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Abstract—This paper addresses the problem of exponentially
increasing sub-packetization with the number of users in a
centralized coded caching system by introducing a new coded
caching scheme inspired by the symmetric neighboring consec-
utive side information index coding problem. The scheme has
a placement policy where the number of sub-packets required
grows only linearly with the number of users, with no restriction
on file size, and a delivery policy which is instantaneously
decodable. Further, an application of the new delivery scheme
in a multi-access coded caching set-up is studied and a few
results in that direction are presented. In particular, in the multi-
access set-up, for cases where optimality rate-memory trade-off
characterizations are available, it is shown that the new delivery
scheme achieves optimal or near-optimal rates.

Index Terms—Coded Caching, Linear sub-packetization, Index
coding, Multi-Access Cache-aided Content Delivery Network

I. INTRODUCTION

IT has been predicted in [1] that 82 percent of the global

IT traffic will be video traffic by the year 2022. In [1], the

authors also report that peak hour traffic is growing at a much

faster rate than average internet traffic and the main contributor

to this accelerated peak hour traffic is video content which

tends to have a ”prime time”. Caching has been proposed as a

method to shift some of the peak hour traffic to off-peak hours

by placing contents into caches across the network during off-

peak hours. Since most of the video content is generated well

ahead of transmission, this type of traffic sits well within the

caching framework.

In a seminal work [2], Maddah-Ali and Niesen introduced

the notion of coding caching which jointly optimizes cache

placement and content delivery by creating multi-cast op-

portunities and using coded transmissions to simultaneously

deliver distinct contents to different users. The set-up in [2],

which in this paper is called an (N,K) centralized coded

caching system, has a central server, which possesses N files,

coordinating cache placement as well as transmissions to K
different users, each possessing a dedicated cache memory

which has a storage size of M < N files. Since [2],

researchers have explored several variants of the coded caching

problem, including schemes with coded placement policies [3],

[4], decentralized coded caching [5], device to device coded

caching [6], online caching [7], caching with non-uniform file

popularity and demands [8], [9], multi-access coded caching

[10], [11], etc.

The placement phase of most of the coded caching schemes

including [2] involve splitting each file into F sub-packets,

where, F increases exponentially with the number of users

K . This exponentially increasing sub-packetization creates two

problems: the number of bits needed to index the sub-packets

and the need for large file sizes. The first paper to look into

the problem of sub-packetization was [12] and since then, an

array of papers [12]-[18] have come up with coded caching

schemes with reduced sub-packetization, a summary of which

is given in [18]. Our paper also tries to address the sub-

packetization problem by introducing a new coded caching

scheme with linear sub-packetization inspired by the symmet-

ric neighboring consecutive side information (SNCS) single

unicast index coding problem introduced in [19]. While the

previous works which proposed schemes with sub-exponential

or linear sub-packetization required the number of users to

be either extremely large [16], [18] or take values in some

specific restricted sets [13], [18], our scheme does not impose

any restriction on the number of users or the file size.

Further, for an (N,K,L)-CCDN (Cache-aided Content De-

livery Network) which, as defined in [11], is a multi-access

coded caching system with a single server having access to N
files, K users and K caches, N ≥ K such that each user has

access to L consecutive caches, of storage size M files, with a

cyclic wrap-around, we show that our delivery scheme can be

used as a transmission policy which will satisfy the demands

of all users. The paper [11] considers an (N,K,L)-CCDN at

the memory points M = iN
K
, i ∈

[⌈
K
L

⌉]
∪ {0} and for the

L ≥ K
2 regime, gives an upper and a lower bound on the

achievable rate-memory trade-off (Corollary 2 and Theorem

3 in [11] respectively) and exact optimality results for some

special cases (Theorem 5).

The main technical contributions in this paper are listed

below.

• For a centralized coded caching system with K users and

N files, a cache-placement policy where the number of

sub-packets grows linearly with K , irrespective of file

size, is introduced.

