is typical with respect
to power

Pη,0(βR) = 1 + η(η − 2ρ0)σ2
βR. (37)

2) For all m′ 6= m̂ in the bin, ρ̂(m′) < ρ0.
Under H0, with high probability the encoder will be able to

find a proper m, and also with high probability ρ̂(m) ≈ ρ0. It
remains to analyze the probability that some m′ 6= m in the bin
is such that ρ̂(m′) ≥ ρ0, i.e., that ‖sk(m′)‖2 ≥ kPη,0(βR).
Note that, for m′ 6= m, Uk(m′) is generated independently

of Y k. Hence, by Lemma 1, the probability that a specific m′

causes such an error has exponent

Ēη(βR) = D

(
η2σ2

βR

1 + η2σ2
βR

,
Pη,0(βR)

1 + η2σ2
βR

)
. (38)

Using the union bound, we can bound the exponent of the
total probability of error of this kind by

Ēη(βR)− (β − 1)R. (39)

In order to guarantee that the error probability under H0 be
small, we need (39) to be positive, i.e., we need β ≤ βmax

where βmax is the (unique) root of (39).
We now evaluate the error exponent under H1. An error

under H1 can occur only if at least one of the following two
conditions holds:

1) The “correct” index m is such that ρ̂(m) ≈ ρ0. As in
Section III-B, the exponent is Eη(βR), which is given
by (28) with all R replaced by βR.

2) In the bin there exists m′ 6= m such that ρ̂(m′) ≈ ρ0 and
ρ̂(m) < ρ0. The probability exponent of the former is the
same as under H0 and is given by (39). The latter has
probability close to one if ρ0 > ρ1, and has probability
exponent Eη(βR) if ρ0 < ρ1.

We conclude that the following exponent is achievable:

ESHA(R) = sup
η≥0

max
0≤β≤βmax

min{Eη(βR), Ēη(βR)− (β − 1) + Eη(βR)1{ρ0<ρ1}}.
(40)

When ρ0 < ρ1, the minimum is always the first term, thus

ESHA(R) = EHan(βmaxR), ρ0 < ρ1. (41)

When ρ0 > ρ1, analytical expression of the optimal β is
difficult to find.

Finally we consider the low-rate limit. It turns out that,
in this regime, when η grows large, Ēη(βR) as in (38)
approaches its supremum, which is approximately ρ20βR.
Accordingly,

βmax ≈
1

1− ρ20
.

When ρ0 < ρ1 we obtain

ESHA(R) ≈ (ρ1 − ρ0)2

1− ρ21
βmaxR ≈

(ρ1 − ρ0)2

(1− ρ20)(1− ρ21)
R. (42)

When ρ0 > ρ1,

ESHA(R) ≈ max
0≤β≤βmax

min

{
(ρ1 − ρ0)2

1− ρ21
βR, (ρ20 − β + 1)R

}
.

(43)
The maximum on the right-hand side is achieved by

β∗ =
1− ρ21

(1− ρ0ρ1)2
, (44)

thus
ESHA(R) ≈ (ρ1 − ρ0)2

(1− ρ0ρ1)2
R. (45)

This in turn yields (7).



B. Index of Maximum with Binning
It is natural to ask whether binning may help to improve

upon the basic index-of-maximum approach of Section III-C.
Indeed, in an estimation setting, Hadar et al. [11] apply a
combination of index of maximum and binning. However,
their scheme only works when the correlation coefficient is
approximately known. We next present a scheme for DHT,
where the correlation coefficient can take two different values.

Consider a source sequence Xk, where k = eβn for some
β > 1. The indices 1, . . . , eβn are grouped into en bins each
of length e(β−1)n. Let m be the index of the maximum in Xk.
The encoder checks if Xm −

√
2βn is sufficiently small. If it

is larger than a chosen positive constant, it sends a special
message to inform the decoder to declare H1; otherwise it
conveys the index of the bin containing m using n nats.

If the decoder receives a bin-index (i.e., not the special
message), then, for each m′ in the bin, it calculates

ρ̃(m′) =
Ym′
√

2βn
. (46)

It declares H0 if and only if the following two conditions hold.
1) There exists an index m̂ with |ρ̃(m̂)− ρ0| < ε.
2) For any m′ 6= m̂ in the bin, ρ̃(m′) < ρ0.
The analysis follows the same logic as for the SHA-

style scheme where ρ̃(m) replaces ρ̂(m). Notice that for the
“correct” index m,

Ym = ρiXm +
√

1− ρ2iZ

is approximately Gaussian with mean Xm, while the other
Y s are zero-mean Gaussian. Thus, one can use the amplitude
asymptotics (9) on Ym, which yield exponents for ρ̃(m) that
are exactly the same as those that ρ̂(m) satisfies in the low-rate
limit. For example, by the union bound, the error probability
under H0 is guaranteed to be small provided

βρ20 − (β − 1) (47)

is positive, which is exactly the condition (39) in the low-rate
limit, where Ēη(βR) ≈ ρ20βR. Eventually, we obtain the same
exponent (7) as in quantization with binning.

V. UPPER BOUNDS AND COMPARISON

We compare the above achievable communication exponents
with two upper bounds. The first upper bound is adapted
from Rahman and Wagner [4]. We note that the original
upper bound of [4] is for a nonzero rate R > 0. It does
not immediately yield an upper bound on the communication
exponent by letting R ↓ 0; recall that (3) does not necessarily
hold with equality. Accordingly, our upper bound ÊRW is
obtained via a proof that is slightly different from [4]:

ÊRW =
(ρ1 − ρ0)2

(1− ρ1)2
,

ρ0 + 1

2
≥ ρ1 ≥ 0. (48)

The second upper bound is taken almost directly from Hadar
et al. [5]:

ÊHLPS =
(ρ1 − ρ0)2

(1−min(ρ0, ρ1))2 − (ρ0 − ρ1)2
, ρ0, ρ1 ≥ 0.

(49)
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Fig. 1. Comparison of the different bounds as functions of ρ0, for ρ1 = 0.7.
Notice that all bounds are normalized by (ρ1−ρ0)2. Lower bounds, starting
from the lowest, are: EAC in dash-dotted blue, EHan in solid blue, and ESHA
in solid black. Upper bounds are: ÊHLPS in dashed red (valid for ρ0 ≥ 0),
and ÊRW in solid red (valid for ρ0 ≥ 0.4).

Comparing the lower and upper bounds, we see that the
communication exponent Ec is known for the following cases:

1) Testing against independence (ρ1 = 0) : Ec = ρ20;
2) Testing for independence (ρ0 = 0): Ec = ρ21/(1− ρ21);
3) Testing for equality (ρ0 = 1): Ec = ρ21/(1− ρ1)2.

In Figure 1 we plot the different lower and upper bounds on the
communication exponent for a specific value of ρ1. For better
visibility, we normalize all bounds by (ρ1 − ρ0)2. Notice that
we have no upper bound for ρ0 < 0.
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