• For this placement scheme, a delivery policy which is

instantaneously decodable (i.e, sub-packets involved in a

transmission can be decoded by the users requesting them

by utilizing only their cache contents and not any other

transmission) is given.

http://arxiv.org/abs/2009.10923v1


2

• The rate-memory trade-off achieved by the delivery

scheme is characterized.

• We show that the delivery scheme introduced in this paper

can be used in the delivery phase of a multi-access coded

caching setting considered in [11], which was called an

(N,K,L)-CCDN in [11].

• Based on the rate-memory trade off achieved by our

delivery scheme, we give a new outer bound for the rate-

memory trade-off of an (N,K,L)-CCDN with L ≥ K
2 .

• For the special cases at which the exact rate-memory was

characterized in [11], we show that our delivery scheme

either achieves the optimal rate or if doesn’t, the gap from

optimality goes to zero with increasing number of users.

The rest of this paper is organized as follows. After stating

the main results in this paper in section II, the new coded

caching scheme is described in section III. Then, after a brief

review of the multi-access coded caching setting considered in

[11], we describe how the delivery scheme in section III can

be used in the setting in [11] and a few results in that direction

in section IV. Finally, the paper is concluded in section V.

Notations: For a prime power q, Fq denotes the finite field

with q elements. For a positive integer n, [n] denotes the set

{1, 2, · · · , n}. The set of positive integers is denoted by Z
+.

A t-subset of [n] is a subset of [n] of size t. The symbol ⊕
denotes the XOR of its operands. Also,

(
n
k

)
= n!

k!(n−k)! and
(
n
k

)
= 0, when n < 1 or n < k. For an ordered set S with n

elements, the notation S(j) is used to denote the jth element

in the set S, for j ∈ {1, 2, · · · , n}.

II. MAIN RESULTS

Theorem 1. For an (N,K)-coded caching system with cache

memory size M = iN
K

for i ∈ {1, 2, · · · ,K}, the rate

R

(
iN

K

)

=







K(K − i)

2 +
⌊

i
K−i+1

⌋

+
⌊

i−1
K−i+1

⌋







·
1

K
, (1)

is achievable with a linear sub-packetization K .

Proof. This rate-memory pair can be achieved with a linear

sub-packetization by using the placement policy described in

subsection III-A followed by the delivery scheme given in

subsection III-B.

Theorem 2. Consider an (N,K,L)-CCDN with L ≥ K
2 . For

cache memory size M = N
K

, a new and improved upper bound

for the rate R(M) is given as

RUB(M) =







K −

(

K −

⌈

K(K−L)

2+⌊ L
K−L+1⌋+⌊

L−1

K−L+1⌋

⌉

1
K

)

MK
N

if 0 ≤ M ≤ N
K(⌈

K(K−L)

2+⌊ L
K−L+1⌋+⌊

L−1

K−L+1⌋

⌉

1
K

)
(
2− MK

N

)

if N
K

≤ M ≤ 2N
K

0 if M ≥ 2N
K

.
(2)

Proof. The RUB

(
N
K

)
is achieved by the delivery scheme in

subsection III-B as explained in section IV-A. At M = 0,

worst-case rate is K and for L ≥ K
2 , the rate at M = 2N

K
is

zero. The convex envelope of these three points is RUB(M).

III. PROPOSED CODED CACHING SCHEMES

In this section, we describe the proposed coded caching

scheme with a linear sub-packetization. Consider an (N,K)
centralized coded caching system with K users, U =
{1, 2, · · · ,K} and N files, W = {W1,W2, · · · ,WN}. Each

user has a dedicated cache which has a storage capacity of

M < N files. The cache content at user k is denoted as Zk

and the set Z = {Z1,Z2, · · · ,ZK} denotes the overall cache

contents. The scheme is described for those cases where cache

fraction, M
N

, takes values in { 1
K
, 2
K
, · · · , 1}. We now describe

the placement phase followed by the delivery scheme.

A. Placement Phase:

Divide each file into K sub-packets of equal

size. The sub-packets corresponding to file Wn are

{Wn,1,Wn,2, · · · ,Wn,K}. Corresponding to a cache fraction

of M
N

= i
K

, i ∈ [K], the cache placement policy is as follows.

The sub-packets Wn,k,Wn,k+1, · · · ,Wn,k+i−1 for all files

Wn ∈ W are placed in the kth user’s cache, i.e., for k ∈ [K],

Zk = {Wn,k,Wn,k+1, · · · ,Wn,k+i−1| ∀ Wn ∈ W}

. Thus, each user has i consecutive sub-packets, each of size
1
K

units, of every file, in its cache. The memory occupied by

these packets is N · i
K

which is equal to M , thus satisfying

the memory size constraint.

B. Delivery Scheme

Consider an (N,K) centralized coded caching system with

user cache memory M = iN
K
, i ∈ [K]. Following the cache

placement in subsection III-A above, let the receiver i demand

the file Wdi
and let d = {d1, d2, · · · , dK} denote the demand

vector. Each receiver knows i sub-packets of its demanded

file and needs the remaining (K − i) sub-packets. Thus,

total number of demanded sub-packets is K · (K − i). For

the demand vector d, there exists a single unicast index

coding problem [20], [21], [22] with number of users being

equal to the number of demanded sub-packets where each

user demands a distinct sub-file. Corresponding to each of

the K users in the coded caching set-up, there are K − i
receivers, each demanding a single sub-packet and all having

the user’s cache contents as side information, in the index

coding problem. We give a delivery scheme which is an

instantaneously decodable solution of the above index coding

problem, i.e., we assume that the sub-packets involved in a

particular transmission can be decoded, by the users requesting

them, instantly upon receiving that transmission, using their

cache contents only and not any other transmission.

Form the ordered set of demanded sub-packets L =
{Wd1,i,Wd1,i+1, · · · ,Wd1,K ,Wd2,i+1,Wd2,i+2, · · · ,Wd2,1,
· · · ,Wdk,i+k−1,Wdk,i+k−2, · · · ,Wdk,k−1, · · · ,WdK ,i,
WdK ,i+1, · · · ,WdK ,K−1}. An algorithm which takes L, K
and i as inputs and generate the codewords for transmission are

given in Algorithm 1 and the subroutines called in Algorithm
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1 are given in the Algorithms 2, 3, 4 and 5. In the notation

Wdu+a,p+a used in the algorithms, the addition in the user

index u as well as the addition in the sub-packet index p is

performed with wrap-around w.r.t K . An explanation of the

procedure is given below.

Algorithm 1 Algorithm for generating the transmissions

Require: L and K , i.
1: Define Γ , K − i+ 1.

2: Define t , 2 +
⌊
i
Γ

⌋
+
⌊
i−1
Γ

⌋
.

3: Generate the ordered set

T0 = {Wd1,i+1,Wd2,1,Wd1+Γ,i+1+Γ,Wd2+Γ,1+Γ, · · · ,

· · · ,W
d
1+⌊ i

Γ⌋Γ
,i+1+⌊ i

Γ⌋Γ
,W

d
2+⌊ i−1

Γ ⌋Γ,1+⌊
i−1

Γ ⌋Γ },

with the j th element in T0, i.e., T0(j) denoted as Wduj
,pj

,

where, uj is the user index and pj is the sub-packet index.

4: if t is odd AND (i < K − 2) then

5: T0(t) = Wdut
,pt

is replaced by Wdut
,pt+1

6: end if

7: C = ∅.

8: while |C| ≤
⌈
K(K−i)

t

⌉

do

9: T1 = ∅, flag = 0

10: for each Wduj
,pj

∈ T0 do

11: if Wduj
,pj

∈ L then

12: T1 = T1 ∪Wduj
,pj

.

13: else

14: if T1 == ∅ AND |L| == K then

15: T1 = SubRoutine(L,K, i)
16: else

17: [T1, flag] = Update(Wduj
,pj

,L,K, T1, flag)

18: end if

19: end if

20: end for

21: L = L \ T1

22: T0 = ∅.

23: c = 0
24: for each Wduj

,pj
∈ T1 do

25: c = c
⊕

Wduj
,pj

26: T0 = T0 ∪Wduj+1,pj+1

27: end for

28: end while

29: return Code C for transmission.

The first codeword is formed as

c =
∑

β

Wd1+βΓ,i+1+βΓ
︸ ︷︷ ︸

term1

+Wd2+βΓ,1+βΓ
︸ ︷︷ ︸

term2

, (3)

where, β takes the values 0, 1, · · ·
⌊
i
Γ

⌋
for term 1 and the

values 0, 1, · · ·
⌊
i−1
Γ

⌋
for term 2. Thus, the codeword c is a

sum of t = 2 +
⌊
i
Γ

⌋
+
⌊
i−1
Γ

⌋
sub-packets.

After generating a codeword, the corresponding sub-packets

are removed from the set L, and the next codeword is

generated by incrementing both the file index and the sub-

packet index by one for all the sub-packets involved in the

current code-word. If a term not present in L appears, it is

replaced by another sub-packet, the rules for choosing which

are given in the Rule() subroutine in Algorithm 4. In some

special cases, at the end of an iteration, when only K sub-

packets remain in L, a special construction of the set T1 is

needed which is given by the subroutine in Algorithm 2. This

is especially the case when i ≤ K
2 and K − i is odd.

Since, each codeword is the sum of t elements and there

are K(K − i) sub-packets in L, the number of transmissions

required is Λ =
⌈
K(K−i)

t

⌉

. Hence, the codeword generation

is continued for Λ iterations. Each of the generated codeword

is of size 1
K

units and hence, the expression for the rate of

transmission R(M) can be characterized as

RNew

(
iN

K

)

=
Λ

K
=







K(K − i)

2 +
⌊

i
K−i+1

⌋

+
⌊

i−1
K−i+1

⌋







·
1

K
.

(4)

Algorithm 2 SubRoutine(L,K, i)

Require: L and K , i.
1: Γ = K − i + 1.

2: t = 2 +
⌊
i
Γ

⌋
+
⌊
i−1
Γ

⌋
.

3: T = Wd1,k, for some k ∈ [K] such that Wd1,k ∈ L.

4: for j = 1 to t− 1 do

5: T = T ∪W
d
1+⌊ jK

t ⌋,k+⌊
jK
t ⌋.

6: end for

7: return T .

Algorithm 3 Update(Wduj
,pj

,L,Z, T1, flag)

1: if flag == 0 then

2: for k = 1:4 do

3: x̂ = Rule(Wduj
,pj

,k)

4: if Check(x̂,Z,L, T1) then

5: T1 = T1 ∪ x̂
6: flag = k

7: break

8: end if

9: end for

10: else if flag == 1 OR flag == 3 then

11: flag = flag + 1

12: T1 = T1∪ Rule(Wduj
,pj

,flag)

13: else if flag == 2 OR flag == 4 then

14: flag = flag - 1

15: T1 = T1∪ Rule(Wduj
,pj

,flag)

16: end if

17: return T1, flag

Remark 1. When i = 1 or i = K − 1, for any K and N ,

the placement is same as that in Maddah-Ali-Niesen scheme

[2] and the delivery scheme in Algorithm 1 gives the same set

of transmissions as that in [2]. Hence, the rate achieved at

these points, i.e., R
(
N
K

)
= K−1

2 and R
(

(K−1)N
K

)

= 1
K

, are

the same as that achieved by Maddah-Ali-Niesen scheme and

hence optimal under the constraint of uncoded placement.
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Algorithm 4 Rule(Wduj
,pj

, flag)

1: if flag == 1 then

2: x̂ = Wduj
,pj+1.

3: else if flag == 2 then

4: x̂ = Wduj+1,pj
.

5: else if flag == 3 then

6: x̂ = Wduj−1,pj
.

7: else if flag == 4 then

8: x̂ = Wduj
,pj−1.

9: end if

10: return x̂.

Algorithm 5 Check(Wduj
,pj

,Z,L, T )

1: if Wduj
,pj

/∈ L then

2: return 0
3: else

4: for each Wduk
,pk

∈ T do

5: if pj /∈ Zuk
OR pk /∈ Zuj

then

6: return 0
7: end if

8: end for

9: end if

10: return 1.

Remark 2. When 1 < i ≤ K
2 , for any N and K , an

instantaneously decodable transmission can only contain the

combination of two sub-packets at the most. The code given

by Algorithm 1 is given by

Wd1+a,i+a+k +Wd1+k+a,1+a, (5)

for a ∈ {0, 1, ...K − 1}, k ∈ {1, 2,
⌊
K−i
2

⌋
}.

The above equation gives K ·
⌊
K−i
2

⌋
transmissions. When

(K − i) is odd, we also need to make the following set of

transmissions.

W
d1+a,i+⌈K−i

2 ⌉+a
+W

d⌊K
2 ⌋+1+a

,⌈ i
2⌉+a

, (6)

for a ∈
{
0, 1, · · · ,

⌈
K
2

⌉}
.

The equation (6) above results in an additional
⌈
K
2

⌉
trans-

missions when (K − i) is odd. Thus, for both (K − i) odd as

well as even, there is a total of
⌈
K(K−i)

2

⌉

transmissions, each

of size 1
K

, giving the rate R( iN
K
) =

⌈
K(K−i)

2

⌉

· 1
K

.

Decodability : Decodability of the above delivery scheme

is explained by considering three cases as follows.

Case I : i = 1 or i = K − 1 : For this case, as explained

in Remark 1, the transmissions given by Algorithm 1 is a

reordered form of the Maddah-Ali-Niesen scheme in [2] and

hence decodability is assured.

Case II : 1 < i ≤ K
2 : For this case, consider the

transmissions given by (5). In a single transmission, only

two users, u1 and u2, with user indices 1 + a and 1 + k + a
respectively, where a and k takes values as given in (5) are

involved. With respect to these users, the transmission in (5)

can be re-written as Wdu1
,u2+i−1 +Wdu2

,u1
. Since the user

uj knows i consecutive sub-packets with indices from uj to

uj + i− 1, both the users involved in a transmission know the

sub-packet not requested by it. Now, consider the transmission

given in (6). Here, u1 = 1 + a and u2 =
⌊
K
2

⌋
+ 1 + a. The

user u1 knows sub-packets with indices from 1 + a to i + a
of all files, it knows W

du2
,⌈ i

2⌉+a
. Similarly, u2 knows the

sub-packets
⌊
K
2

⌋
+ 1 + a to

⌊
K
2

⌋
+ i + a and hence knows

W
du1

,⌈K−i
2 ⌉+i+a

.

Case III : i > K
2 : Consider the first codeword c given in

(3). The terms involved in this codeword can be grouped into

two sets as follows:

TABLE I: Table containing terms in (3).

Column 1 Column 2

Wd1,i+1 Wd2,1

Wd1+Γ,2 Wd2+Γ,1+Γ

Wd1+2Γ,2+Γ Wd2+2Γ,1+2Γ

Wd1+3Γ,2+2Γ Wd2+3Γ,1+3Γ

.

.

.
.
.
.

W
d
1+⌊ i

Γ ⌋Γ
,2+(⌊ i

Γ ⌋−1)Γ W
d
2+

⌊

i−1
Γ

⌋

Γ
,1+

⌊

i−1

Γ

⌋

Γ

A term in c is of the form Wduj
,pj

, where, uj is the

user index and pj is the sub-packet index. If
⌊
i
Γ

⌋
>

⌊
i−1
Γ

⌋
, there are odd number of terms in c and the

last term is W
d
1+⌊ i

Γ⌋Γ
,3+(⌊ i

Γ⌋−1)Γ if K − i > 2 and

W
d
1+⌊ i

Γ⌋Γ
,2+(⌊ i

Γ⌋−1)Γ if K − i ≤ 2. If
⌊
i
Γ

⌋
=

⌊
i−1
Γ

⌋
,

then there are even number of terms in c and the last term

is W
d
2+⌊ i−1

Γ ⌋Γ
,1+⌊ i−1

Γ ⌋Γ. In all these cases, the largest sub-

packet index that appears in c is i + 1 corresponding to

the first term Wd1,i+1 and it can be verified that the largest

user index that can appear in c is also i + 1. Similarly the

smallest user-index as well as sub-packet index in c is 1.

Hence 1 ≤ uj, pj ≤ i + 1, j ∈ {1, 2, · · · , t}. Because of

this, it can be seen that the users in the first row, i.e, users 1
and 2, knows all the sub-packets except their own demanded

sub-packet. Further, note that the user indices appear in c in an

increasing order {1, 2, 1 + Γ, 2 + Γ, · · · , 1 +
⌈
i
Γ

⌉
}. Similarly,

the sub-packet indices except the first one, i.e., i+ 1, appears

in an increasing order {1, 2, 1 + Γ, · · · , }
Now consider a general user in Column 1 of Table I, which

is of the form uk = 1 + kΓ. This user knows all sub-packet

indices from uk to uk+i−1, i.e., from 1+kΓ to 1+kΓ+i−1,

which can be computed as uk + i− 1 = 1 + kΓ + i− 1 =
k(K − i+1)+ i = (k− 1)Γ+K − i+1+ i = (k− 1)Γ+ 1,

considering wrap-around w.r.t K . Since, the sub-packet indices

appear in an increasing order, to show that user uk knows all

the sub-packets in c, except its own demanded sub-packet, it

suffices to show that it knows the sub-packets of its preceding

and succeeding terms. It can be seen from Table I that the

index of the sub-packet demanded by the user succeeding the

user uk, (which is the user with index 2+kΓ), is 1+kΓ = uk

which is known to user uk. Similarly, the preceding user index

is 2+(k−1)Γ and its demanded sub-packet is 1+(k−1)Γ =
uk + i − 1. Hence, a general user in Column 1 can decode
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its required sub-packet from c as it knows all the other sub-

packets involved.

Now, consider a general user uk in Column 2 of Table I,

which is of the form uk = 2 + kΓ. This user knows sub-

packets with indices uk to uk + i − 1 = 2 + (k − 1)Γ. The

sub-packet demanded by the preceding and succeeding users

of uk in c are of indices 2 + (k − 1)Γ = uk + i − 1 and

2 + kΓ = uk. Hence, similar to a general user in Column 1,

a general user uk in Column 2 also knows all the sub-packets

involved in c, except its own demanded sub-packet. Hence, we

saw each of the t users whose demanded sub-packets appear

in a codeword c knows all (t− 1) other sub-packets involved

in c and hence can decode their respective demanded sub-

packet from the codeword using their cache contents. Since

the other code-words are obtained by incrementing the user

and sub-packet indices of all the terms in c by equal amounts,

the users involved in all the transmissions know all but its own

demanded sub-packet.

When a term already removed from L in a previous iteration

appears again, the Update() subroutine gives another sub-

packet present in L by using one out of four rules. While

doing this, the Check() subroutine is invoked to verify that

the updated sub-packet is present in the caches of all the other

users involved in that transmission and vice-versa. Hence, the

code obtained from Algorithm 1 is instantaneously decodable.

C. Illustrating Example

To illustrate the placement and delivery schemes described

above, we give the following example.

Example 1. Consider an (N = 6, K = 6)-centralized coded

caching system with M = 4. The cache contents and for the

demand vector, d = {1, 2, · · · , 6}, the sub-packets requested

by each user is shown in Table II.

TABLE II: Example 1 - Cache contents and sub-packets re-

quired at each user for the demand vector d = {1, 2, 3, 4, 5, 6}.

User,i Cache contents, Zi Reqd. sub-packets

1 {Wn,1,Wn,2,Wn,3,Wn,4 |∀n ∈ [6]} {W1,5,W1,6}
2 {Wn,2,Wn,3,Wn,4,Wn,5 |∀n ∈ [6]} {W2,6,W2,1}
3 {Wn,3,Wn,4,Wn,5,Wn,6 |∀n ∈ [6]} {W3,1,W3,2}
4 {Wn,4,Wn,5,Wn,6,Wn,1 |∀n ∈ [6]} {W4,2,W4,3}
5 {Wn,5,Wn,6,Wn,1,Wn,2 |∀n ∈ [6]} {W5,3,W5,4}
6 {Wn,6,Wn,1,Wn,2,Wn,3 |∀n ∈ [6]} {W6,4,W6,5}

Delivery Scheme : The transmissions obtained from the

scheme described in subsection III-B are given below.

W5,4 +W1,5 +W2,1 +W4,2

W6,5 +W2,6 +W3,2 +W5,3

W1,6 +W3,1 +W4,3 +W6,2

The rate achieved using this scheme is R(2) = 3
6 = 1

2 with

a sub-packetization of K = 6. For the same set-up, Maddah-

Ali-Niesen scheme [2] attains a rate of RM-N = 2
5 with a

sub-packetization of
(
6
4

)
= 15.

IV. APPLICATION OF THE DELIVERY SCHEMES FOR A

MULTI-ACCESS CODED CACHING SYSTEM

We now explain how the delivery scheme described in

section III can be employed as a transmission scheme for an

(N,K,L)-CCDN and how the rate achieved by our scheme

compares against the upper and lower bounds and optimality

characterizations in [11].

A. Delivery Scheme for an (N,K,L)-CCDN

For an (N,K,L)-CCDN, L ∈ [K], with cache memory

size M = iN
K
, i ∈ {0, 1, · · · ,

⌈
K
L

⌉
}, each user has access

to L consecutive caches and thus a total cache memory of
iLN
K

. This is similar to a centralized coded caching set-up

with each user having a dedicated cache memory of iLN
K

except for the total amount of cache memory available in

both the systems. In the (N,K,L)-CCDN, the total memory

available is K · M
N

= iN , whereas, in the (N,K)-coded caching

system, with M = iLN
K

, it is iLN . Now, let us see how

the delivery policy developed in section III for an (N,K)
centralized coded caching system can be used as a delivery

scheme for an (N,K,L)-CCDN.

1) Case I - L ≥ K
2 : Let us first consider L ≥ K

2 . For this

case,
⌈
K
L

⌉
= 2 and hence M only takes values in

{
0, N

K
, 2N

K

}

out of which the only non-trivial memory point is M = N
K

as

at M = 0, there is no cache memory and the worst-case rate

is K , whereas R = 0 at M = 2N
K

. For M = N
K

, the placement

scheme in [11] specializes as follows. Each file is split into K
equal parts and the ith sub-file is stored in the ith cache and user

k has access to the caches k, k+1, · · · , k+L, which implies

it has access to the sub-files indexed by k, k + 1, · · · , k + L
of all files. This is exactly the same as the contents of the

kth user’s cache following the placement given in subsection

III-A.

Now, for a demand vector d = {d1, d2, · · · , dK}, in

both the settings, each user needs K − L sub-packets of its

demanded file. Thus, the index coding problem arising in both

the settings are the same and hence admits the same solution.

Thus, the delivery scheme in section III is a valid solution for

the multi-access coded caching setting in an (N,K,L)-CCDN

with M = N
K

and L ≥ K
2 as well.

2) Case II - L < K
2 : For this case, we need to consider the

memory points M = iN
K
, i ∈ {0, 1, · · · ,

⌈
K
L

⌉
} out of which

worst-case rate R = K at M = 0 and R = 0 at M =
⌈
K
L

⌉
·N
K

.

At the remaining memory points, the placement scheme in

[11] splits each file into F (i, L) =
(
K−iL+i−1

i−1

)
· K

i
subfiles.

F (i, L) = K only for i = 1 and i =
⌊
K
L

⌋
< K

L
. For these two

cases, placement in [11] is same as our placement scheme as

explained in Case I above. At all other values of i, the value

of F (i, L) is strictly greater than K . So, for a cache memory

of M = N
K

as well as M =
⌊
K
L

⌋
N
K

in an (N,K,L)-CCDN

with L < K , following the placement phase, corresponding

to a demand vector, d = {d1, d2, · · · , dK}, the index coding

problem seen is the same as that in an (N,K)- coded caching

network with cache memory LM and hence our delivery

scheme can be used for transmission.
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Comparing the rates achieved by the new scheme and the upper 
and lower bounds on the rate of an (N,K,L)-CCDN with L  K/2

Lower Bound
Upper bound
New Scheme

Fig. 1: Rate-Memory trade-off Comparison

TABLE III: Comparison between the optimal rates (in Theo-

rem 5, [11]) and that achieved by the new scheme

.

L R∗

(

N
K

)

RNew

(

N
K

)

K − 1 1
K

1
K

K − 2 3
K

{

3
K

if K = 3n, n ∈ {2, 3, · · · , ..}
4
K

otherwise

K-3 6
K
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K

if K = 6
8
K

if K = 5, 10
6
K

if K = 4n, n ∈ Z
+

7
K

otherwise

K − K
s

+ 1 (K−s)

2s2
(K−s)

2s2
s ∈ Z

+

B. New Improved Upper Bound for L ≥ K
2

A comparison plot showing the existing upper bound as well

as lower bound and the rate achieved by the new scheme for

the case N = K = 10 and L > K
2 is given in Fig. 1. Since

our scheme performs better than the existing upper bound and

since for L < K
2 , the only bound on rate available is the

upper bound (Theorem 1 in [11]), the rate achieved by the

newly introduced scheme in section III can be used to derive

an improved upper bound, which is given in Theorem 2. The

improved upper bound based on our scheme is very close to

the lower bound in general, and achieves it at some points.

C. Exact Optimality Cases

In [11], for exact optimality characterizations (Theorem 5),

only three memory points, M ∈
{
0, N

K
, 2N

K

}
are considered.

Since the optimality results are given for the L ≥ K
2 regime,

among these three points, M = N
K

is the only non-trivial point

as at M = 0, there is no cache memory and the worst-case

rate is K , whereas R = 0 at M = 2N
K

. A comparison between

the optimal rate and that achieved by our scheme for the cases

in Theorem 5 of [11] is given in Table III. We can see that for

all the cases covered, our scheme either achieves the optimal

rate-memory trade-off or the gap from optimality goes to zero

with increasing number of users.

V. CONCLUDING REMARKS

In this paper, we looked at the problem of sub-packetization

which poses a major challenge while implementing a coded

caching protocol. Towards this end, we developed a coded

caching scheme, with a sub-packetization that varies linearly

with the number of users, inspired by the one-sided SNCS

index coding problem. We also showed that the delivery

scheme introduced in this paper is a solution for the index

coding problem arising in the multi-access coded caching set-

up called an (N,K,L)-CCDN considered in [11] and that the

rate-expression corresponding to the newly introduced delivery

scheme can be used to derive a new upper-bound for the rate

achieved in an (N,K,L)-CCDN. Further, for the special cases

for which the optimal rate-memory trade-off was characterized

in [11], we analyzed the performance of our delivery scheme.
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